--- /dev/null
+#include "Python.h"
+#include "structmember.h"
+
+PyDoc_STRVAR(pickle_module_doc,
+"Optimized C implementation for the Python pickle module.");
+
+/* Bump this when new opcodes are added to the pickle protocol. */
+enum {
+ HIGHEST_PROTOCOL = 3,
+ DEFAULT_PROTOCOL = 3
+};
+
+
+/* Pickle opcodes. These must be kept updated with pickle.py.
+ Extensive docs are in pickletools.py. */
+enum opcode {
+ MARK = '(',
+ STOP = '.',
+ POP = '0',
+ POP_MARK = '1',
+ DUP = '2',
+ FLOAT = 'F',
+ INT = 'I',
+ BININT = 'J',
+ BININT1 = 'K',
+ LONG = 'L',
+ BININT2 = 'M',
+ NONE = 'N',
+ PERSID = 'P',
+ BINPERSID = 'Q',
+ REDUCE = 'R',
+ STRING = 'S',
+ BINSTRING = 'T',
+ SHORT_BINSTRING = 'U',
+ UNICODE = 'V',
+ BINUNICODE = 'X',
+ APPEND = 'a',
+ BUILD = 'b',
+ GLOBAL = 'c',
+ DICT = 'd',
+ EMPTY_DICT = '}',
+ APPENDS = 'e',
+ GET = 'g',
+ BINGET = 'h',
+ INST = 'i',
+ LONG_BINGET = 'j',
+ LIST = 'l',
+ EMPTY_LIST = ']',
+ OBJ = 'o',
+ PUT = 'p',
+ BINPUT = 'q',
+ LONG_BINPUT = 'r',
+ SETITEM = 's',
+ TUPLE = 't',
+ EMPTY_TUPLE = ')',
+ SETITEMS = 'u',
+ BINFLOAT = 'G',
+
+ /* Protocol 2. */
+ PROTO = '\x80',
+ NEWOBJ = '\x81',
+ EXT1 = '\x82',
+ EXT2 = '\x83',
+ EXT4 = '\x84',
+ TUPLE1 = '\x85',
+ TUPLE2 = '\x86',
+ TUPLE3 = '\x87',
+ NEWTRUE = '\x88',
+ NEWFALSE = '\x89',
+ LONG1 = '\x8a',
+ LONG4 = '\x8b',
+
+ /* Protocol 3 (Python 3.x) */
+ BINBYTES = 'B',
+ SHORT_BINBYTES = 'C',
+};
+
+/* These aren't opcodes -- they're ways to pickle bools before protocol 2
+ * so that unpicklers written before bools were introduced unpickle them
+ * as ints, but unpicklers after can recognize that bools were intended.
+ * Note that protocol 2 added direct ways to pickle bools.
+ */
+#undef TRUE
+#define TRUE "I01\n"
+#undef FALSE
+#define FALSE "I00\n"
+
+enum {
+ /* Keep in synch with pickle.Pickler._BATCHSIZE. This is how many elements
+ batch_list/dict() pumps out before doing APPENDS/SETITEMS. Nothing will
+ break if this gets out of synch with pickle.py, but it's unclear that would
+ help anything either. */
+ BATCHSIZE = 1000,
+
+ /* Nesting limit until Pickler, when running in "fast mode", starts
+ checking for self-referential data-structures. */
+ FAST_NESTING_LIMIT = 50,
+
+ /* Size of the write buffer of Pickler. Higher values will reduce the
+ number of calls to the write() method of the output stream. */
+ WRITE_BUF_SIZE = 256,
+};
+
+/* Exception classes for pickle. These should override the ones defined in
+ pickle.py, when the C-optimized Pickler and Unpickler are used. */
+static PyObject *PickleError;
+static PyObject *PicklingError;
+static PyObject *UnpicklingError;
+
+/* copyreg.dispatch_table, {type_object: pickling_function} */
+static PyObject *dispatch_table;
+/* For EXT[124] opcodes. */
+/* copyreg._extension_registry, {(module_name, function_name): code} */
+static PyObject *extension_registry;
+/* copyreg._inverted_registry, {code: (module_name, function_name)} */
+static PyObject *inverted_registry;
+/* copyreg._extension_cache, {code: object} */
+static PyObject *extension_cache;
+
+/* XXX: Are these really nescessary? */
+/* As the name says, an empty tuple. */
+static PyObject *empty_tuple;
+/* For looking up name pairs in copyreg._extension_registry. */
+static PyObject *two_tuple;
+
+static int
+stack_underflow(void)
+{
+ PyErr_SetString(UnpicklingError, "unpickling stack underflow");
+ return -1;
+}
+
+/* Internal data type used as the unpickling stack. */
+typedef struct {
+ PyObject_HEAD
+ int length; /* number of initial slots in data currently used */
+ int size; /* number of slots in data allocated */
+ PyObject **data;
+} Pdata;
+
+static void
+Pdata_dealloc(Pdata *self)
+{
+ int i;
+ PyObject **p;
+
+ for (i = self->length, p = self->data; --i >= 0; p++) {
+ Py_DECREF(*p);
+ }
+ if (self->data)
+ PyMem_Free(self->data);
+ PyObject_Del(self);
+}
+
+static PyTypeObject Pdata_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "_pickle.Pdata", /*tp_name*/
+ sizeof(Pdata), /*tp_basicsize*/
+ 0, /*tp_itemsize*/
+ (destructor)Pdata_dealloc, /*tp_dealloc*/
+};
+
+static PyObject *
+Pdata_New(void)
+{
+ Pdata *self;
+
+ if (!(self = PyObject_New(Pdata, &Pdata_Type)))
+ return NULL;
+ self->size = 8;
+ self->length = 0;
+ self->data = PyMem_Malloc(self->size * sizeof(PyObject *));
+ if (self->data)
+ return (PyObject *)self;
+ Py_DECREF(self);
+ return PyErr_NoMemory();
+}
+
+
+/* Retain only the initial clearto items. If clearto >= the current
+ * number of items, this is a (non-erroneous) NOP.
+ */
+static int
+Pdata_clear(Pdata *self, int clearto)
+{
+ int i;
+ PyObject **p;
+
+ if (clearto < 0)
+ return stack_underflow();
+ if (clearto >= self->length)
+ return 0;
+
+ for (i = self->length, p = self->data + clearto; --i >= clearto; p++) {
+ Py_CLEAR(*p);
+ }
+ self->length = clearto;
+
+ return 0;
+}
+
+static int
+Pdata_grow(Pdata *self)
+{
+ int bigger;
+ size_t nbytes;
+ PyObject **tmp;
+
+ bigger = (self->size << 1) + 1;
+ if (bigger <= 0) /* was 0, or new value overflows */
+ goto nomemory;
+ if ((int)(size_t)bigger != bigger)
+ goto nomemory;
+ nbytes = (size_t)bigger * sizeof(PyObject *);
+ if (nbytes / sizeof(PyObject *) != (size_t)bigger)
+ goto nomemory;
+ tmp = PyMem_Realloc(self->data, nbytes);
+ if (tmp == NULL)
+ goto nomemory;
+ self->data = tmp;
+ self->size = bigger;
+ return 0;
+
+ nomemory:
+ PyErr_NoMemory();
+ return -1;
+}
+
+/* D is a Pdata*. Pop the topmost element and store it into V, which
+ * must be an lvalue holding PyObject*. On stack underflow, UnpicklingError
+ * is raised and V is set to NULL.
+ */
+static PyObject *
+Pdata_pop(Pdata *self)
+{
+ if (self->length == 0) {
+ PyErr_SetString(UnpicklingError, "bad pickle data");
+ return NULL;
+ }
+ return self->data[--(self->length)];
+}
+#define PDATA_POP(D, V) do { (V) = Pdata_pop((D)); } while (0)
+
+static int
+Pdata_push(Pdata *self, PyObject *obj)
+{
+ if (self->length == self->size && Pdata_grow(self) < 0) {
+ return -1;
+ }
+ self->data[self->length++] = obj;
+ return 0;
+}
+
+/* Push an object on stack, transferring its ownership to the stack. */
+#define PDATA_PUSH(D, O, ER) do { \
+ if (Pdata_push((D), (O)) < 0) return (ER); } while(0)
+
+/* Push an object on stack, adding a new reference to the object. */
+#define PDATA_APPEND(D, O, ER) do { \
+ Py_INCREF((O)); \
+ if (Pdata_push((D), (O)) < 0) return (ER); } while(0)
+
+static PyObject *
+Pdata_poptuple(Pdata *self, Py_ssize_t start)
+{
+ PyObject *tuple;
+ Py_ssize_t len, i, j;
+
+ len = self->length - start;
+ tuple = PyTuple_New(len);
+ if (tuple == NULL)
+ return NULL;
+ for (i = start, j = 0; j < len; i++, j++)
+ PyTuple_SET_ITEM(tuple, j, self->data[i]);
+
+ self->length = start;
+ return tuple;
+}
+
+static PyObject *
+Pdata_poplist(Pdata *self, Py_ssize_t start)
+{
+ PyObject *list;
+ Py_ssize_t len, i, j;
+
+ len = self->length - start;
+ list = PyList_New(len);
+ if (list == NULL)
+ return NULL;
+ for (i = start, j = 0; j < len; i++, j++)
+ PyList_SET_ITEM(list, j, self->data[i]);
+
+ self->length = start;
+ return list;
+}
+
+typedef struct PicklerObject {
+ PyObject_HEAD
+ PyObject *write; /* write() method of the output stream */
+ PyObject *memo; /* Memo dictionary, keep track of the seen
+ objects to support self-referential objects
+ pickling. */
+ PyObject *pers_func; /* persistent_id() method, can be NULL */
+ PyObject *arg;
+ int proto; /* Pickle protocol number, >= 0 */
+ int bin; /* Boolean, true if proto > 0 */
+ int nesting; /* Current nesting level, this is to guard
+ save() from going into infinite recursion
+ and segfaulting. */
+ int buf_size; /* Size of the current buffered pickle data */
+ char *write_buf; /* Write buffer, this is to avoid calling the
+ write() method of the output stream too
+ often. */
+ int fast; /* Enable fast mode if set to a true value.
+ The fast mode disable the usage of memo,
+ therefore speeding the pickling process by
+ not generating superfluous PUT opcodes. It
+ should not be used if with self-referential
+ objects. */
+ int fast_nesting;
+ PyObject *fast_memo;
+} PicklerObject;
+
+typedef struct UnpicklerObject {
+ PyObject_HEAD
+ Pdata *stack; /* Pickle data stack, store unpickled objects. */
+ PyObject *readline; /* readline() method of the output stream */
+ PyObject *read; /* read() method of the output stream */
+ PyObject *memo; /* Memo dictionary, provide the objects stored
+ using the PUT opcodes. */
+ PyObject *arg;
+ PyObject *pers_func; /* persistent_load() method, can be NULL. */
+ PyObject *last_string; /* Reference to the last string read by the
+ readline() method. */
+ char *buffer; /* Reading buffer. */
+ char *encoding; /* Name of the encoding to be used for
+ decoding strings pickled using Python
+ 2.x. The default value is "ASCII" */
+ char *errors; /* Name of errors handling scheme to used when
+ decoding strings. The default value is
+ "strict". */
+ int *marks; /* Mark stack, used for unpickling container
+ objects. */
+ Py_ssize_t num_marks; /* Number of marks in the mark stack. */
+ Py_ssize_t marks_size; /* Current allocated size of the mark stack. */
+} UnpicklerObject;
+
+/* Forward declarations */
+static int save(PicklerObject *, PyObject *, int);
+static int save_reduce(PicklerObject *, PyObject *, PyObject *);
+static PyTypeObject Pickler_Type;
+static PyTypeObject Unpickler_Type;
+
+
+/* Helpers for creating the argument tuple passed to functions. This has the
+ performance advantage of calling PyTuple_New() only once. */
+
+#define ARG_TUP(self, obj) do { \
+ if ((self)->arg || ((self)->arg=PyTuple_New(1))) { \
+ Py_XDECREF(PyTuple_GET_ITEM((self)->arg, 0)); \
+ PyTuple_SET_ITEM((self)->arg, 0, (obj)); \
+ } \
+ else { \
+ Py_DECREF((obj)); \
+ } \
+ } while (0)
+
+#define FREE_ARG_TUP(self) do { \
+ if ((self)->arg->ob_refcnt > 1) \
+ Py_CLEAR((self)->arg); \
+ } while (0)
+
+/* A temporary cleaner API for fast single argument function call.
+
+ XXX: Does caching the argument tuple provides any real performance benefits?
+
+ A quick benchmark, on a 2.0GHz Athlon64 3200+ running Linux 2.6.24 with
+ glibc 2.7, tells me that it takes roughly 20,000,000 PyTuple_New(1) calls
+ when the tuple is retrieved from the freelist (i.e, call PyTuple_New() then
+ immediately DECREF it) and 1,200,000 calls when allocating brand new tuples
+ (i.e, call PyTuple_New() and store the returned value in an array), to save
+ one second (wall clock time). Either ways, the loading time a pickle stream
+ large enough to generate this number of calls would be massively
+ overwhelmed by other factors, like I/O throughput, the GC traversal and
+ object allocation overhead. So, I really doubt these functions provide any
+ real benefits.
+
+ On the other hand, oprofile reports that pickle spends a lot of time in
+ these functions. But, that is probably more related to the function call
+ overhead, than the argument tuple allocation.
+
+ XXX: And, what is the reference behavior of these? Steal, borrow? At first
+ glance, it seems to steal the reference of 'arg' and borrow the reference
+ of 'func'.
+ */
+static PyObject *
+pickler_call(PicklerObject *self, PyObject *func, PyObject *arg)
+{
+ PyObject *result = NULL;
+
+ ARG_TUP(self, arg);
+ if (self->arg) {
+ result = PyObject_Call(func, self->arg, NULL);
+ FREE_ARG_TUP(self);
+ }
+ return result;
+}
+
+static PyObject *
+unpickler_call(UnpicklerObject *self, PyObject *func, PyObject *arg)
+{
+ PyObject *result = NULL;
+
+ ARG_TUP(self, arg);
+ if (self->arg) {
+ result = PyObject_Call(func, self->arg, NULL);
+ FREE_ARG_TUP(self);
+ }
+ return result;
+}
+
+static Py_ssize_t
+pickler_write(PicklerObject *self, const char *s, Py_ssize_t n)
+{
+ PyObject *data, *result;
+
+ if (s == NULL) {
+ if (!(self->buf_size))
+ return 0;
+ data = PyBytes_FromStringAndSize(self->write_buf, self->buf_size);
+ if (data == NULL)
+ return -1;
+ }
+ else {
+ if (self->buf_size && (n + self->buf_size) > WRITE_BUF_SIZE) {
+ if (pickler_write(self, NULL, 0) < 0)
+ return -1;
+ }
+
+ if (n > WRITE_BUF_SIZE) {
+ if (!(data = PyBytes_FromStringAndSize(s, n)))
+ return -1;
+ }
+ else {
+ memcpy(self->write_buf + self->buf_size, s, n);
+ self->buf_size += n;
+ return n;
+ }
+ }
+
+ /* object with write method */
+ result = pickler_call(self, self->write, data);
+ if (result == NULL)
+ return -1;
+
+ Py_DECREF(result);
+ self->buf_size = 0;
+ return n;
+}
+
+/* XXX: These read/readline functions ought to be optimized. Buffered I/O
+ might help a lot, especially with the new (but much slower) io library.
+ On the other hand, the added complexity might not worth it.
+ */
+
+/* Read at least n characters from the input stream and set s to the current
+ reading position. */
+static Py_ssize_t
+unpickler_read(UnpicklerObject *self, char **s, Py_ssize_t n)
+{
+ PyObject *len;
+ PyObject *data;
+
+ len = PyLong_FromSsize_t(n);
+ if (len == NULL)
+ return -1;
+
+ data = unpickler_call(self, self->read, len);
+ if (data == NULL)
+ return -1;
+
+ /* XXX: Should bytearray be supported too? */
+ if (!PyBytes_Check(data)) {
+ PyErr_SetString(PyExc_ValueError,
+ "read() from the underlying stream did not"
+ "return bytes");
+ return -1;
+ }
+
+ Py_XDECREF(self->last_string);
+ self->last_string = data;
+
+ if (!(*s = PyBytes_AS_STRING(data)))
+ return -1;
+
+ return n;
+}
+
+static Py_ssize_t
+unpickler_readline(UnpicklerObject *self, char **s)
+{
+ PyObject *data;
+
+ data = PyObject_CallObject(self->readline, empty_tuple);
+ if (data == NULL)
+ return -1;
+
+ /* XXX: Should bytearray be supported too? */
+ if (!PyBytes_Check(data)) {
+ PyErr_SetString(PyExc_ValueError,
+ "readline() from the underlying stream did not"
+ "return bytes");
+ return -1;
+ }
+
+ Py_XDECREF(self->last_string);
+ self->last_string = data;
+
+ if (!(*s = PyBytes_AS_STRING(data)))
+ return -1;
+
+ return PyBytes_GET_SIZE(data);
+}
+
+/* Generate a GET opcode for an object stored in the memo. The 'key' argument
+ should be the address of the object as returned by PyLong_FromVoidPtr(). */
+static int
+memo_get(PicklerObject *self, PyObject *key)
+{
+ PyObject *value;
+ PyObject *memo_id;
+ long x;
+ char pdata[30];
+ int len;
+
+ value = PyDict_GetItemWithError(self->memo, key);
+ if (value == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetObject(PyExc_KeyError, key);
+ return -1;
+ }
+
+ memo_id = PyTuple_GetItem(value, 0);
+ if (memo_id == NULL)
+ return -1;
+
+ if (!PyLong_Check(memo_id)) {
+ PyErr_SetString(PicklingError, "memo id must be an integer");
+ return -1;
+ }
+ x = PyLong_AsLong(memo_id);
+ if (x == -1 && PyErr_Occurred())
+ return -1;
+
+ if (!self->bin) {
+ pdata[0] = GET;
+ PyOS_snprintf(pdata + 1, sizeof(pdata) - 1, "%ld\n", x);
+ len = (int)strlen(pdata);
+ }
+ else {
+ if (x < 256) {
+ pdata[0] = BINGET;
+ pdata[1] = (unsigned char)(x & 0xff);
+ len = 2;
+ }
+ else if (x <= 0xffffffffL) {
+ pdata[0] = LONG_BINGET;
+ pdata[1] = (unsigned char)(x & 0xff);
+ pdata[2] = (unsigned char)((x >> 8) & 0xff);
+ pdata[3] = (unsigned char)((x >> 16) & 0xff);
+ pdata[4] = (unsigned char)((x >> 24) & 0xff);
+ len = 5;
+ }
+ else { /* unlikely */
+ PyErr_SetString(PicklingError,
+ "memo id too large for LONG_BINGET");
+ return -1;
+ }
+ }
+
+ if (pickler_write(self, pdata, len) < 0)
+ return -1;
+
+ return 0;
+}
+
+/* Store an object in the memo, assign it a new unique ID based on the number
+ of objects currently stored in the memo and generate a PUT opcode. */
+static int
+memo_put(PicklerObject *self, PyObject *obj)
+{
+ PyObject *key = NULL;
+ PyObject *memo_id = NULL;
+ PyObject *tuple = NULL;
+ long x;
+ char pdata[30];
+ int len;
+ int status = 0;
+
+ if (self->fast)
+ return 0;
+
+ key = PyLong_FromVoidPtr(obj);
+ if (key == NULL)
+ goto error;
+ if ((x = PyDict_Size(self->memo)) < 0)
+ goto error;
+ memo_id = PyLong_FromLong(x);
+ if (memo_id == NULL)
+ goto error;
+ tuple = PyTuple_New(2);
+ if (tuple == NULL)
+ goto error;
+
+ Py_INCREF(memo_id);
+ PyTuple_SET_ITEM(tuple, 0, memo_id);
+ Py_INCREF(obj);
+ PyTuple_SET_ITEM(tuple, 1, obj);
+ if (PyDict_SetItem(self->memo, key, tuple) < 0)
+ goto error;
+
+ if (!self->bin) {
+ pdata[0] = PUT;
+ PyOS_snprintf(pdata + 1, sizeof(pdata) - 1, "%ld\n", x);
+ len = strlen(pdata);
+ }
+ else {
+ if (x < 256) {
+ pdata[0] = BINPUT;
+ pdata[1] = x;
+ len = 2;
+ }
+ else if (x <= 0xffffffffL) {
+ pdata[0] = LONG_BINPUT;
+ pdata[1] = (unsigned char)(x & 0xff);
+ pdata[2] = (unsigned char)((x >> 8) & 0xff);
+ pdata[3] = (unsigned char)((x >> 16) & 0xff);
+ pdata[4] = (unsigned char)((x >> 24) & 0xff);
+ len = 5;
+ }
+ else { /* unlikely */
+ PyErr_SetString(PicklingError,
+ "memo id too large for LONG_BINPUT");
+ return -1;
+ }
+ }
+
+ if (pickler_write(self, pdata, len) < 0)
+ goto error;
+
+ if (0) {
+ error:
+ status = -1;
+ }
+
+ Py_XDECREF(key);
+ Py_XDECREF(memo_id);
+ Py_XDECREF(tuple);
+
+ return status;
+}
+
+static PyObject *
+whichmodule(PyObject *global, PyObject *global_name)
+{
+ Py_ssize_t i, j;
+ static PyObject *module_str = NULL;
+ static PyObject *main_str = NULL;
+ PyObject *module_name;
+ PyObject *modules_dict;
+ PyObject *module;
+ PyObject *obj;
+
+ if (module_str == NULL) {
+ module_str = PyUnicode_InternFromString("__module__");
+ if (module_str == NULL)
+ return NULL;
+ main_str = PyUnicode_InternFromString("__main__");
+ if (main_str == NULL)
+ return NULL;
+ }
+
+ module_name = PyObject_GetAttr(global, module_str);
+
+ /* In some rare cases (e.g., random.getrandbits), __module__ can be
+ None. If it is so, then search sys.modules for the module of
+ global. */
+ if (module_name == Py_None) {
+ Py_DECREF(module_name);
+ goto search;
+ }
+
+ if (module_name) {
+ return module_name;
+ }
+ if (PyErr_ExceptionMatches(PyExc_AttributeError))
+ PyErr_Clear();
+ else
+ return NULL;
+
+ search:
+ modules_dict = PySys_GetObject("modules");
+ if (modules_dict == NULL)
+ return NULL;
+
+ i = 0;
+ module_name = NULL;
+ while ((j = PyDict_Next(modules_dict, &i, &module_name, &module))) {
+ if (PyObject_Compare(module_name, main_str) == 0)
+ continue;
+
+ obj = PyObject_GetAttr(module, global_name);
+ if (obj == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_AttributeError))
+ PyErr_Clear();
+ else
+ return NULL;
+ continue;
+ }
+
+ if (obj != global) {
+ Py_DECREF(obj);
+ continue;
+ }
+
+ Py_DECREF(obj);
+ break;
+ }
+
+ /* If no module is found, use __main__. */
+ if (!j) {
+ module_name = main_str;
+ }
+
+ Py_INCREF(module_name);
+ return module_name;
+}
+
+/* fast_save_enter() and fast_save_leave() are guards against recursive
+ objects when Pickler is used with the "fast mode" (i.e., with object
+ memoization disabled). If the nesting of a list or dict object exceed
+ FAST_NESTING_LIMIT, these guards will start keeping an internal
+ reference to the seen list or dict objects and check whether these objects
+ are recursive. These are not strictly necessary, since save() has a
+ hard-coded recursion limit, but they give a nicer error message than the
+ typical RuntimeError. */
+static int
+fast_save_enter(PicklerObject *self, PyObject *obj)
+{
+ /* if fast_nesting < 0, we're doing an error exit. */
+ if (++self->fast_nesting >= FAST_NESTING_LIMIT) {
+ PyObject *key = NULL;
+ if (self->fast_memo == NULL) {
+ self->fast_memo = PyDict_New();
+ if (self->fast_memo == NULL) {
+ self->fast_nesting = -1;
+ return 0;
+ }
+ }
+ key = PyLong_FromVoidPtr(obj);
+ if (key == NULL)
+ return 0;
+ if (PyDict_GetItem(self->fast_memo, key)) {
+ Py_DECREF(key);
+ PyErr_Format(PyExc_ValueError,
+ "fast mode: can't pickle cyclic objects "
+ "including object type %.200s at %p",
+ obj->ob_type->tp_name, obj);
+ self->fast_nesting = -1;
+ return 0;
+ }
+ if (PyDict_SetItem(self->fast_memo, key, Py_None) < 0) {
+ Py_DECREF(key);
+ self->fast_nesting = -1;
+ return 0;
+ }
+ Py_DECREF(key);
+ }
+ return 1;
+}
+
+static int
+fast_save_leave(PicklerObject *self, PyObject *obj)
+{
+ if (self->fast_nesting-- >= FAST_NESTING_LIMIT) {
+ PyObject *key = PyLong_FromVoidPtr(obj);
+ if (key == NULL)
+ return 0;
+ if (PyDict_DelItem(self->fast_memo, key) < 0) {
+ Py_DECREF(key);
+ return 0;
+ }
+ Py_DECREF(key);
+ }
+ return 1;
+}
+
+static int
+save_none(PicklerObject *self, PyObject *obj)
+{
+ const char none_op = NONE;
+ if (pickler_write(self, &none_op, 1) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int
+save_bool(PicklerObject *self, PyObject *obj)
+{
+ static const char *buf[2] = { FALSE, TRUE };
+ const char len[2] = {sizeof(FALSE) - 1, sizeof(TRUE) - 1};
+ int p = (obj == Py_True);
+
+ if (self->proto >= 2) {
+ const char bool_op = p ? NEWTRUE : NEWFALSE;
+ if (pickler_write(self, &bool_op, 1) < 0)
+ return -1;
+ }
+ else if (pickler_write(self, buf[p], len[p]) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int
+save_int(PicklerObject *self, long x)
+{
+ char pdata[32];
+ int len = 0;
+
+ if (!self->bin
+#if SIZEOF_LONG > 4
+ || x > 0x7fffffffL || x < -0x80000000L
+#endif
+ ) {
+ /* Text-mode pickle, or long too big to fit in the 4-byte
+ * signed BININT format: store as a string.
+ */
+ pdata[0] = LONG; /* use LONG for consistence with pickle.py */
+ PyOS_snprintf(pdata + 1, sizeof(pdata) - 1, "%ld\n", x);
+ if (pickler_write(self, pdata, strlen(pdata)) < 0)
+ return -1;
+ }
+ else {
+ /* Binary pickle and x fits in a signed 4-byte int. */
+ pdata[1] = (unsigned char)(x & 0xff);
+ pdata[2] = (unsigned char)((x >> 8) & 0xff);
+ pdata[3] = (unsigned char)((x >> 16) & 0xff);
+ pdata[4] = (unsigned char)((x >> 24) & 0xff);
+
+ if ((pdata[4] == 0) && (pdata[3] == 0)) {
+ if (pdata[2] == 0) {
+ pdata[0] = BININT1;
+ len = 2;
+ }
+ else {
+ pdata[0] = BININT2;
+ len = 3;
+ }
+ }
+ else {
+ pdata[0] = BININT;
+ len = 5;
+ }
+
+ if (pickler_write(self, pdata, len) < 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+save_long(PicklerObject *self, PyObject *obj)
+{
+ PyObject *repr = NULL;
+ Py_ssize_t size;
+ long val = PyLong_AsLong(obj);
+ int status = 0;
+
+ const char long_op = LONG;
+
+ if (val == -1 && PyErr_Occurred()) {
+ /* out of range for int pickling */
+ PyErr_Clear();
+ }
+ else
+ return save_int(self, val);
+
+ if (self->proto >= 2) {
+ /* Linear-time pickling. */
+ size_t nbits;
+ size_t nbytes;
+ unsigned char *pdata;
+ char header[5];
+ int i;
+ int sign = _PyLong_Sign(obj);
+
+ if (sign == 0) {
+ header[0] = LONG1;
+ header[1] = 0; /* It's 0 -- an empty bytestring. */
+ if (pickler_write(self, header, 2) < 0)
+ goto error;
+ return 0;
+ }
+ nbits = _PyLong_NumBits(obj);
+ if (nbits == (size_t)-1 && PyErr_Occurred())
+ goto error;
+ /* How many bytes do we need? There are nbits >> 3 full
+ * bytes of data, and nbits & 7 leftover bits. If there
+ * are any leftover bits, then we clearly need another
+ * byte. Wnat's not so obvious is that we *probably*
+ * need another byte even if there aren't any leftovers:
+ * the most-significant bit of the most-significant byte
+ * acts like a sign bit, and it's usually got a sense
+ * opposite of the one we need. The exception is longs
+ * of the form -(2**(8*j-1)) for j > 0. Such a long is
+ * its own 256's-complement, so has the right sign bit
+ * even without the extra byte. That's a pain to check
+ * for in advance, though, so we always grab an extra
+ * byte at the start, and cut it back later if possible.
+ */
+ nbytes = (nbits >> 3) + 1;
+ if (nbytes > INT_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long too large to pickle");
+ goto error;
+ }
+ repr = PyUnicode_FromStringAndSize(NULL, (int)nbytes);
+ if (repr == NULL)
+ goto error;
+ pdata = (unsigned char *)PyUnicode_AsString(repr);
+ i = _PyLong_AsByteArray((PyLongObject *)obj,
+ pdata, nbytes,
+ 1 /* little endian */ , 1 /* signed */ );
+ if (i < 0)
+ goto error;
+ /* If the long is negative, this may be a byte more than
+ * needed. This is so iff the MSB is all redundant sign
+ * bits.
+ */
+ if (sign < 0 &&
+ nbytes > 1 &&
+ pdata[nbytes - 1] == 0xff &&
+ (pdata[nbytes - 2] & 0x80) != 0) {
+ nbytes--;
+ }
+
+ if (nbytes < 256) {
+ header[0] = LONG1;
+ header[1] = (unsigned char)nbytes;
+ size = 2;
+ }
+ else {
+ header[0] = LONG4;
+ size = (int)nbytes;
+ for (i = 1; i < 5; i++) {
+ header[i] = (unsigned char)(size & 0xff);
+ size >>= 8;
+ }
+ size = 5;
+ }
+ if (pickler_write(self, header, size) < 0 ||
+ pickler_write(self, (char *)pdata, (int)nbytes) < 0)
+ goto error;
+ }
+ else {
+ char *string;
+
+ /* proto < 2: write the repr and newline. This is quadratic-time
+ (in the number of digits), in both directions. */
+
+ repr = PyObject_Repr(obj);
+ if (repr == NULL)
+ goto error;
+
+ string = PyUnicode_AsStringAndSize(repr, &size);
+ if (string == NULL)
+ goto error;
+
+ if (pickler_write(self, &long_op, 1) < 0 ||
+ pickler_write(self, string, size) < 0 ||
+ pickler_write(self, "\n", 1) < 0)
+ goto error;
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+ Py_XDECREF(repr);
+
+ return status;
+}
+
+static int
+save_float(PicklerObject *self, PyObject *obj)
+{
+ double x = PyFloat_AS_DOUBLE((PyFloatObject *)obj);
+
+ if (self->bin) {
+ char pdata[9];
+ pdata[0] = BINFLOAT;
+ if (_PyFloat_Pack8(x, (unsigned char *)&pdata[1], 0) < 0)
+ return -1;
+ if (pickler_write(self, pdata, 9) < 0)
+ return -1;
+ }
+ else {
+ char pdata[250];
+ pdata[0] = FLOAT;
+ PyOS_ascii_formatd(pdata + 1, sizeof(pdata) - 2, "%.17g", x);
+ /* Extend the formatted string with a newline character */
+ strcat(pdata, "\n");
+
+ if (pickler_write(self, pdata, strlen(pdata)) < 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+save_bytes(PicklerObject *self, PyObject *obj)
+{
+ if (self->proto < 3) {
+ /* Older pickle protocols do not have an opcode for pickling bytes
+ objects. Therefore, we need to fake the copy protocol (i.e.,
+ the __reduce__ method) to permit bytes object unpickling. */
+ PyObject *reduce_value = NULL;
+ PyObject *bytelist = NULL;
+ int status;
+
+ bytelist = PySequence_List(obj);
+ if (bytelist == NULL)
+ return -1;
+
+ reduce_value = Py_BuildValue("(O(O))", (PyObject *)&PyBytes_Type,
+ bytelist);
+ if (reduce_value == NULL) {
+ Py_DECREF(bytelist);
+ return -1;
+ }
+
+ /* save_reduce() will memoize the object automatically. */
+ status = save_reduce(self, reduce_value, obj);
+ Py_DECREF(reduce_value);
+ Py_DECREF(bytelist);
+ return status;
+ }
+ else {
+ Py_ssize_t size;
+ char header[5];
+ int len;
+
+ size = PyBytes_Size(obj);
+ if (size < 0)
+ return -1;
+
+ if (size < 256) {
+ header[0] = SHORT_BINBYTES;
+ header[1] = (unsigned char)size;
+ len = 2;
+ }
+ else if (size <= 0xffffffffL) {
+ header[0] = BINBYTES;
+ header[1] = (unsigned char)(size & 0xff);
+ header[2] = (unsigned char)((size >> 8) & 0xff);
+ header[3] = (unsigned char)((size >> 16) & 0xff);
+ header[4] = (unsigned char)((size >> 24) & 0xff);
+ len = 5;
+ }
+ else {
+ return -1; /* string too large */
+ }
+
+ if (pickler_write(self, header, len) < 0)
+ return -1;
+
+ if (pickler_write(self, PyBytes_AS_STRING(obj), size) < 0)
+ return -1;
+
+ if (memo_put(self, obj) < 0)
+ return -1;
+
+ return 0;
+ }
+}
+
+/* A copy of PyUnicode_EncodeRawUnicodeEscape() that also translates
+ backslash and newline characters to \uXXXX escapes. */
+static PyObject *
+raw_unicode_escape(const Py_UNICODE *s, Py_ssize_t size)
+{
+ PyObject *repr, *result;
+ char *p;
+ char *q;
+
+ static const char *hexdigits = "0123456789abcdef";
+
+#ifdef Py_UNICODE_WIDE
+ repr = PyBytes_FromStringAndSize(NULL, 10 * size);
+#else
+ repr = PyBytes_FromStringAndSize(NULL, 6 * size);
+#endif
+ if (repr == NULL)
+ return NULL;
+ if (size == 0)
+ goto done;
+
+ p = q = PyBytes_AS_STRING(repr);
+ while (size-- > 0) {
+ Py_UNICODE ch = *s++;
+#ifdef Py_UNICODE_WIDE
+ /* Map 32-bit characters to '\Uxxxxxxxx' */
+ if (ch >= 0x10000) {
+ *p++ = '\\';
+ *p++ = 'U';
+ *p++ = hexdigits[(ch >> 28) & 0xf];
+ *p++ = hexdigits[(ch >> 24) & 0xf];
+ *p++ = hexdigits[(ch >> 20) & 0xf];
+ *p++ = hexdigits[(ch >> 16) & 0xf];
+ *p++ = hexdigits[(ch >> 12) & 0xf];
+ *p++ = hexdigits[(ch >> 8) & 0xf];
+ *p++ = hexdigits[(ch >> 4) & 0xf];
+ *p++ = hexdigits[ch & 15];
+ }
+ else
+#endif
+ /* Map 16-bit characters to '\uxxxx' */
+ if (ch >= 256 || ch == '\\' || ch == '\n') {
+ *p++ = '\\';
+ *p++ = 'u';
+ *p++ = hexdigits[(ch >> 12) & 0xf];
+ *p++ = hexdigits[(ch >> 8) & 0xf];
+ *p++ = hexdigits[(ch >> 4) & 0xf];
+ *p++ = hexdigits[ch & 15];
+ }
+ /* Copy everything else as-is */
+ else
+ *p++ = (char) ch;
+ }
+ size = p - q;
+
+ done:
+ result = PyBytes_FromStringAndSize(PyBytes_AS_STRING(repr), size);
+ Py_DECREF(repr);
+ return result;
+}
+
+static int
+save_unicode(PicklerObject *self, PyObject *obj)
+{
+ Py_ssize_t size;
+ PyObject *encoded = NULL;
+
+ if (self->bin) {
+ char pdata[5];
+
+ encoded = PyUnicode_AsUTF8String(obj);
+ if (encoded == NULL)
+ goto error;
+
+ size = PyBytes_GET_SIZE(encoded);
+ if (size < 0 || size > 0xffffffffL)
+ goto error; /* string too large */
+
+ pdata[0] = BINUNICODE;
+ pdata[1] = (unsigned char)(size & 0xff);
+ pdata[2] = (unsigned char)((size >> 8) & 0xff);
+ pdata[3] = (unsigned char)((size >> 16) & 0xff);
+ pdata[4] = (unsigned char)((size >> 24) & 0xff);
+
+ if (pickler_write(self, pdata, 5) < 0)
+ goto error;
+
+ if (pickler_write(self, PyBytes_AS_STRING(encoded), size) < 0)
+ goto error;
+ }
+ else {
+ const char unicode_op = UNICODE;
+
+ encoded = raw_unicode_escape(PyUnicode_AS_UNICODE(obj),
+ PyUnicode_GET_SIZE(obj));
+ if (encoded == NULL)
+ goto error;
+
+ if (pickler_write(self, &unicode_op, 1) < 0)
+ goto error;
+
+ size = PyBytes_GET_SIZE(encoded);
+ if (pickler_write(self, PyBytes_AS_STRING(encoded), size) < 0)
+ goto error;
+
+ if (pickler_write(self, "\n", 1) < 0)
+ goto error;
+ }
+ if (memo_put(self, obj) < 0)
+ goto error;
+
+ Py_DECREF(encoded);
+ return 0;
+
+ error:
+ Py_XDECREF(encoded);
+ return -1;
+}
+
+/* A helper for save_tuple. Push the len elements in tuple t on the stack. */
+static int
+store_tuple_elements(PicklerObject *self, PyObject *t, int len)
+{
+ int i;
+
+ assert(PyTuple_Size(t) == len);
+
+ for (i = 0; i < len; i++) {
+ PyObject *element = PyTuple_GET_ITEM(t, i);
+
+ if (element == NULL)
+ return -1;
+ if (save(self, element, 0) < 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Tuples are ubiquitous in the pickle protocols, so many techniques are
+ * used across protocols to minimize the space needed to pickle them.
+ * Tuples are also the only builtin immutable type that can be recursive
+ * (a tuple can be reached from itself), and that requires some subtle
+ * magic so that it works in all cases. IOW, this is a long routine.
+ */
+static int
+save_tuple(PicklerObject *self, PyObject *obj)
+{
+ PyObject *memo_key = NULL;
+ int len, i;
+ int status = 0;
+
+ const char mark_op = MARK;
+ const char tuple_op = TUPLE;
+ const char pop_op = POP;
+ const char pop_mark_op = POP_MARK;
+ const char len2opcode[] = {EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3};
+
+ if ((len = PyTuple_Size(obj)) < 0)
+ return -1;
+
+ if (len == 0) {
+ char pdata[2];
+
+ if (self->proto) {
+ pdata[0] = EMPTY_TUPLE;
+ len = 1;
+ }
+ else {
+ pdata[0] = MARK;
+ pdata[1] = TUPLE;
+ len = 2;
+ }
+ if (pickler_write(self, pdata, len) < 0)
+ return -1;
+ return 0;
+ }
+
+ /* id(tuple) isn't in the memo now. If it shows up there after
+ * saving the tuple elements, the tuple must be recursive, in
+ * which case we'll pop everything we put on the stack, and fetch
+ * its value from the memo.
+ */
+ memo_key = PyLong_FromVoidPtr(obj);
+ if (memo_key == NULL)
+ return -1;
+
+ if (len <= 3 && self->proto >= 2) {
+ /* Use TUPLE{1,2,3} opcodes. */
+ if (store_tuple_elements(self, obj, len) < 0)
+ goto error;
+
+ if (PyDict_GetItem(self->memo, memo_key)) {
+ /* pop the len elements */
+ for (i = 0; i < len; i++)
+ if (pickler_write(self, &pop_op, 1) < 0)
+ goto error;
+ /* fetch from memo */
+ if (memo_get(self, memo_key) < 0)
+ goto error;
+
+ Py_DECREF(memo_key);
+ return 0;
+ }
+ else { /* Not recursive. */
+ if (pickler_write(self, len2opcode + len, 1) < 0)
+ goto error;
+ }
+ goto memoize;
+ }
+
+ /* proto < 2 and len > 0, or proto >= 2 and len > 3.
+ * Generate MARK e1 e2 ... TUPLE
+ */
+ if (pickler_write(self, &mark_op, 1) < 0)
+ goto error;
+
+ if (store_tuple_elements(self, obj, len) < 0)
+ goto error;
+
+ if (PyDict_GetItem(self->memo, memo_key)) {
+ /* pop the stack stuff we pushed */
+ if (self->bin) {
+ if (pickler_write(self, &pop_mark_op, 1) < 0)
+ goto error;
+ }
+ else {
+ /* Note that we pop one more than len, to remove
+ * the MARK too.
+ */
+ for (i = 0; i <= len; i++)
+ if (pickler_write(self, &pop_op, 1) < 0)
+ goto error;
+ }
+ /* fetch from memo */
+ if (memo_get(self, memo_key) < 0)
+ goto error;
+
+ Py_DECREF(memo_key);
+ return 0;
+ }
+ else { /* Not recursive. */
+ if (pickler_write(self, &tuple_op, 1) < 0)
+ goto error;
+ }
+
+ memoize:
+ if (memo_put(self, obj) < 0)
+ goto error;
+
+ if (0) {
+ error:
+ status = -1;
+ }
+
+ Py_DECREF(memo_key);
+ return status;
+}
+
+/* iter is an iterator giving items, and we batch up chunks of
+ * MARK item item ... item APPENDS
+ * opcode sequences. Calling code should have arranged to first create an
+ * empty list, or list-like object, for the APPENDS to operate on.
+ * Returns 0 on success, <0 on error.
+ */
+static int
+batch_list(PicklerObject *self, PyObject *iter)
+{
+ PyObject *obj;
+ PyObject *slice[BATCHSIZE];
+ int i, n;
+
+ const char mark_op = MARK;
+ const char append_op = APPEND;
+ const char appends_op = APPENDS;
+
+ assert(iter != NULL);
+
+ /* XXX: I think this function could be made faster by avoiding the
+ iterator interface and fetching objects directly from list using
+ PyList_GET_ITEM.
+ */
+
+ if (self->proto == 0) {
+ /* APPENDS isn't available; do one at a time. */
+ for (;;) {
+ obj = PyIter_Next(iter);
+ if (obj == NULL) {
+ if (PyErr_Occurred())
+ return -1;
+ break;
+ }
+ i = save(self, obj, 0);
+ Py_DECREF(obj);
+ if (i < 0)
+ return -1;
+ if (pickler_write(self, &append_op, 1) < 0)
+ return -1;
+ }
+ return 0;
+ }
+
+ /* proto > 0: write in batches of BATCHSIZE. */
+ do {
+ /* Get next group of (no more than) BATCHSIZE elements. */
+ for (n = 0; n < BATCHSIZE; n++) {
+ obj = PyIter_Next(iter);
+ if (obj == NULL) {
+ if (PyErr_Occurred())
+ goto error;
+ break;
+ }
+ slice[n] = obj;
+ }
+
+ if (n > 1) {
+ /* Pump out MARK, slice[0:n], APPENDS. */
+ if (pickler_write(self, &mark_op, 1) < 0)
+ goto error;
+ for (i = 0; i < n; i++) {
+ if (save(self, slice[i], 0) < 0)
+ goto error;
+ }
+ if (pickler_write(self, &appends_op, 1) < 0)
+ goto error;
+ }
+ else if (n == 1) {
+ if (save(self, slice[0], 0) < 0 ||
+ pickler_write(self, &append_op, 1) < 0)
+ goto error;
+ }
+
+ for (i = 0; i < n; i++) {
+ Py_DECREF(slice[i]);
+ }
+ } while (n == BATCHSIZE);
+ return 0;
+
+ error:
+ while (--n >= 0) {
+ Py_DECREF(slice[n]);
+ }
+ return -1;
+}
+
+static int
+save_list(PicklerObject *self, PyObject *obj)
+{
+ PyObject *iter;
+ char header[3];
+ int len;
+ int status = 0;
+
+ if (self->fast && !fast_save_enter(self, obj))
+ goto error;
+
+ /* Create an empty list. */
+ if (self->bin) {
+ header[0] = EMPTY_LIST;
+ len = 1;
+ }
+ else {
+ header[0] = MARK;
+ header[1] = LIST;
+ len = 2;
+ }
+
+ if (pickler_write(self, header, len) < 0)
+ goto error;
+
+ /* Get list length, and bow out early if empty. */
+ if ((len = PyList_Size(obj)) < 0)
+ goto error;
+
+ if (memo_put(self, obj) < 0)
+ goto error;
+
+ if (len != 0) {
+ /* Save the list elements. */
+ iter = PyObject_GetIter(obj);
+ if (iter == NULL)
+ goto error;
+ status = batch_list(self, iter);
+ Py_DECREF(iter);
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+
+ if (self->fast && !fast_save_leave(self, obj))
+ status = -1;
+
+ return status;
+}
+
+/* iter is an iterator giving (key, value) pairs, and we batch up chunks of
+ * MARK key value ... key value SETITEMS
+ * opcode sequences. Calling code should have arranged to first create an
+ * empty dict, or dict-like object, for the SETITEMS to operate on.
+ * Returns 0 on success, <0 on error.
+ *
+ * This is very much like batch_list(). The difference between saving
+ * elements directly, and picking apart two-tuples, is so long-winded at
+ * the C level, though, that attempts to combine these routines were too
+ * ugly to bear.
+ */
+static int
+batch_dict(PicklerObject *self, PyObject *iter)
+{
+ PyObject *obj;
+ PyObject *slice[BATCHSIZE];
+ int i, n;
+
+ const char mark_op = MARK;
+ const char setitem_op = SETITEM;
+ const char setitems_op = SETITEMS;
+
+ assert(iter != NULL);
+
+ if (self->proto == 0) {
+ /* SETITEMS isn't available; do one at a time. */
+ for (;;) {
+ obj = PyIter_Next(iter);
+ if (obj == NULL) {
+ if (PyErr_Occurred())
+ return -1;
+ break;
+ }
+ if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 2) {
+ PyErr_SetString(PyExc_TypeError, "dict items "
+ "iterator must return 2-tuples");
+ return -1;
+ }
+ i = save(self, PyTuple_GET_ITEM(obj, 0), 0);
+ if (i >= 0)
+ i = save(self, PyTuple_GET_ITEM(obj, 1), 0);
+ Py_DECREF(obj);
+ if (i < 0)
+ return -1;
+ if (pickler_write(self, &setitem_op, 1) < 0)
+ return -1;
+ }
+ return 0;
+ }
+
+ /* proto > 0: write in batches of BATCHSIZE. */
+ do {
+ /* Get next group of (no more than) BATCHSIZE elements. */
+ for (n = 0; n < BATCHSIZE; n++) {
+ obj = PyIter_Next(iter);
+ if (obj == NULL) {
+ if (PyErr_Occurred())
+ goto error;
+ break;
+ }
+ if (!PyTuple_Check(obj) || PyTuple_Size(obj) != 2) {
+ PyErr_SetString(PyExc_TypeError, "dict items "
+ "iterator must return 2-tuples");
+ goto error;
+ }
+ slice[n] = obj;
+ }
+
+ if (n > 1) {
+ /* Pump out MARK, slice[0:n], SETITEMS. */
+ if (pickler_write(self, &mark_op, 1) < 0)
+ goto error;
+ for (i = 0; i < n; i++) {
+ obj = slice[i];
+ if (save(self, PyTuple_GET_ITEM(obj, 0), 0) < 0 ||
+ save(self, PyTuple_GET_ITEM(obj, 1), 0) < 0)
+ goto error;
+ }
+ if (pickler_write(self, &setitems_op, 1) < 0)
+ goto error;
+ }
+ else if (n == 1) {
+ obj = slice[0];
+ if (save(self, PyTuple_GET_ITEM(obj, 0), 0) < 0 ||
+ save(self, PyTuple_GET_ITEM(obj, 1), 0) < 0 ||
+ pickler_write(self, &setitem_op, 1) < 0)
+ goto error;
+ }
+
+ for (i = 0; i < n; i++) {
+ Py_DECREF(slice[i]);
+ }
+ } while (n == BATCHSIZE);
+ return 0;
+
+ error:
+ while (--n >= 0) {
+ Py_DECREF(slice[n]);
+ }
+ return -1;
+}
+
+static int
+save_dict(PicklerObject *self, PyObject *obj)
+{
+ PyObject *items, *iter;
+ char header[3];
+ int len;
+ int status = 0;
+
+ if (self->fast && !fast_save_enter(self, obj))
+ goto error;
+
+ /* Create an empty dict. */
+ if (self->bin) {
+ header[0] = EMPTY_DICT;
+ len = 1;
+ }
+ else {
+ header[0] = MARK;
+ header[1] = DICT;
+ len = 2;
+ }
+
+ if (pickler_write(self, header, len) < 0)
+ goto error;
+
+ /* Get dict size, and bow out early if empty. */
+ if ((len = PyDict_Size(obj)) < 0)
+ goto error;
+
+ if (memo_put(self, obj) < 0)
+ goto error;
+
+ if (len != 0) {
+ /* Save the dict items. */
+ items = PyObject_CallMethod(obj, "items", "()");
+ if (items == NULL)
+ goto error;
+ iter = PyObject_GetIter(items);
+ Py_DECREF(items);
+ if (iter == NULL)
+ goto error;
+ status = batch_dict(self, iter);
+ Py_DECREF(iter);
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+
+ if (self->fast && !fast_save_leave(self, obj))
+ status = -1;
+
+ return status;
+}
+
+static int
+save_global(PicklerObject *self, PyObject *obj, PyObject *name)
+{
+ static PyObject *name_str = NULL;
+ PyObject *global_name = NULL;
+ PyObject *module_name = NULL;
+ PyObject *module = NULL;
+ PyObject *cls;
+ int status = 0;
+
+ const char global_op = GLOBAL;
+
+ if (name_str == NULL) {
+ name_str = PyUnicode_InternFromString("__name__");
+ if (name_str == NULL)
+ goto error;
+ }
+
+ if (name) {
+ global_name = name;
+ Py_INCREF(global_name);
+ }
+ else {
+ global_name = PyObject_GetAttr(obj, name_str);
+ if (global_name == NULL)
+ goto error;
+ }
+
+ module_name = whichmodule(obj, global_name);
+ if (module_name == NULL)
+ goto error;
+
+ /* XXX: Change to use the import C API directly with level=0 to disallow
+ relative imports.
+
+ XXX: PyImport_ImportModuleLevel could be used. However, this bypasses
+ builtins.__import__. Therefore, _pickle, unlike pickle.py, will ignore
+ custom import functions (IMHO, this would be a nice security
+ feature). The import C API would need to be extended to support the
+ extra parameters of __import__ to fix that. */
+ module = PyImport_Import(module_name);
+ if (module == NULL) {
+ PyErr_Format(PicklingError,
+ "Can't pickle %R: import of module %R failed",
+ obj, module_name);
+ goto error;
+ }
+ cls = PyObject_GetAttr(module, global_name);
+ if (cls == NULL) {
+ PyErr_Format(PicklingError,
+ "Can't pickle %R: attribute lookup %S.%S failed",
+ obj, module_name, global_name);
+ goto error;
+ }
+ if (cls != obj) {
+ Py_DECREF(cls);
+ PyErr_Format(PicklingError,
+ "Can't pickle %R: it's not the same object as %S.%S",
+ obj, module_name, global_name);
+ goto error;
+ }
+ Py_DECREF(cls);
+
+ if (self->proto >= 2) {
+ /* See whether this is in the extension registry, and if
+ * so generate an EXT opcode.
+ */
+ PyObject *code_obj; /* extension code as Python object */
+ long code; /* extension code as C value */
+ char pdata[5];
+ int n;
+
+ PyTuple_SET_ITEM(two_tuple, 0, module_name);
+ PyTuple_SET_ITEM(two_tuple, 1, global_name);
+ code_obj = PyDict_GetItem(extension_registry, two_tuple);
+ /* The object is not registered in the extension registry.
+ This is the most likely code path. */
+ if (code_obj == NULL)
+ goto gen_global;
+
+ /* XXX: pickle.py doesn't check neither the type, nor the range
+ of the value returned by the extension_registry. It should for
+ consistency. */
+
+ /* Verify code_obj has the right type and value. */
+ if (!PyLong_Check(code_obj)) {
+ PyErr_Format(PicklingError,
+ "Can't pickle %R: extension code %R isn't an integer",
+ obj, code_obj);
+ goto error;
+ }
+ code = PyLong_AS_LONG(code_obj);
+ if (code <= 0 || code > 0x7fffffffL) {
+ PyErr_Format(PicklingError,
+ "Can't pickle %R: extension code %ld is out of range",
+ obj, code);
+ goto error;
+ }
+
+ /* Generate an EXT opcode. */
+ if (code <= 0xff) {
+ pdata[0] = EXT1;
+ pdata[1] = (unsigned char)code;
+ n = 2;
+ }
+ else if (code <= 0xffff) {
+ pdata[0] = EXT2;
+ pdata[1] = (unsigned char)(code & 0xff);
+ pdata[2] = (unsigned char)((code >> 8) & 0xff);
+ n = 3;
+ }
+ else {
+ pdata[0] = EXT4;
+ pdata[1] = (unsigned char)(code & 0xff);
+ pdata[2] = (unsigned char)((code >> 8) & 0xff);
+ pdata[3] = (unsigned char)((code >> 16) & 0xff);
+ pdata[4] = (unsigned char)((code >> 24) & 0xff);
+ n = 5;
+ }
+
+ if (pickler_write(self, pdata, n) < 0)
+ goto error;
+ }
+ else {
+ /* Generate a normal global opcode if we are using a pickle
+ protocol <= 2, or if the object is not registered in the
+ extension registry. */
+ PyObject *encoded;
+ PyObject *(*unicode_encoder)(PyObject *);
+
+ gen_global:
+ if (pickler_write(self, &global_op, 1) < 0)
+ goto error;
+
+ /* Since Python 3.0 now supports non-ASCII identifiers, we encode both
+ the module name and the global name using UTF-8. We do so only when
+ we are using the pickle protocol newer than version 3. This is to
+ ensure compatibility with older Unpickler running on Python 2.x. */
+ if (self->proto >= 3) {
+ unicode_encoder = PyUnicode_AsUTF8String;
+ }
+ else {
+ unicode_encoder = PyUnicode_AsASCIIString;
+ }
+
+ /* Save the name of the module. */
+ encoded = unicode_encoder(module_name);
+ if (encoded == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError))
+ PyErr_Format(PicklingError,
+ "can't pickle module identifier '%S' using "
+ "pickle protocol %i", module_name, self->proto);
+ goto error;
+ }
+ if (pickler_write(self, PyBytes_AS_STRING(encoded),
+ PyBytes_GET_SIZE(encoded)) < 0) {
+ Py_DECREF(encoded);
+ goto error;
+ }
+ Py_DECREF(encoded);
+ if(pickler_write(self, "\n", 1) < 0)
+ goto error;
+
+ /* Save the name of the module. */
+ encoded = unicode_encoder(global_name);
+ if (encoded == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError))
+ PyErr_Format(PicklingError,
+ "can't pickle global identifier '%S' using "
+ "pickle protocol %i", global_name, self->proto);
+ goto error;
+ }
+ if (pickler_write(self, PyBytes_AS_STRING(encoded),
+ PyBytes_GET_SIZE(encoded)) < 0) {
+ Py_DECREF(encoded);
+ goto error;
+ }
+ Py_DECREF(encoded);
+ if(pickler_write(self, "\n", 1) < 0)
+ goto error;
+
+ /* Memoize the object. */
+ if (memo_put(self, obj) < 0)
+ goto error;
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+ Py_XDECREF(module_name);
+ Py_XDECREF(global_name);
+ Py_XDECREF(module);
+
+ return status;
+}
+
+static int
+save_pers(PicklerObject *self, PyObject *obj, PyObject *func)
+{
+ PyObject *pid = NULL;
+ int status = 0;
+
+ const char persid_op = PERSID;
+ const char binpersid_op = BINPERSID;
+
+ Py_INCREF(obj);
+ pid = pickler_call(self, func, obj);
+ if (pid == NULL)
+ return -1;
+
+ if (pid != Py_None) {
+ if (self->bin) {
+ if (save(self, pid, 1) < 0 ||
+ pickler_write(self, &binpersid_op, 1) < 0)
+ goto error;
+ }
+ else {
+ PyObject *pid_str = NULL;
+ char *pid_ascii_bytes;
+ Py_ssize_t size;
+
+ pid_str = PyObject_Str(pid);
+ if (pid_str == NULL)
+ goto error;
+
+ /* XXX: Should it check whether the persistent id only contains
+ ASCII characters? And what if the pid contains embedded
+ newlines? */
+ pid_ascii_bytes = PyUnicode_AsStringAndSize(pid_str, &size);
+ Py_DECREF(pid_str);
+ if (pid_ascii_bytes == NULL)
+ goto error;
+
+ if (pickler_write(self, &persid_op, 1) < 0 ||
+ pickler_write(self, pid_ascii_bytes, size) < 0 ||
+ pickler_write(self, "\n", 1) < 0)
+ goto error;
+ }
+ status = 1;
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+ Py_XDECREF(pid);
+
+ return status;
+}
+
+/* We're saving obj, and args is the 2-thru-5 tuple returned by the
+ * appropriate __reduce__ method for obj.
+ */
+static int
+save_reduce(PicklerObject *self, PyObject *args, PyObject *obj)
+{
+ PyObject *callable;
+ PyObject *argtup;
+ PyObject *state = NULL;
+ PyObject *listitems = NULL;
+ PyObject *dictitems = NULL;
+
+ int use_newobj = self->proto >= 2;
+
+ const char reduce_op = REDUCE;
+ const char build_op = BUILD;
+ const char newobj_op = NEWOBJ;
+
+ if (!PyArg_UnpackTuple(args, "save_reduce", 2, 5,
+ &callable, &argtup, &state, &listitems, &dictitems))
+ return -1;
+
+ if (!PyCallable_Check(callable)) {
+ PyErr_SetString(PicklingError,
+ "first argument of save_reduce() must be callable");
+ return -1;
+ }
+ if (!PyTuple_Check(argtup)) {
+ PyErr_SetString(PicklingError,
+ "second argument of save_reduce() must be a tuple");
+ return -1;
+ }
+
+ if (state == Py_None)
+ state = NULL;
+ if (listitems == Py_None)
+ listitems = NULL;
+ if (dictitems == Py_None)
+ dictitems = NULL;
+
+ /* Protocol 2 special case: if callable's name is __newobj__, use
+ NEWOBJ. */
+ if (use_newobj) {
+ static PyObject *newobj_str = NULL;
+ PyObject *name_str;
+
+ if (newobj_str == NULL) {
+ newobj_str = PyUnicode_InternFromString("__newobj__");
+ }
+
+ name_str = PyObject_GetAttrString(callable, "__name__");
+ if (name_str == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_AttributeError))
+ PyErr_Clear();
+ else
+ return -1;
+ use_newobj = 0;
+ }
+ else {
+ use_newobj = PyUnicode_Check(name_str) &&
+ PyUnicode_Compare(name_str, newobj_str) == 0;
+ Py_DECREF(name_str);
+ }
+ }
+ if (use_newobj) {
+ PyObject *cls;
+ PyObject *newargtup;
+ PyObject *obj_class;
+ int p;
+
+ /* Sanity checks. */
+ if (Py_SIZE(argtup) < 1) {
+ PyErr_SetString(PicklingError, "__newobj__ arglist is empty");
+ return -1;
+ }
+
+ cls = PyTuple_GET_ITEM(argtup, 0);
+ if (!PyObject_HasAttrString(cls, "__new__")) {
+ PyErr_SetString(PicklingError, "args[0] from "
+ "__newobj__ args has no __new__");
+ return -1;
+ }
+
+ if (obj != NULL) {
+ obj_class = PyObject_GetAttrString(obj, "__class__");
+ if (obj_class == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_AttributeError))
+ PyErr_Clear();
+ else
+ return -1;
+ }
+ p = obj_class != cls; /* true iff a problem */
+ Py_DECREF(obj_class);
+ if (p) {
+ PyErr_SetString(PicklingError, "args[0] from "
+ "__newobj__ args has the wrong class");
+ return -1;
+ }
+ }
+ /* XXX: These calls save() are prone to infinite recursion. Imagine
+ what happen if the value returned by the __reduce__() method of
+ some extension type contains another object of the same type. Ouch!
+
+ Here is a quick example, that I ran into, to illustrate what I
+ mean:
+
+ >>> import pickle, copyreg
+ >>> copyreg.dispatch_table.pop(complex)
+ >>> pickle.dumps(1+2j)
+ Traceback (most recent call last):
+ ...
+ RuntimeError: maximum recursion depth exceeded
+
+ Removing the complex class from copyreg.dispatch_table made the
+ __reduce_ex__() method emit another complex object:
+
+ >>> (1+1j).__reduce_ex__(2)
+ (<function __newobj__ at 0xb7b71c3c>,
+ (<class 'complex'>, (1+1j)), None, None, None)
+
+ Thus when save() was called on newargstup (the 2nd item) recursion
+ ensued. Of course, the bug was in the complex class which had a
+ broken __getnewargs__() that emitted another complex object. But,
+ the point, here, is it is quite easy to end up with a broken reduce
+ function. */
+
+ /* Save the class and its __new__ arguments. */
+ if (save(self, cls, 0) < 0)
+ return -1;
+
+ newargtup = PyTuple_GetSlice(argtup, 1, Py_SIZE(argtup));
+ if (newargtup == NULL)
+ return -1;
+
+ p = save(self, newargtup, 0);
+ Py_DECREF(newargtup);
+ if (p < 0)
+ return -1;
+
+ /* Add NEWOBJ opcode. */
+ if (pickler_write(self, &newobj_op, 1) < 0)
+ return -1;
+ }
+ else { /* Not using NEWOBJ. */
+ if (save(self, callable, 0) < 0 ||
+ save(self, argtup, 0) < 0 ||
+ pickler_write(self, &reduce_op, 1) < 0)
+ return -1;
+ }
+
+ /* obj can be NULL when save_reduce() is used directly. A NULL obj means
+ the caller do not want to memoize the object. Not particularly useful,
+ but that is to mimic the behavior save_reduce() in pickle.py when
+ obj is None. */
+ if (obj && memo_put(self, obj) < 0)
+ return -1;
+
+ if (listitems && batch_list(self, listitems) < 0)
+ return -1;
+
+ if (dictitems && batch_dict(self, dictitems) < 0)
+ return -1;
+
+ if (state) {
+ if (save(self, state, 0) < 0 ||
+ pickler_write(self, &build_op, 1) < 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+save(PicklerObject *self, PyObject *obj, int pers_save)
+{
+ PyTypeObject *type;
+ PyObject *reduce_func = NULL;
+ PyObject *reduce_value = NULL;
+ PyObject *memo_key = NULL;
+ int status = 0;
+
+ /* XXX: Use Py_EnterRecursiveCall()? */
+ if (++self->nesting > Py_GetRecursionLimit()) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "maximum recursion depth exceeded");
+ goto error;
+ }
+
+ /* The extra pers_save argument is necessary to avoid calling save_pers()
+ on its returned object. */
+ if (!pers_save && self->pers_func) {
+ /* save_pers() returns:
+ -1 to signal an error;
+ 0 if it did nothing successfully;
+ 1 if a persistent id was saved.
+ */
+ if ((status = save_pers(self, obj, self->pers_func)) != 0)
+ goto done;
+ }
+
+ type = Py_TYPE(obj);
+
+ /* XXX: The old cPickle had an optimization that used switch-case
+ statement dispatching on the first letter of the type name. It was
+ probably not a bad idea after all. If benchmarks shows that particular
+ optimization had some real benefits, it would be nice to add it
+ back. */
+
+ /* Atom types; these aren't memoized, so don't check the memo. */
+
+ if (obj == Py_None) {
+ status = save_none(self, obj);
+ goto done;
+ }
+ else if (obj == Py_False || obj == Py_True) {
+ status = save_bool(self, obj);
+ goto done;
+ }
+ else if (type == &PyLong_Type) {
+ status = save_long(self, obj);
+ goto done;
+ }
+ else if (type == &PyFloat_Type) {
+ status = save_float(self, obj);
+ goto done;
+ }
+
+ /* Check the memo to see if it has the object. If so, generate
+ a GET (or BINGET) opcode, instead of pickling the object
+ once again. */
+ memo_key = PyLong_FromVoidPtr(obj);
+ if (memo_key == NULL)
+ goto error;
+ if (PyDict_GetItem(self->memo, memo_key)) {
+ if (memo_get(self, memo_key) < 0)
+ goto error;
+ goto done;
+ }
+
+ if (type == &PyBytes_Type) {
+ status = save_bytes(self, obj);
+ goto done;
+ }
+ else if (type == &PyUnicode_Type) {
+ status = save_unicode(self, obj);
+ goto done;
+ }
+ else if (type == &PyDict_Type) {
+ status = save_dict(self, obj);
+ goto done;
+ }
+ else if (type == &PyList_Type) {
+ status = save_list(self, obj);
+ goto done;
+ }
+ else if (type == &PyTuple_Type) {
+ status = save_tuple(self, obj);
+ goto done;
+ }
+ else if (type == &PyType_Type) {
+ status = save_global(self, obj, NULL);
+ goto done;
+ }
+ else if (type == &PyFunction_Type) {
+ status = save_global(self, obj, NULL);
+ if (status < 0 && PyErr_ExceptionMatches(PickleError)) {
+ /* fall back to reduce */
+ PyErr_Clear();
+ }
+ else {
+ goto done;
+ }
+ }
+ else if (type == &PyCFunction_Type) {
+ status = save_global(self, obj, NULL);
+ goto done;
+ }
+ else if (PyType_IsSubtype(type, &PyType_Type)) {
+ status = save_global(self, obj, NULL);
+ goto done;
+ }
+
+ /* XXX: This part needs some unit tests. */
+
+ /* Get a reduction callable, and call it. This may come from
+ * copyreg.dispatch_table, the object's __reduce_ex__ method,
+ * or the object's __reduce__ method.
+ */
+ reduce_func = PyDict_GetItem(dispatch_table, (PyObject *)type);
+ if (reduce_func != NULL) {
+ /* Here, the reference count of the reduce_func object returned by
+ PyDict_GetItem needs to be increased to be consistent with the one
+ returned by PyObject_GetAttr. This is allow us to blindly DECREF
+ reduce_func at the end of the save() routine.
+ */
+ Py_INCREF(reduce_func);
+ Py_INCREF(obj);
+ reduce_value = pickler_call(self, reduce_func, obj);
+ }
+ else {
+ static PyObject *reduce_str = NULL;
+ static PyObject *reduce_ex_str = NULL;
+
+ /* Cache the name of the reduce methods. */
+ if (reduce_str == NULL) {
+ reduce_str = PyUnicode_InternFromString("__reduce__");
+ if (reduce_str == NULL)
+ goto error;
+ reduce_ex_str = PyUnicode_InternFromString("__reduce_ex__");
+ if (reduce_ex_str == NULL)
+ goto error;
+ }
+
+ /* XXX: If the __reduce__ method is defined, __reduce_ex__ is
+ automatically defined as __reduce__. While this is convenient, this
+ make it impossible to know which method was actually called. Of
+ course, this is not a big deal. But still, it would be nice to let
+ the user know which method was called when something go
+ wrong. Incidentally, this means if __reduce_ex__ is not defined, we
+ don't actually have to check for a __reduce__ method. */
+
+ /* Check for a __reduce_ex__ method. */
+ reduce_func = PyObject_GetAttr(obj, reduce_ex_str);
+ if (reduce_func != NULL) {
+ PyObject *proto;
+ proto = PyLong_FromLong(self->proto);
+ if (proto != NULL) {
+ reduce_value = pickler_call(self, reduce_func, proto);
+ }
+ }
+ else {
+ if (PyErr_ExceptionMatches(PyExc_AttributeError))
+ PyErr_Clear();
+ else
+ goto error;
+ /* Check for a __reduce__ method. */
+ reduce_func = PyObject_GetAttr(obj, reduce_str);
+ if (reduce_func != NULL) {
+ reduce_value = PyObject_Call(reduce_func, empty_tuple, NULL);
+ }
+ else {
+ PyErr_Format(PicklingError, "can't pickle '%.200s' object: %R",
+ type->tp_name, obj);
+ goto error;
+ }
+ }
+ }
+
+ if (reduce_value == NULL)
+ goto error;
+
+ if (PyUnicode_Check(reduce_value)) {
+ status = save_global(self, obj, reduce_value);
+ goto done;
+ }
+
+ if (!PyTuple_Check(reduce_value)) {
+ PyErr_SetString(PicklingError,
+ "__reduce__ must return a string or tuple");
+ goto error;
+ }
+ if (Py_SIZE(reduce_value) < 2 || Py_SIZE(reduce_value) > 5) {
+ PyErr_SetString(PicklingError, "tuple returned by __reduce__ "
+ "must contain 2 through 5 elements");
+ goto error;
+ }
+ if (!PyTuple_Check(PyTuple_GET_ITEM(reduce_value, 1))) {
+ PyErr_SetString(PicklingError, "second item of the tuple "
+ "returned by __reduce__ must be a tuple");
+ goto error;
+ }
+
+ status = save_reduce(self, reduce_value, obj);
+
+ if (0) {
+ error:
+ status = -1;
+ }
+ done:
+ self->nesting--;
+ Py_XDECREF(memo_key);
+ Py_XDECREF(reduce_func);
+ Py_XDECREF(reduce_value);
+
+ return status;
+}
+
+static int
+dump(PicklerObject *self, PyObject *obj)
+{
+ const char stop_op = STOP;
+
+ if (self->proto >= 2) {
+ char header[2];
+
+ header[0] = PROTO;
+ assert(self->proto >= 0 && self->proto < 256);
+ header[1] = (unsigned char)self->proto;
+ if (pickler_write(self, header, 2) < 0)
+ return -1;
+ }
+
+ if (save(self, obj, 0) < 0 ||
+ pickler_write(self, &stop_op, 1) < 0 ||
+ pickler_write(self, NULL, 0) < 0)
+ return -1;
+
+ return 0;
+}
+
+PyDoc_STRVAR(Pickler_clear_memo_doc,
+"clear_memo() -> None. Clears the pickler's \"memo\"."
+"\n"
+"The memo is the data structure that remembers which objects the\n"
+"pickler has already seen, so that shared or recursive objects are\n"
+"pickled by reference and not by value. This method is useful when\n"
+"re-using picklers.");
+
+static PyObject *
+Pickler_clear_memo(PicklerObject *self)
+{
+ if (self->memo)
+ PyDict_Clear(self->memo);
+
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(Pickler_dump_doc,
+"dump(obj) -> None. Write a pickled representation of obj to the open file.");
+
+static PyObject *
+Pickler_dump(PicklerObject *self, PyObject *args)
+{
+ PyObject *obj;
+
+ if (!PyArg_ParseTuple(args, "O:dump", &obj))
+ return NULL;
+
+ if (dump(self, obj) < 0)
+ return NULL;
+
+ Py_RETURN_NONE;
+}
+
+static struct PyMethodDef Pickler_methods[] = {
+ {"dump", (PyCFunction)Pickler_dump, METH_VARARGS,
+ Pickler_dump_doc},
+ {"clear_memo", (PyCFunction)Pickler_clear_memo, METH_NOARGS,
+ Pickler_clear_memo_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+static void
+Pickler_dealloc(PicklerObject *self)
+{
+ PyObject_GC_UnTrack(self);
+
+ Py_XDECREF(self->write);
+ Py_XDECREF(self->memo);
+ Py_XDECREF(self->pers_func);
+ Py_XDECREF(self->arg);
+ Py_XDECREF(self->fast_memo);
+
+ PyMem_Free(self->write_buf);
+
+ Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+static int
+Pickler_traverse(PicklerObject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(self->write);
+ Py_VISIT(self->memo);
+ Py_VISIT(self->pers_func);
+ Py_VISIT(self->arg);
+ Py_VISIT(self->fast_memo);
+ return 0;
+}
+
+static int
+Pickler_clear(PicklerObject *self)
+{
+ Py_CLEAR(self->write);
+ Py_CLEAR(self->memo);
+ Py_CLEAR(self->pers_func);
+ Py_CLEAR(self->arg);
+ Py_CLEAR(self->fast_memo);
+
+ PyMem_Free(self->write_buf);
+ self->write_buf = NULL;
+
+ return 0;
+}
+
+PyDoc_STRVAR(Pickler_doc,
+"Pickler(file, protocol=None)"
+"\n"
+"This takes a binary file for writing a pickle data stream.\n"
+"\n"
+"The optional protocol argument tells the pickler to use the\n"
+"given protocol; supported protocols are 0, 1, 2, 3. The default\n"
+"protocol is 3; a backward-incompatible protocol designed for\n"
+"Python 3.0.\n"
+"\n"
+"Specifying a negative protocol version selects the highest\n"
+"protocol version supported. The higher the protocol used, the\n"
+"more recent the version of Python needed to read the pickle\n"
+"produced.\n"
+"\n"
+"The file argument must have a write() method that accepts a single\n"
+"bytes argument. It can thus be a file object opened for binary\n"
+"writing, a io.BytesIO instance, or any other custom object that\n"
+"meets this interface.\n");
+
+static int
+Pickler_init(PicklerObject *self, PyObject *args, PyObject *kwds)
+{
+ static char *kwlist[] = {"file", "protocol", 0};
+ PyObject *file;
+ PyObject *proto_obj = NULL;
+ long proto = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:Pickler",
+ kwlist, &file, &proto_obj))
+ return -1;
+
+ /* In case of multiple __init__() calls, clear previous content. */
+ if (self->write != NULL)
+ (void)Pickler_clear(self);
+
+ if (proto_obj == NULL || proto_obj == Py_None)
+ proto = DEFAULT_PROTOCOL;
+ else
+ proto = PyLong_AsLong(proto_obj);
+
+ if (proto < 0)
+ proto = HIGHEST_PROTOCOL;
+ if (proto > HIGHEST_PROTOCOL) {
+ PyErr_Format(PyExc_ValueError, "pickle protocol must be <= %d",
+ HIGHEST_PROTOCOL);
+ return -1;
+ }
+
+ self->proto = proto;
+ self->bin = proto > 0;
+ self->arg = NULL;
+ self->nesting = 0;
+ self->fast = 0;
+ self->fast_nesting = 0;
+ self->fast_memo = NULL;
+
+ if (!PyObject_HasAttrString(file, "write")) {
+ PyErr_SetString(PyExc_TypeError,
+ "file must have a 'write' attribute");
+ return -1;
+ }
+ self->write = PyObject_GetAttrString(file, "write");
+ if (self->write == NULL)
+ return -1;
+ self->buf_size = 0;
+ self->write_buf = (char *)PyMem_Malloc(WRITE_BUF_SIZE);
+ if (self->write_buf == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ self->pers_func = NULL;
+ if (PyObject_HasAttrString((PyObject *)self, "persistent_id")) {
+ self->pers_func = PyObject_GetAttrString((PyObject *)self,
+ "persistent_id");
+ if (self->pers_func == NULL)
+ return -1;
+ }
+ self->memo = PyDict_New();
+ if (self->memo == NULL)
+ return -1;
+
+ return 0;
+}
+
+static PyObject *
+Pickler_get_memo(PicklerObject *self)
+{
+ if (self->memo == NULL)
+ PyErr_SetString(PyExc_AttributeError, "memo");
+ else
+ Py_INCREF(self->memo);
+ return self->memo;
+}
+
+static int
+Pickler_set_memo(PicklerObject *self, PyObject *value)
+{
+ PyObject *tmp;
+
+ if (value == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "attribute deletion is not supported");
+ return -1;
+ }
+ if (!PyDict_Check(value)) {
+ PyErr_SetString(PyExc_TypeError, "memo must be a dictionary");
+ return -1;
+ }
+
+ tmp = self->memo;
+ Py_INCREF(value);
+ self->memo = value;
+ Py_XDECREF(tmp);
+
+ return 0;
+}
+
+static PyObject *
+Pickler_get_persid(PicklerObject *self)
+{
+ if (self->pers_func == NULL)
+ PyErr_SetString(PyExc_AttributeError, "persistent_id");
+ else
+ Py_INCREF(self->pers_func);
+ return self->pers_func;
+}
+
+static int
+Pickler_set_persid(PicklerObject *self, PyObject *value)
+{
+ PyObject *tmp;
+
+ if (value == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "attribute deletion is not supported");
+ return -1;
+ }
+ if (!PyCallable_Check(value)) {
+ PyErr_SetString(PyExc_TypeError,
+ "persistent_id must be a callable taking one argument");
+ return -1;
+ }
+
+ tmp = self->pers_func;
+ Py_INCREF(value);
+ self->pers_func = value;
+ Py_XDECREF(tmp); /* self->pers_func can be NULL, so be careful. */
+
+ return 0;
+}
+
+static PyMemberDef Pickler_members[] = {
+ {"bin", T_INT, offsetof(PicklerObject, bin)},
+ {"fast", T_INT, offsetof(PicklerObject, fast)},
+ {NULL}
+};
+
+static PyGetSetDef Pickler_getsets[] = {
+ {"memo", (getter)Pickler_get_memo,
+ (setter)Pickler_set_memo},
+ {"persistent_id", (getter)Pickler_get_persid,
+ (setter)Pickler_set_persid},
+ {NULL}
+};
+
+static PyTypeObject Pickler_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "_pickle.Pickler" , /*tp_name*/
+ sizeof(PicklerObject), /*tp_basicsize*/
+ 0, /*tp_itemsize*/
+ (destructor)Pickler_dealloc, /*tp_dealloc*/
+ 0, /*tp_print*/
+ 0, /*tp_getattr*/
+ 0, /*tp_setattr*/
+ 0, /*tp_compare*/
+ 0, /*tp_repr*/
+ 0, /*tp_as_number*/
+ 0, /*tp_as_sequence*/
+ 0, /*tp_as_mapping*/
+ 0, /*tp_hash*/
+ 0, /*tp_call*/
+ 0, /*tp_str*/
+ 0, /*tp_getattro*/
+ 0, /*tp_setattro*/
+ 0, /*tp_as_buffer*/
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
+ Pickler_doc, /*tp_doc*/
+ (traverseproc)Pickler_traverse, /*tp_traverse*/
+ (inquiry)Pickler_clear, /*tp_clear*/
+ 0, /*tp_richcompare*/
+ 0, /*tp_weaklistoffset*/
+ 0, /*tp_iter*/
+ 0, /*tp_iternext*/
+ Pickler_methods, /*tp_methods*/
+ Pickler_members, /*tp_members*/
+ Pickler_getsets, /*tp_getset*/
+ 0, /*tp_base*/
+ 0, /*tp_dict*/
+ 0, /*tp_descr_get*/
+ 0, /*tp_descr_set*/
+ 0, /*tp_dictoffset*/
+ (initproc)Pickler_init, /*tp_init*/
+ PyType_GenericAlloc, /*tp_alloc*/
+ PyType_GenericNew, /*tp_new*/
+ PyObject_GC_Del, /*tp_free*/
+ 0, /*tp_is_gc*/
+};
+
+/* Temporary helper for calling self.find_class().
+
+ XXX: It would be nice to able to avoid Python function call overhead, by
+ using directly the C version of find_class(), when find_class() is not
+ overridden by a subclass. Although, this could become rather hackish. A
+ simpler optimization would be to call the C function when self is not a
+ subclass instance. */
+static PyObject *
+find_class(UnpicklerObject *self, PyObject *module_name, PyObject *global_name)
+{
+ return PyObject_CallMethod((PyObject *)self, "find_class", "OO",
+ module_name, global_name);
+}
+
+static int
+marker(UnpicklerObject *self)
+{
+ if (self->num_marks < 1) {
+ PyErr_SetString(UnpicklingError, "could not find MARK");
+ return -1;
+ }
+
+ return self->marks[--self->num_marks];
+}
+
+static int
+load_none(UnpicklerObject *self)
+{
+ PDATA_APPEND(self->stack, Py_None, -1);
+ return 0;
+}
+
+static int
+bad_readline(void)
+{
+ PyErr_SetString(UnpicklingError, "pickle data was truncated");
+ return -1;
+}
+
+static int
+load_int(UnpicklerObject *self)
+{
+ PyObject *value;
+ char *endptr, *s;
+ Py_ssize_t len;
+ long x;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ errno = 0;
+ /* XXX: Should the base argument of strtol() be explicitly set to 10? */
+ x = strtol(s, &endptr, 0);
+
+ if (errno || (*endptr != '\n') || (endptr[1] != '\0')) {
+ /* Hm, maybe we've got something long. Let's try reading
+ * it as a Python long object. */
+ errno = 0;
+ /* XXX: Same thing about the base here. */
+ value = PyLong_FromString(s, NULL, 0);
+ if (value == NULL) {
+ PyErr_SetString(PyExc_ValueError,
+ "could not convert string to int");
+ return -1;
+ }
+ }
+ else {
+ if (len == 3 && (x == 0 || x == 1)) {
+ if ((value = PyBool_FromLong(x)) == NULL)
+ return -1;
+ }
+ else {
+ if ((value = PyLong_FromLong(x)) == NULL)
+ return -1;
+ }
+ }
+
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_bool(UnpicklerObject *self, PyObject *boolean)
+{
+ assert(boolean == Py_True || boolean == Py_False);
+ PDATA_APPEND(self->stack, boolean, -1);
+ return 0;
+}
+
+/* s contains x bytes of a little-endian integer. Return its value as a
+ * C int. Obscure: when x is 1 or 2, this is an unsigned little-endian
+ * int, but when x is 4 it's a signed one. This is an historical source
+ * of x-platform bugs.
+ */
+static long
+calc_binint(char *bytes, int size)
+{
+ unsigned char *s = (unsigned char *)bytes;
+ int i = size;
+ long x = 0;
+
+ for (i = 0; i < size; i++) {
+ x |= (long)s[i] << (i * 8);
+ }
+
+ /* Unlike BININT1 and BININT2, BININT (more accurately BININT4)
+ * is signed, so on a box with longs bigger than 4 bytes we need
+ * to extend a BININT's sign bit to the full width.
+ */
+ if (SIZEOF_LONG > 4 && size == 4) {
+ x |= -(x & (1L << 31));
+ }
+
+ return x;
+}
+
+static int
+load_binintx(UnpicklerObject *self, char *s, int size)
+{
+ PyObject *value;
+ long x;
+
+ x = calc_binint(s, size);
+
+ if ((value = PyLong_FromLong(x)) == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_binint(UnpicklerObject *self)
+{
+ char *s;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+
+ return load_binintx(self, s, 4);
+}
+
+static int
+load_binint1(UnpicklerObject *self)
+{
+ char *s;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+
+ return load_binintx(self, s, 1);
+}
+
+static int
+load_binint2(UnpicklerObject *self)
+{
+ char *s;
+
+ if (unpickler_read(self, &s, 2) < 0)
+ return -1;
+
+ return load_binintx(self, s, 2);
+}
+
+static int
+load_long(UnpicklerObject *self)
+{
+ PyObject *value;
+ char *s;
+ Py_ssize_t len;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ /* XXX: Should the base argument explicitly set to 10? */
+ if ((value = PyLong_FromString(s, NULL, 0)) == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+/* 'size' bytes contain the # of bytes of little-endian 256's-complement
+ * data following.
+ */
+static int
+load_counted_long(UnpicklerObject *self, int size)
+{
+ PyObject *value;
+ char *nbytes;
+ char *pdata;
+
+ assert(size == 1 || size == 4);
+ if (unpickler_read(self, &nbytes, size) < 0)
+ return -1;
+
+ size = calc_binint(nbytes, size);
+ if (size < 0) {
+ /* Corrupt or hostile pickle -- we never write one like this */
+ PyErr_SetString(UnpicklingError,
+ "LONG pickle has negative byte count");
+ return -1;
+ }
+
+ if (size == 0)
+ value = PyLong_FromLong(0L);
+ else {
+ /* Read the raw little-endian bytes and convert. */
+ if (unpickler_read(self, &pdata, size) < 0)
+ return -1;
+ value = _PyLong_FromByteArray((unsigned char *)pdata, (size_t)size,
+ 1 /* little endian */ , 1 /* signed */ );
+ }
+ if (value == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_float(UnpicklerObject *self)
+{
+ PyObject *value;
+ char *endptr, *s;
+ Py_ssize_t len;
+ double d;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ errno = 0;
+ d = PyOS_ascii_strtod(s, &endptr);
+
+ if (errno || (endptr[0] != '\n') || (endptr[1] != '\0')) {
+ PyErr_SetString(PyExc_ValueError, "could not convert string to float");
+ return -1;
+ }
+
+ if ((value = PyFloat_FromDouble(d)) == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_binfloat(UnpicklerObject *self)
+{
+ PyObject *value;
+ double x;
+ char *s;
+
+ if (unpickler_read(self, &s, 8) < 0)
+ return -1;
+
+ x = _PyFloat_Unpack8((unsigned char *)s, 0);
+ if (x == -1.0 && PyErr_Occurred())
+ return -1;
+
+ if ((value = PyFloat_FromDouble(x)) == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_string(UnpicklerObject *self)
+{
+ PyObject *bytes;
+ PyObject *str = NULL;
+ Py_ssize_t len;
+ char *s, *p;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 3)
+ return bad_readline();
+ if ((s = strdup(s)) == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ /* Strip outermost quotes */
+ while (s[len - 1] <= ' ')
+ len--;
+ if (s[0] == '"' && s[len - 1] == '"') {
+ s[len - 1] = '\0';
+ p = s + 1;
+ len -= 2;
+ }
+ else if (s[0] == '\'' && s[len - 1] == '\'') {
+ s[len - 1] = '\0';
+ p = s + 1;
+ len -= 2;
+ }
+ else {
+ free(s);
+ PyErr_SetString(PyExc_ValueError, "insecure string pickle");
+ return -1;
+ }
+
+ /* Use the PyBytes API to decode the string, since that is what is used
+ to encode, and then coerce the result to Unicode. */
+ bytes = PyBytes_DecodeEscape(p, len, NULL, 0, NULL);
+ free(s);
+ if (bytes == NULL)
+ return -1;
+ str = PyUnicode_FromEncodedObject(bytes, self->encoding, self->errors);
+ Py_DECREF(bytes);
+ if (str == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, str, -1);
+ return 0;
+}
+
+static int
+load_binbytes(UnpicklerObject *self)
+{
+ PyObject *bytes;
+ long x;
+ char *s;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+
+ x = calc_binint(s, 4);
+ if (x < 0) {
+ PyErr_SetString(UnpicklingError,
+ "BINBYTES pickle has negative byte count");
+ return -1;
+ }
+
+ if (unpickler_read(self, &s, x) < 0)
+ return -1;
+ bytes = PyBytes_FromStringAndSize(s, x);
+ if (bytes == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, bytes, -1);
+ return 0;
+}
+
+static int
+load_short_binbytes(UnpicklerObject *self)
+{
+ PyObject *bytes;
+ unsigned char x;
+ char *s;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+
+ x = (unsigned char)s[0];
+
+ if (unpickler_read(self, &s, x) < 0)
+ return -1;
+
+ bytes = PyBytes_FromStringAndSize(s, x);
+ if (bytes == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, bytes, -1);
+ return 0;
+}
+
+static int
+load_binstring(UnpicklerObject *self)
+{
+ PyObject *str;
+ long x;
+ char *s;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+
+ x = calc_binint(s, 4);
+ if (x < 0) {
+ PyErr_SetString(UnpicklingError,
+ "BINSTRING pickle has negative byte count");
+ return -1;
+ }
+
+ if (unpickler_read(self, &s, x) < 0)
+ return -1;
+
+ /* Convert Python 2.x strings to unicode. */
+ str = PyUnicode_Decode(s, x, self->encoding, self->errors);
+ if (str == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, str, -1);
+ return 0;
+}
+
+static int
+load_short_binstring(UnpicklerObject *self)
+{
+ PyObject *str;
+ unsigned char x;
+ char *s;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+
+ x = (unsigned char)s[0];
+
+ if (unpickler_read(self, &s, x) < 0)
+ return -1;
+
+ /* Convert Python 2.x strings to unicode. */
+ str = PyUnicode_Decode(s, x, self->encoding, self->errors);
+ if (str == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, str, -1);
+ return 0;
+}
+
+static int
+load_unicode(UnpicklerObject *self)
+{
+ PyObject *str;
+ Py_ssize_t len;
+ char *s;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 1)
+ return bad_readline();
+
+ str = PyUnicode_DecodeRawUnicodeEscape(s, len - 1, NULL);
+ if (str == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, str, -1);
+ return 0;
+}
+
+static int
+load_binunicode(UnpicklerObject *self)
+{
+ PyObject *str;
+ long size;
+ char *s;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+
+ size = calc_binint(s, 4);
+ if (size < 0) {
+ PyErr_SetString(UnpicklingError,
+ "BINUNICODE pickle has negative byte count");
+ return -1;
+ }
+
+ if (unpickler_read(self, &s, size) < 0)
+ return -1;
+
+ str = PyUnicode_DecodeUTF8(s, size, NULL);
+ if (str == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, str, -1);
+ return 0;
+}
+
+static int
+load_tuple(UnpicklerObject *self)
+{
+ PyObject *tuple;
+ int i;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+
+ tuple = Pdata_poptuple(self->stack, i);
+ if (tuple == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, tuple, -1);
+ return 0;
+}
+
+static int
+load_counted_tuple(UnpicklerObject *self, int len)
+{
+ PyObject *tuple;
+
+ tuple = PyTuple_New(len);
+ if (tuple == NULL)
+ return -1;
+
+ while (--len >= 0) {
+ PyObject *item;
+
+ PDATA_POP(self->stack, item);
+ if (item == NULL)
+ return -1;
+ PyTuple_SET_ITEM(tuple, len, item);
+ }
+ PDATA_PUSH(self->stack, tuple, -1);
+ return 0;
+}
+
+static int
+load_empty_list(UnpicklerObject *self)
+{
+ PyObject *list;
+
+ if ((list = PyList_New(0)) == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, list, -1);
+ return 0;
+}
+
+static int
+load_empty_dict(UnpicklerObject *self)
+{
+ PyObject *dict;
+
+ if ((dict = PyDict_New()) == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, dict, -1);
+ return 0;
+}
+
+static int
+load_list(UnpicklerObject *self)
+{
+ PyObject *list;
+ int i;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+
+ list = Pdata_poplist(self->stack, i);
+ if (list == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, list, -1);
+ return 0;
+}
+
+static int
+load_dict(UnpicklerObject *self)
+{
+ PyObject *dict, *key, *value;
+ int i, j, k;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+ j = self->stack->length;
+
+ if ((dict = PyDict_New()) == NULL)
+ return -1;
+
+ for (k = i + 1; k < j; k += 2) {
+ key = self->stack->data[k - 1];
+ value = self->stack->data[k];
+ if (PyDict_SetItem(dict, key, value) < 0) {
+ Py_DECREF(dict);
+ return -1;
+ }
+ }
+ Pdata_clear(self->stack, i);
+ PDATA_PUSH(self->stack, dict, -1);
+ return 0;
+}
+
+static PyObject *
+instantiate(PyObject *cls, PyObject *args)
+{
+ PyObject *r = NULL;
+
+ /* XXX: The pickle.py module does not create instances this way when the
+ args tuple is empty. See Unpickler._instantiate(). */
+ if ((r = PyObject_CallObject(cls, args)))
+ return r;
+
+ /* XXX: Is this still nescessary? */
+ {
+ PyObject *tp, *v, *tb, *tmp_value;
+
+ PyErr_Fetch(&tp, &v, &tb);
+ tmp_value = v;
+ /* NULL occurs when there was a KeyboardInterrupt */
+ if (tmp_value == NULL)
+ tmp_value = Py_None;
+ if ((r = PyTuple_Pack(3, tmp_value, cls, args))) {
+ Py_XDECREF(v);
+ v = r;
+ }
+ PyErr_Restore(tp, v, tb);
+ }
+ return NULL;
+}
+
+static int
+load_obj(UnpicklerObject *self)
+{
+ PyObject *cls, *args, *obj = NULL;
+ int i;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+
+ args = Pdata_poptuple(self->stack, i + 1);
+ if (args == NULL)
+ return -1;
+
+ PDATA_POP(self->stack, cls);
+ if (cls) {
+ obj = instantiate(cls, args);
+ Py_DECREF(cls);
+ }
+ Py_DECREF(args);
+ if (obj == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, obj, -1);
+ return 0;
+}
+
+static int
+load_inst(UnpicklerObject *self)
+{
+ PyObject *cls = NULL;
+ PyObject *args = NULL;
+ PyObject *obj = NULL;
+ PyObject *module_name;
+ PyObject *class_name;
+ Py_ssize_t len;
+ int i;
+ char *s;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ /* Here it is safe to use PyUnicode_DecodeASCII(), even though non-ASCII
+ identifiers are permitted in Python 3.0, since the INST opcode is only
+ supported by older protocols on Python 2.x. */
+ module_name = PyUnicode_DecodeASCII(s, len - 1, "strict");
+ if (module_name == NULL)
+ return -1;
+
+ if ((len = unpickler_readline(self, &s)) >= 0) {
+ if (len < 2)
+ return bad_readline();
+ class_name = PyUnicode_DecodeASCII(s, len - 1, "strict");
+ if (class_name == NULL) {
+ cls = find_class(self, module_name, class_name);
+ Py_DECREF(class_name);
+ }
+ }
+ Py_DECREF(module_name);
+
+ if (cls == NULL)
+ return -1;
+
+ if ((args = Pdata_poptuple(self->stack, i)) != NULL) {
+ obj = instantiate(cls, args);
+ Py_DECREF(args);
+ }
+ Py_DECREF(cls);
+
+ if (obj == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, obj, -1);
+ return 0;
+}
+
+static int
+load_newobj(UnpicklerObject *self)
+{
+ PyObject *args = NULL;
+ PyObject *clsraw = NULL;
+ PyTypeObject *cls; /* clsraw cast to its true type */
+ PyObject *obj;
+
+ /* Stack is ... cls argtuple, and we want to call
+ * cls.__new__(cls, *argtuple).
+ */
+ PDATA_POP(self->stack, args);
+ if (args == NULL)
+ goto error;
+ if (!PyTuple_Check(args)) {
+ PyErr_SetString(UnpicklingError, "NEWOBJ expected an arg " "tuple.");
+ goto error;
+ }
+
+ PDATA_POP(self->stack, clsraw);
+ cls = (PyTypeObject *)clsraw;
+ if (cls == NULL)
+ goto error;
+ if (!PyType_Check(cls)) {
+ PyErr_SetString(UnpicklingError, "NEWOBJ class argument "
+ "isn't a type object");
+ goto error;
+ }
+ if (cls->tp_new == NULL) {
+ PyErr_SetString(UnpicklingError, "NEWOBJ class argument "
+ "has NULL tp_new");
+ goto error;
+ }
+
+ /* Call __new__. */
+ obj = cls->tp_new(cls, args, NULL);
+ if (obj == NULL)
+ goto error;
+
+ Py_DECREF(args);
+ Py_DECREF(clsraw);
+ PDATA_PUSH(self->stack, obj, -1);
+ return 0;
+
+ error:
+ Py_XDECREF(args);
+ Py_XDECREF(clsraw);
+ return -1;
+}
+
+static int
+load_global(UnpicklerObject *self)
+{
+ PyObject *global = NULL;
+ PyObject *module_name;
+ PyObject *global_name;
+ Py_ssize_t len;
+ char *s;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+ module_name = PyUnicode_DecodeUTF8(s, len - 1, "strict");
+ if (!module_name)
+ return -1;
+
+ if ((len = unpickler_readline(self, &s)) >= 0) {
+ if (len < 2) {
+ Py_DECREF(module_name);
+ return bad_readline();
+ }
+ global_name = PyUnicode_DecodeUTF8(s, len - 1, "strict");
+ if (global_name) {
+ global = find_class(self, module_name, global_name);
+ Py_DECREF(global_name);
+ }
+ }
+ Py_DECREF(module_name);
+
+ if (global == NULL)
+ return -1;
+ PDATA_PUSH(self->stack, global, -1);
+ return 0;
+}
+
+static int
+load_persid(UnpicklerObject *self)
+{
+ PyObject *pid;
+ Py_ssize_t len;
+ char *s;
+
+ if (self->pers_func) {
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ pid = PyBytes_FromStringAndSize(s, len - 1);
+ if (pid == NULL)
+ return -1;
+
+ /* Ugh... this does not leak since unpickler_call() steals the
+ reference to pid first. */
+ pid = unpickler_call(self, self->pers_func, pid);
+ if (pid == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, pid, -1);
+ return 0;
+ }
+ else {
+ PyErr_SetString(UnpicklingError,
+ "A load persistent id instruction was encountered,\n"
+ "but no persistent_load function was specified.");
+ return -1;
+ }
+}
+
+static int
+load_binpersid(UnpicklerObject *self)
+{
+ PyObject *pid;
+
+ if (self->pers_func) {
+ PDATA_POP(self->stack, pid);
+ if (pid == NULL)
+ return -1;
+
+ /* Ugh... this does not leak since unpickler_call() steals the
+ reference to pid first. */
+ pid = unpickler_call(self, self->pers_func, pid);
+ if (pid == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, pid, -1);
+ return 0;
+ }
+ else {
+ PyErr_SetString(UnpicklingError,
+ "A load persistent id instruction was encountered,\n"
+ "but no persistent_load function was specified.");
+ return -1;
+ }
+}
+
+static int
+load_pop(UnpicklerObject *self)
+{
+ int len;
+
+ if ((len = self->stack->length) <= 0)
+ return stack_underflow();
+
+ /* Note that we split the (pickle.py) stack into two stacks,
+ * an object stack and a mark stack. We have to be clever and
+ * pop the right one. We do this by looking at the top of the
+ * mark stack.
+ */
+
+ if ((self->num_marks > 0) && (self->marks[self->num_marks - 1] == len))
+ self->num_marks--;
+ else {
+ len--;
+ Py_DECREF(self->stack->data[len]);
+ self->stack->length = len;
+ }
+
+ return 0;
+}
+
+static int
+load_pop_mark(UnpicklerObject *self)
+{
+ int i;
+
+ if ((i = marker(self)) < 0)
+ return -1;
+
+ Pdata_clear(self->stack, i);
+
+ return 0;
+}
+
+static int
+load_dup(UnpicklerObject *self)
+{
+ PyObject *last;
+ int len;
+
+ if ((len = self->stack->length) <= 0)
+ return stack_underflow();
+ last = self->stack->data[len - 1];
+ PDATA_APPEND(self->stack, last, -1);
+ return 0;
+}
+
+static int
+load_get(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ Py_ssize_t len;
+ char *s;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+
+ key = PyLong_FromString(s, NULL, 10);
+ if (key == NULL)
+ return -1;
+
+ value = PyDict_GetItemWithError(self->memo, key);
+ if (value == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetObject(PyExc_KeyError, key);
+ Py_DECREF(key);
+ return -1;
+ }
+ Py_DECREF(key);
+
+ PDATA_APPEND(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_binget(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ char *s;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+
+ /* Here, the unsigned cast is necessary to avoid negative values. */
+ key = PyLong_FromLong((long)(unsigned char)s[0]);
+ if (key == NULL)
+ return -1;
+
+ value = PyDict_GetItemWithError(self->memo, key);
+ if (value == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetObject(PyExc_KeyError, key);
+ Py_DECREF(key);
+ return -1;
+ }
+ Py_DECREF(key);
+
+ PDATA_APPEND(self->stack, value, -1);
+ return 0;
+}
+
+static int
+load_long_binget(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ char *s;
+ long k;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+
+ k = (long)(unsigned char)s[0];
+ k |= (long)(unsigned char)s[1] << 8;
+ k |= (long)(unsigned char)s[2] << 16;
+ k |= (long)(unsigned char)s[3] << 24;
+
+ key = PyLong_FromLong(k);
+ if (key == NULL)
+ return -1;
+
+ value = PyDict_GetItemWithError(self->memo, key);
+ if (value == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetObject(PyExc_KeyError, key);
+ Py_DECREF(key);
+ return -1;
+ }
+ Py_DECREF(key);
+
+ PDATA_APPEND(self->stack, value, -1);
+ return 0;
+}
+
+/* Push an object from the extension registry (EXT[124]). nbytes is
+ * the number of bytes following the opcode, holding the index (code) value.
+ */
+static int
+load_extension(UnpicklerObject *self, int nbytes)
+{
+ char *codebytes; /* the nbytes bytes after the opcode */
+ long code; /* calc_binint returns long */
+ PyObject *py_code; /* code as a Python int */
+ PyObject *obj; /* the object to push */
+ PyObject *pair; /* (module_name, class_name) */
+ PyObject *module_name, *class_name;
+
+ assert(nbytes == 1 || nbytes == 2 || nbytes == 4);
+ if (unpickler_read(self, &codebytes, nbytes) < 0)
+ return -1;
+ code = calc_binint(codebytes, nbytes);
+ if (code <= 0) { /* note that 0 is forbidden */
+ /* Corrupt or hostile pickle. */
+ PyErr_SetString(UnpicklingError, "EXT specifies code <= 0");
+ return -1;
+ }
+
+ /* Look for the code in the cache. */
+ py_code = PyLong_FromLong(code);
+ if (py_code == NULL)
+ return -1;
+ obj = PyDict_GetItem(extension_cache, py_code);
+ if (obj != NULL) {
+ /* Bingo. */
+ Py_DECREF(py_code);
+ PDATA_APPEND(self->stack, obj, -1);
+ return 0;
+ }
+
+ /* Look up the (module_name, class_name) pair. */
+ pair = PyDict_GetItem(inverted_registry, py_code);
+ if (pair == NULL) {
+ Py_DECREF(py_code);
+ PyErr_Format(PyExc_ValueError, "unregistered extension "
+ "code %ld", code);
+ return -1;
+ }
+ /* Since the extension registry is manipulable via Python code,
+ * confirm that pair is really a 2-tuple of strings.
+ */
+ if (!PyTuple_Check(pair) || PyTuple_Size(pair) != 2 ||
+ !PyUnicode_Check(module_name = PyTuple_GET_ITEM(pair, 0)) ||
+ !PyUnicode_Check(class_name = PyTuple_GET_ITEM(pair, 1))) {
+ Py_DECREF(py_code);
+ PyErr_Format(PyExc_ValueError, "_inverted_registry[%ld] "
+ "isn't a 2-tuple of strings", code);
+ return -1;
+ }
+ /* Load the object. */
+ obj = find_class(self, module_name, class_name);
+ if (obj == NULL) {
+ Py_DECREF(py_code);
+ return -1;
+ }
+ /* Cache code -> obj. */
+ code = PyDict_SetItem(extension_cache, py_code, obj);
+ Py_DECREF(py_code);
+ if (code < 0) {
+ Py_DECREF(obj);
+ return -1;
+ }
+ PDATA_PUSH(self->stack, obj, -1);
+ return 0;
+}
+
+static int
+load_put(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ Py_ssize_t len;
+ char *s;
+ int x;
+
+ if ((len = unpickler_readline(self, &s)) < 0)
+ return -1;
+ if (len < 2)
+ return bad_readline();
+ if ((x = self->stack->length) <= 0)
+ return stack_underflow();
+
+ key = PyLong_FromString(s, NULL, 10);
+ if (key == NULL)
+ return -1;
+ value = self->stack->data[x - 1];
+
+ x = PyDict_SetItem(self->memo, key, value);
+ Py_DECREF(key);
+ return x;
+}
+
+static int
+load_binput(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ char *s;
+ int x;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+ if ((x = self->stack->length) <= 0)
+ return stack_underflow();
+
+ key = PyLong_FromLong((long)(unsigned char)s[0]);
+ if (key == NULL)
+ return -1;
+ value = self->stack->data[x - 1];
+
+ x = PyDict_SetItem(self->memo, key, value);
+ Py_DECREF(key);
+ return x;
+}
+
+static int
+load_long_binput(UnpicklerObject *self)
+{
+ PyObject *key, *value;
+ long k;
+ char *s;
+ int x;
+
+ if (unpickler_read(self, &s, 4) < 0)
+ return -1;
+ if ((x = self->stack->length) <= 0)
+ return stack_underflow();
+
+ k = (long)(unsigned char)s[0];
+ k |= (long)(unsigned char)s[1] << 8;
+ k |= (long)(unsigned char)s[2] << 16;
+ k |= (long)(unsigned char)s[3] << 24;
+
+ key = PyLong_FromLong(k);
+ if (key == NULL)
+ return -1;
+ value = self->stack->data[x - 1];
+
+ x = PyDict_SetItem(self->memo, key, value);
+ Py_DECREF(key);
+ return x;
+}
+
+static int
+do_append(UnpicklerObject *self, int x)
+{
+ PyObject *value;
+ PyObject *list;
+ int len, i;
+
+ len = self->stack->length;
+ if (x > len || x <= 0)
+ return stack_underflow();
+ if (len == x) /* nothing to do */
+ return 0;
+
+ list = self->stack->data[x - 1];
+
+ if (PyList_Check(list)) {
+ PyObject *slice;
+ Py_ssize_t list_len;
+
+ slice = Pdata_poplist(self->stack, x);
+ if (!slice)
+ return -1;
+ list_len = PyList_GET_SIZE(list);
+ i = PyList_SetSlice(list, list_len, list_len, slice);
+ Py_DECREF(slice);
+ return i;
+ }
+ else {
+ PyObject *append_func;
+
+ append_func = PyObject_GetAttrString(list, "append");
+ if (append_func == NULL)
+ return -1;
+ for (i = x; i < len; i++) {
+ PyObject *result;
+
+ value = self->stack->data[i];
+ result = unpickler_call(self, append_func, value);
+ if (result == NULL) {
+ Pdata_clear(self->stack, i + 1);
+ self->stack->length = x;
+ return -1;
+ }
+ Py_DECREF(result);
+ }
+ self->stack->length = x;
+ }
+
+ return 0;
+}
+
+static int
+load_append(UnpicklerObject *self)
+{
+ return do_append(self, self->stack->length - 1);
+}
+
+static int
+load_appends(UnpicklerObject *self)
+{
+ return do_append(self, marker(self));
+}
+
+static int
+do_setitems(UnpicklerObject *self, int x)
+{
+ PyObject *value, *key;
+ PyObject *dict;
+ int len, i;
+ int status = 0;
+
+ len = self->stack->length;
+ if (x > len || x <= 0)
+ return stack_underflow();
+ if (len == x) /* nothing to do */
+ return 0;
+ if ((len - x) % 2 != 0) {
+ /* Currupt or hostile pickle -- we never write one like this. */
+ PyErr_SetString(UnpicklingError, "odd number of items for SETITEMS");
+ return -1;
+ }
+
+ /* Here, dict does not actually need to be a PyDict; it could be anything
+ that supports the __setitem__ attribute. */
+ dict = self->stack->data[x - 1];
+
+ for (i = x + 1; i < len; i += 2) {
+ key = self->stack->data[i - 1];
+ value = self->stack->data[i];
+ if (PyObject_SetItem(dict, key, value) < 0) {
+ status = -1;
+ break;
+ }
+ }
+
+ Pdata_clear(self->stack, x);
+ return status;
+}
+
+static int
+load_setitem(UnpicklerObject *self)
+{
+ return do_setitems(self, self->stack->length - 2);
+}
+
+static int
+load_setitems(UnpicklerObject *self)
+{
+ return do_setitems(self, marker(self));
+}
+
+static int
+load_build(UnpicklerObject *self)
+{
+ PyObject *state, *inst, *slotstate;
+ PyObject *setstate;
+ int status = 0;
+
+ /* Stack is ... instance, state. We want to leave instance at
+ * the stack top, possibly mutated via instance.__setstate__(state).
+ */
+ if (self->stack->length < 2)
+ return stack_underflow();
+
+ PDATA_POP(self->stack, state);
+ if (state == NULL)
+ return -1;
+
+ inst = self->stack->data[self->stack->length - 1];
+
+ setstate = PyObject_GetAttrString(inst, "__setstate__");
+ if (setstate == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) {
+ PyErr_Clear();
+ }
+ else {
+ PyObject *result;
+
+ /* The explicit __setstate__ is responsible for everything. */
+ result = unpickler_call(self, setstate, state);
+ Py_DECREF(setstate);
+ if (result == NULL)
+ return -1;
+ Py_DECREF(result);
+ return 0;
+ }
+
+ /* A default __setstate__. First see whether state embeds a
+ * slot state dict too (a proto 2 addition).
+ */
+ if (PyTuple_Check(state) && Py_SIZE(state) == 2) {
+ PyObject *tmp = state;
+
+ state = PyTuple_GET_ITEM(tmp, 0);
+ slotstate = PyTuple_GET_ITEM(tmp, 1);
+ Py_INCREF(state);
+ Py_INCREF(slotstate);
+ Py_DECREF(tmp);
+ }
+ else
+ slotstate = NULL;
+
+ /* Set inst.__dict__ from the state dict (if any). */
+ if (state != Py_None) {
+ PyObject *dict;
+
+ if (!PyDict_Check(state)) {
+ PyErr_SetString(UnpicklingError, "state is not a dictionary");
+ goto error;
+ }
+ dict = PyObject_GetAttrString(inst, "__dict__");
+ if (dict == NULL)
+ goto error;
+
+ PyDict_Update(dict, state);
+ Py_DECREF(dict);
+ }
+
+ /* Also set instance attributes from the slotstate dict (if any). */
+ if (slotstate != NULL) {
+ PyObject *d_key, *d_value;
+ Py_ssize_t i;
+
+ if (!PyDict_Check(slotstate)) {
+ PyErr_SetString(UnpicklingError,
+ "slot state is not a dictionary");
+ goto error;
+ }
+ i = 0;
+ while (PyDict_Next(slotstate, &i, &d_key, &d_value)) {
+ if (PyObject_SetAttr(inst, d_key, d_value) < 0)
+ goto error;
+ }
+ }
+
+ if (0) {
+ error:
+ status = -1;
+ }
+
+ Py_DECREF(state);
+ Py_XDECREF(slotstate);
+ return status;
+}
+
+static int
+load_mark(UnpicklerObject *self)
+{
+
+ /* Note that we split the (pickle.py) stack into two stacks, an
+ * object stack and a mark stack. Here we push a mark onto the
+ * mark stack.
+ */
+
+ if ((self->num_marks + 1) >= self->marks_size) {
+ size_t alloc;
+ int *marks;
+
+ /* Use the size_t type to check for overflow. */
+ alloc = ((size_t)self->num_marks << 1) + 20;
+ if (alloc > PY_SSIZE_T_MAX || alloc <= (self->num_marks + 1)) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ if (self->marks == NULL)
+ marks = (int *)PyMem_Malloc(alloc * sizeof(int));
+ else
+ marks = (int *)PyMem_Realloc(self->marks, alloc * sizeof(int));
+ if (marks == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ self->marks = marks;
+ self->marks_size = (Py_ssize_t)alloc;
+ }
+
+ self->marks[self->num_marks++] = self->stack->length;
+
+ return 0;
+}
+
+static int
+load_reduce(UnpicklerObject *self)
+{
+ PyObject *callable = NULL;
+ PyObject *argtup = NULL;
+ PyObject *obj = NULL;
+
+ PDATA_POP(self->stack, argtup);
+ if (argtup == NULL)
+ return -1;
+ PDATA_POP(self->stack, callable);
+ if (callable) {
+ obj = instantiate(callable, argtup);
+ Py_DECREF(callable);
+ }
+ Py_DECREF(argtup);
+
+ if (obj == NULL)
+ return -1;
+
+ PDATA_PUSH(self->stack, obj, -1);
+ return 0;
+}
+
+/* Just raises an error if we don't know the protocol specified. PROTO
+ * is the first opcode for protocols >= 2.
+ */
+static int
+load_proto(UnpicklerObject *self)
+{
+ char *s;
+ int i;
+
+ if (unpickler_read(self, &s, 1) < 0)
+ return -1;
+
+ i = (unsigned char)s[0];
+ if (i <= HIGHEST_PROTOCOL)
+ return 0;
+
+ PyErr_Format(PyExc_ValueError, "unsupported pickle protocol: %d", i);
+ return -1;
+}
+
+static PyObject *
+load(UnpicklerObject *self)
+{
+ PyObject *err;
+ PyObject *value = NULL;
+ char *s;
+
+ self->num_marks = 0;
+ if (self->stack->length)
+ Pdata_clear(self->stack, 0);
+
+ /* Convenient macros for the dispatch while-switch loop just below. */
+#define OP(opcode, load_func) \
+ case opcode: if (load_func(self) < 0) break; continue;
+
+#define OP_ARG(opcode, load_func, arg) \
+ case opcode: if (load_func(self, (arg)) < 0) break; continue;
+
+ while (1) {
+ if (unpickler_read(self, &s, 1) < 0)
+ break;
+
+ switch ((enum opcode)s[0]) {
+ OP(NONE, load_none)
+ OP(BININT, load_binint)
+ OP(BININT1, load_binint1)
+ OP(BININT2, load_binint2)
+ OP(INT, load_int)
+ OP(LONG, load_long)
+ OP_ARG(LONG1, load_counted_long, 1)
+ OP_ARG(LONG4, load_counted_long, 4)
+ OP(FLOAT, load_float)
+ OP(BINFLOAT, load_binfloat)
+ OP(BINBYTES, load_binbytes)
+ OP(SHORT_BINBYTES, load_short_binbytes)
+ OP(BINSTRING, load_binstring)
+ OP(SHORT_BINSTRING, load_short_binstring)
+ OP(STRING, load_string)
+ OP(UNICODE, load_unicode)
+ OP(BINUNICODE, load_binunicode)
+ OP_ARG(EMPTY_TUPLE, load_counted_tuple, 0)
+ OP_ARG(TUPLE1, load_counted_tuple, 1)
+ OP_ARG(TUPLE2, load_counted_tuple, 2)
+ OP_ARG(TUPLE3, load_counted_tuple, 3)
+ OP(TUPLE, load_tuple)
+ OP(EMPTY_LIST, load_empty_list)
+ OP(LIST, load_list)
+ OP(EMPTY_DICT, load_empty_dict)
+ OP(DICT, load_dict)
+ OP(OBJ, load_obj)
+ OP(INST, load_inst)
+ OP(NEWOBJ, load_newobj)
+ OP(GLOBAL, load_global)
+ OP(APPEND, load_append)
+ OP(APPENDS, load_appends)
+ OP(BUILD, load_build)
+ OP(DUP, load_dup)
+ OP(BINGET, load_binget)
+ OP(LONG_BINGET, load_long_binget)
+ OP(GET, load_get)
+ OP(MARK, load_mark)
+ OP(BINPUT, load_binput)
+ OP(LONG_BINPUT, load_long_binput)
+ OP(PUT, load_put)
+ OP(POP, load_pop)
+ OP(POP_MARK, load_pop_mark)
+ OP(SETITEM, load_setitem)
+ OP(SETITEMS, load_setitems)
+ OP(PERSID, load_persid)
+ OP(BINPERSID, load_binpersid)
+ OP(REDUCE, load_reduce)
+ OP(PROTO, load_proto)
+ OP_ARG(EXT1, load_extension, 1)
+ OP_ARG(EXT2, load_extension, 2)
+ OP_ARG(EXT4, load_extension, 4)
+ OP_ARG(NEWTRUE, load_bool, Py_True)
+ OP_ARG(NEWFALSE, load_bool, Py_False)
+
+ case STOP:
+ break;
+
+ case '\0':
+ PyErr_SetNone(PyExc_EOFError);
+ return NULL;
+
+ default:
+ PyErr_Format(UnpicklingError,
+ "invalid load key, '%c'.", s[0]);
+ return NULL;
+ }
+
+ break; /* and we are done! */
+ }
+
+ /* XXX: It is not clear what this is actually for. */
+ if ((err = PyErr_Occurred())) {
+ if (err == PyExc_EOFError) {
+ PyErr_SetNone(PyExc_EOFError);
+ }
+ return NULL;
+ }
+
+ PDATA_POP(self->stack, value);
+ return value;
+}
+
+PyDoc_STRVAR(Unpickler_load_doc,
+"load() -> object. Load a pickle."
+"\n"
+"Read a pickled object representation from the open file object given in\n"
+"the constructor, and return the reconstituted object hierarchy specified\n"
+"therein.\n");
+
+static PyObject *
+Unpickler_load(UnpicklerObject *self)
+{
+ /* Check whether the Unpickler was initialized correctly. This prevents
+ segfaulting if a subclass overridden __init__ with a function that does
+ not call Unpickler.__init__(). Here, we simply ensure that self->read
+ is not NULL. */
+ if (self->read == NULL) {
+ PyErr_Format(UnpicklingError,
+ "Unpickler.__init__() was not called by %s.__init__()",
+ Py_TYPE(self)->tp_name);
+ return NULL;
+ }
+
+ return load(self);
+}
+
+/* The name of find_class() is misleading. In newer pickle protocols, this
+ function is used for loading any global (i.e., functions), not just
+ classes. The name is kept only for backward compatibility. */
+
+PyDoc_STRVAR(Unpickler_find_class_doc,
+"find_class(module_name, global_name) -> object.\n"
+"\n"
+"Return an object from a specified module, importing the module if\n"
+"necessary. Subclasses may override this method (e.g. to restrict\n"
+"unpickling of arbitrary classes and functions).\n"
+"\n"
+"This method is called whenever a class or a function object is\n"
+"needed. Both arguments passed are str objects.\n");
+
+static PyObject *
+Unpickler_find_class(UnpicklerObject *self, PyObject *args)
+{
+ PyObject *global;
+ PyObject *modules_dict;
+ PyObject *module;
+ PyObject *module_name, *global_name;
+
+ if (!PyArg_UnpackTuple(args, "find_class", 2, 2,
+ &module_name, &global_name))
+ return NULL;
+
+ modules_dict = PySys_GetObject("modules");
+ if (modules_dict == NULL)
+ return NULL;
+
+ module = PyDict_GetItem(modules_dict, module_name);
+ if (module == NULL) {
+ module = PyImport_Import(module_name);
+ if (module == NULL)
+ return NULL;
+ global = PyObject_GetAttr(module, global_name);
+ Py_DECREF(module);
+ }
+ else {
+ global = PyObject_GetAttr(module, global_name);
+ }
+ return global;
+}
+
+static struct PyMethodDef Unpickler_methods[] = {
+ {"load", (PyCFunction)Unpickler_load, METH_NOARGS,
+ Unpickler_load_doc},
+ {"find_class", (PyCFunction)Unpickler_find_class, METH_VARARGS,
+ Unpickler_find_class_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+static void
+Unpickler_dealloc(UnpicklerObject *self)
+{
+ PyObject_GC_UnTrack((PyObject *)self);
+ Py_XDECREF(self->readline);
+ Py_XDECREF(self->read);
+ Py_XDECREF(self->memo);
+ Py_XDECREF(self->stack);
+ Py_XDECREF(self->pers_func);
+ Py_XDECREF(self->arg);
+ Py_XDECREF(self->last_string);
+
+ PyMem_Free(self->marks);
+ free(self->encoding);
+ free(self->errors);
+
+ Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+static int
+Unpickler_traverse(UnpicklerObject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(self->readline);
+ Py_VISIT(self->read);
+ Py_VISIT(self->memo);
+ Py_VISIT(self->stack);
+ Py_VISIT(self->pers_func);
+ Py_VISIT(self->arg);
+ Py_VISIT(self->last_string);
+ return 0;
+}
+
+static int
+Unpickler_clear(UnpicklerObject *self)
+{
+ Py_CLEAR(self->readline);
+ Py_CLEAR(self->read);
+ Py_CLEAR(self->memo);
+ Py_CLEAR(self->stack);
+ Py_CLEAR(self->pers_func);
+ Py_CLEAR(self->arg);
+ Py_CLEAR(self->last_string);
+
+ PyMem_Free(self->marks);
+ self->marks = NULL;
+ free(self->encoding);
+ self->encoding = NULL;
+ free(self->errors);
+ self->errors = NULL;
+
+ return 0;
+}
+
+PyDoc_STRVAR(Unpickler_doc,
+"Unpickler(file, *, encoding='ASCII', errors='strict')"
+"\n"
+"This takes a binary file for reading a pickle data stream.\n"
+"\n"
+"The protocol version of the pickle is detected automatically, so no\n"
+"proto argument is needed.\n"
+"\n"
+"The file-like object must have two methods, a read() method\n"
+"that takes an integer argument, and a readline() method that\n"
+"requires no arguments. Both methods should return bytes.\n"
+"Thus file-like object can be a binary file object opened for\n"
+"reading, a BytesIO object, or any other custom object that\n"
+"meets this interface.\n"
+"\n"
+"Optional keyword arguments are encoding and errors, which are\n"
+"used to decode 8-bit string instances pickled by Python 2.x.\n"
+"These default to 'ASCII' and 'strict', respectively.\n");
+
+static int
+Unpickler_init(UnpicklerObject *self, PyObject *args, PyObject *kwds)
+{
+ static char *kwlist[] = {"file", "encoding", "errors", 0};
+ PyObject *file;
+ char *encoding = NULL;
+ char *errors = NULL;
+
+ /* XXX: That is an horrible error message. But, I don't know how to do
+ better... */
+ if (Py_SIZE(args) != 1) {
+ PyErr_Format(PyExc_TypeError,
+ "%s takes exactly one positional argument (%zd given)",
+ Py_TYPE(self)->tp_name, Py_SIZE(args));
+ return -1;
+ }
+
+ /* Arguments parsing needs to be done in the __init__() method to allow
+ subclasses to define their own __init__() method, which may (or may
+ not) support Unpickler arguments. However, this means we need to be
+ extra careful in the other Unpickler methods, since a subclass could
+ forget to call Unpickler.__init__() thus breaking our internal
+ invariants. */
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|ss:Unpickler", kwlist,
+ &file, &encoding, &errors))
+ return -1;
+
+ /* In case of multiple __init__() calls, clear previous content. */
+ if (self->read != NULL)
+ (void)Unpickler_clear(self);
+
+ self->read = PyObject_GetAttrString(file, "read");
+ self->readline = PyObject_GetAttrString(file, "readline");
+ if (self->readline == NULL || self->read == NULL)
+ return -1;
+
+ if (encoding == NULL)
+ encoding = "ASCII";
+ if (errors == NULL)
+ errors = "strict";
+
+ self->encoding = strdup(encoding);
+ self->errors = strdup(errors);
+ if (self->encoding == NULL || self->errors == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ if (PyObject_HasAttrString((PyObject *)self, "persistent_load")) {
+ self->pers_func = PyObject_GetAttrString((PyObject *)self,
+ "persistent_load");
+ if (self->pers_func == NULL)
+ return -1;
+ }
+ else {
+ self->pers_func = NULL;
+ }
+
+ self->stack = (Pdata *)Pdata_New();
+ if (self->stack == NULL)
+ return -1;
+
+ self->memo = PyDict_New();
+ if (self->memo == NULL)
+ return -1;
+
+ return 0;
+}
+
+static PyObject *
+Unpickler_get_memo(UnpicklerObject *self)
+{
+ if (self->memo == NULL)
+ PyErr_SetString(PyExc_AttributeError, "memo");
+ else
+ Py_INCREF(self->memo);
+ return self->memo;
+}
+
+static int
+Unpickler_set_memo(UnpicklerObject *self, PyObject *value)
+{
+ PyObject *tmp;
+
+ if (value == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "attribute deletion is not supported");
+ return -1;
+ }
+ if (!PyDict_Check(value)) {
+ PyErr_SetString(PyExc_TypeError, "memo must be a dictionary");
+ return -1;
+ }
+
+ tmp = self->memo;
+ Py_INCREF(value);
+ self->memo = value;
+ Py_XDECREF(tmp);
+
+ return 0;
+}
+
+static PyObject *
+Unpickler_get_persload(UnpicklerObject *self)
+{
+ if (self->pers_func == NULL)
+ PyErr_SetString(PyExc_AttributeError, "persistent_load");
+ else
+ Py_INCREF(self->pers_func);
+ return self->pers_func;
+}
+
+static int
+Unpickler_set_persload(UnpicklerObject *self, PyObject *value)
+{
+ PyObject *tmp;
+
+ if (value == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "attribute deletion is not supported");
+ return -1;
+ }
+ if (!PyCallable_Check(value)) {
+ PyErr_SetString(PyExc_TypeError,
+ "persistent_load must be a callable taking "
+ "one argument");
+ return -1;
+ }
+
+ tmp = self->pers_func;
+ Py_INCREF(value);
+ self->pers_func = value;
+ Py_XDECREF(tmp); /* self->pers_func can be NULL, so be careful. */
+
+ return 0;
+}
+
+static PyGetSetDef Unpickler_getsets[] = {
+ {"memo", (getter)Unpickler_get_memo, (setter)Unpickler_set_memo},
+ {"persistent_load", (getter)Unpickler_get_persload,
+ (setter)Unpickler_set_persload},
+ {NULL}
+};
+
+static PyTypeObject Unpickler_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "_pickle.Unpickler", /*tp_name*/
+ sizeof(UnpicklerObject), /*tp_basicsize*/
+ 0, /*tp_itemsize*/
+ (destructor)Unpickler_dealloc, /*tp_dealloc*/
+ 0, /*tp_print*/
+ 0, /*tp_getattr*/
+ 0, /*tp_setattr*/
+ 0, /*tp_compare*/
+ 0, /*tp_repr*/
+ 0, /*tp_as_number*/
+ 0, /*tp_as_sequence*/
+ 0, /*tp_as_mapping*/
+ 0, /*tp_hash*/
+ 0, /*tp_call*/
+ 0, /*tp_str*/
+ 0, /*tp_getattro*/
+ 0, /*tp_setattro*/
+ 0, /*tp_as_buffer*/
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
+ Unpickler_doc, /*tp_doc*/
+ (traverseproc)Unpickler_traverse, /*tp_traverse*/
+ (inquiry)Unpickler_clear, /*tp_clear*/
+ 0, /*tp_richcompare*/
+ 0, /*tp_weaklistoffset*/
+ 0, /*tp_iter*/
+ 0, /*tp_iternext*/
+ Unpickler_methods, /*tp_methods*/
+ 0, /*tp_members*/
+ Unpickler_getsets, /*tp_getset*/
+ 0, /*tp_base*/
+ 0, /*tp_dict*/
+ 0, /*tp_descr_get*/
+ 0, /*tp_descr_set*/
+ 0, /*tp_dictoffset*/
+ (initproc)Unpickler_init, /*tp_init*/
+ PyType_GenericAlloc, /*tp_alloc*/
+ PyType_GenericNew, /*tp_new*/
+ PyObject_GC_Del, /*tp_free*/
+ 0, /*tp_is_gc*/
+};
+
+static int
+init_stuff(void)
+{
+ PyObject *copyreg;
+
+ copyreg = PyImport_ImportModule("copyreg");
+ if (!copyreg)
+ return -1;
+
+ dispatch_table = PyObject_GetAttrString(copyreg, "dispatch_table");
+ if (!dispatch_table)
+ goto error;
+
+ extension_registry = \
+ PyObject_GetAttrString(copyreg, "_extension_registry");
+ if (!extension_registry)
+ goto error;
+
+ inverted_registry = PyObject_GetAttrString(copyreg, "_inverted_registry");
+ if (!inverted_registry)
+ goto error;
+
+ extension_cache = PyObject_GetAttrString(copyreg, "_extension_cache");
+ if (!extension_cache)
+ goto error;
+
+ Py_DECREF(copyreg);
+
+ empty_tuple = PyTuple_New(0);
+ if (empty_tuple == NULL)
+ return -1;
+
+ two_tuple = PyTuple_New(2);
+ if (two_tuple == NULL)
+ return -1;
+ /* We use this temp container with no regard to refcounts, or to
+ * keeping containees alive. Exempt from GC, because we don't
+ * want anything looking at two_tuple() by magic.
+ */
+ PyObject_GC_UnTrack(two_tuple);
+
+ return 0;
+
+ error:
+ Py_DECREF(copyreg);
+ return -1;
+}
+
+static struct PyModuleDef _picklemodule = {
+ PyModuleDef_HEAD_INIT,
+ "_pickle",
+ pickle_module_doc,
+ -1,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL
+};
+
+PyMODINIT_FUNC
+PyInit__pickle(void)
+{
+ PyObject *m;
+
+ if (PyType_Ready(&Unpickler_Type) < 0)
+ return NULL;
+ if (PyType_Ready(&Pickler_Type) < 0)
+ return NULL;
+ if (PyType_Ready(&Pdata_Type) < 0)
+ return NULL;
+
+ /* Create the module and add the functions. */
+ m = PyModule_Create(&_picklemodule);
+ if (m == NULL)
+ return NULL;
+
+ if (PyModule_AddObject(m, "Pickler", (PyObject *)&Pickler_Type) < 0)
+ return NULL;
+ if (PyModule_AddObject(m, "Unpickler", (PyObject *)&Unpickler_Type) < 0)
+ return NULL;
+
+ /* Initialize the exceptions. */
+ PickleError = PyErr_NewException("_pickle.PickleError", NULL, NULL);
+ if (PickleError == NULL)
+ return NULL;
+ PicklingError = \
+ PyErr_NewException("_pickle.PicklingError", PickleError, NULL);
+ if (PicklingError == NULL)
+ return NULL;
+ UnpicklingError = \
+ PyErr_NewException("_pickle.UnpicklingError", PickleError, NULL);
+ if (UnpicklingError == NULL)
+ return NULL;
+
+ if (PyModule_AddObject(m, "PickleError", PickleError) < 0)
+ return NULL;
+ if (PyModule_AddObject(m, "PicklingError", PicklingError) < 0)
+ return NULL;
+ if (PyModule_AddObject(m, "UnpicklingError", UnpicklingError) < 0)
+ return NULL;
+
+ if (init_stuff() < 0)
+ return NULL;
+
+ return m;
+}