#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
+#include <sys/multilist.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <vm/anon.h>
boolean_t arc_watch = B_FALSE;
#endif
-static kmutex_t arc_reclaim_thr_lock;
-static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
-static uint8_t arc_thread_exit;
+static kmutex_t arc_reclaim_lock;
+static kcondvar_t arc_reclaim_thread_cv;
+static boolean_t arc_reclaim_thread_exit;
+static kcondvar_t arc_reclaim_waiters_cv;
+
+static kmutex_t arc_user_evicts_lock;
+static kcondvar_t arc_user_evicts_cv;
+static boolean_t arc_user_evicts_thread_exit;
/* number of objects to prune from caches when arc_meta_limit is reached */
int zfs_arc_meta_prune = 10000;
} arc_reclaim_strategy_t;
/*
- * The number of iterations through arc_evict_*() before we
- * drop & reacquire the lock.
+ * The number of headers to evict in arc_evict_state_impl() before
+ * dropping the sublist lock and evicting from another sublist. A lower
+ * value means we're more likely to evict the "correct" header (i.e. the
+ * oldest header in the arc state), but comes with higher overhead
+ * (i.e. more invocations of arc_evict_state_impl()).
+ */
+int zfs_arc_evict_batch_limit = 10;
+
+/*
+ * The number of sublists used for each of the arc state lists. If this
+ * is not set to a suitable value by the user, it will be configured to
+ * the number of CPUs on the system in arc_init().
*/
-int arc_evict_iterations = 100;
+int zfs_arc_num_sublists_per_state = 0;
/* number of seconds before growing cache again */
int zfs_arc_grow_retry = 5;
+/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
+int zfs_arc_overflow_shift = 8;
+
/* disable anon data aggressively growing arc_p */
int zfs_arc_p_aggressive_disable = 1;
/* average block used to size buf_hash_table */
int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
+/*
+ * minimum lifespan of a prefetch block in clock ticks
+ * (initialized in arc_init())
+ */
+static int arc_min_prefetch_lifespan;
+
/*
* If this percent of memory is free, don't throttle.
*/
unsigned long zfs_arc_max = 0;
unsigned long zfs_arc_min = 0;
unsigned long zfs_arc_meta_limit = 0;
+unsigned long zfs_arc_meta_min = 0;
/*
* Limit the number of restarts in arc_adjust_meta()
kstat_named_t arcstat_mfu_hits;
kstat_named_t arcstat_mfu_ghost_hits;
kstat_named_t arcstat_deleted;
- kstat_named_t arcstat_recycle_miss;
/*
* Number of buffers that could not be evicted because the hash lock
* was held by another thread. The lock may not necessarily be held
* not from the spa we're trying to evict from.
*/
kstat_named_t arcstat_evict_skip;
+ /*
+ * Number of times arc_evict_state() was unable to evict enough
+ * buffers to reach its target amount.
+ */
+ kstat_named_t arcstat_evict_not_enough;
kstat_named_t arcstat_evict_l2_cached;
kstat_named_t arcstat_evict_l2_eligible;
kstat_named_t arcstat_evict_l2_ineligible;
+ kstat_named_t arcstat_evict_l2_skip;
kstat_named_t arcstat_hash_elements;
kstat_named_t arcstat_hash_elements_max;
kstat_named_t arcstat_hash_collisions;
kstat_named_t arcstat_l2_writes_sent;
kstat_named_t arcstat_l2_writes_done;
kstat_named_t arcstat_l2_writes_error;
- kstat_named_t arcstat_l2_writes_hdr_miss;
+ kstat_named_t arcstat_l2_writes_lock_retry;
kstat_named_t arcstat_l2_evict_lock_retry;
kstat_named_t arcstat_l2_evict_reading;
kstat_named_t arcstat_l2_evict_l1cached;
kstat_named_t arcstat_l2_free_on_write;
+ kstat_named_t arcstat_l2_cdata_free_on_write;
kstat_named_t arcstat_l2_abort_lowmem;
kstat_named_t arcstat_l2_cksum_bad;
kstat_named_t arcstat_l2_io_error;
kstat_named_t arcstat_meta_used;
kstat_named_t arcstat_meta_limit;
kstat_named_t arcstat_meta_max;
+ kstat_named_t arcstat_meta_min;
} arc_stats_t;
static arc_stats_t arc_stats = {
{ "mfu_hits", KSTAT_DATA_UINT64 },
{ "mfu_ghost_hits", KSTAT_DATA_UINT64 },
{ "deleted", KSTAT_DATA_UINT64 },
- { "recycle_miss", KSTAT_DATA_UINT64 },
{ "mutex_miss", KSTAT_DATA_UINT64 },
{ "evict_skip", KSTAT_DATA_UINT64 },
+ { "evict_not_enough", KSTAT_DATA_UINT64 },
{ "evict_l2_cached", KSTAT_DATA_UINT64 },
{ "evict_l2_eligible", KSTAT_DATA_UINT64 },
{ "evict_l2_ineligible", KSTAT_DATA_UINT64 },
+ { "evict_l2_skip", KSTAT_DATA_UINT64 },
{ "hash_elements", KSTAT_DATA_UINT64 },
{ "hash_elements_max", KSTAT_DATA_UINT64 },
{ "hash_collisions", KSTAT_DATA_UINT64 },
{ "l2_writes_sent", KSTAT_DATA_UINT64 },
{ "l2_writes_done", KSTAT_DATA_UINT64 },
{ "l2_writes_error", KSTAT_DATA_UINT64 },
- { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
+ { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
{ "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
{ "l2_evict_reading", KSTAT_DATA_UINT64 },
{ "l2_evict_l1cached", KSTAT_DATA_UINT64 },
{ "l2_free_on_write", KSTAT_DATA_UINT64 },
+ { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
{ "l2_abort_lowmem", KSTAT_DATA_UINT64 },
{ "l2_cksum_bad", KSTAT_DATA_UINT64 },
{ "l2_io_error", KSTAT_DATA_UINT64 },
{ "arc_meta_used", KSTAT_DATA_UINT64 },
{ "arc_meta_limit", KSTAT_DATA_UINT64 },
{ "arc_meta_max", KSTAT_DATA_UINT64 },
+ { "arc_meta_min", KSTAT_DATA_UINT64 },
};
#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
+#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
static list_t arc_prune_list;
static kmutex_t arc_prune_mtx;
static arc_buf_t *arc_eviction_list;
-static kmutex_t arc_eviction_mtx;
static arc_buf_hdr_t arc_eviction_hdr;
#define GHOST_STATE(state) \
static void arc_get_data_buf(arc_buf_t *);
static void arc_access(arc_buf_hdr_t *, kmutex_t *);
-static int arc_evict_needed(arc_buf_contents_t);
-static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t);
+static boolean_t arc_is_overflowing(void);
static void arc_buf_watch(arc_buf_t *);
static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
list_link_init(&hdr->b_l1hdr.b_arc_node);
list_link_init(&hdr->b_l2hdr.b_l2node);
+ multilist_link_init(&hdr->b_l1hdr.b_arc_node);
arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
return (0);
cv_destroy(&hdr->b_l1hdr.b_cv);
refcount_destroy(&hdr->b_l1hdr.b_refcnt);
mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
}
* l2c_only even though it's about to change.
*/
nhdr->b_l1hdr.b_state = arc_l2c_only;
+
+ /* Verify previous threads set to NULL before freeing */
+ ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
} else {
ASSERT(hdr->b_l1hdr.b_buf == NULL);
ASSERT0(hdr->b_l1hdr.b_datacnt);
- ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
+
+ /*
+ * If we've reached here, We must have been called from
+ * arc_evict_hdr(), as such we should have already been
+ * removed from any ghost list we were previously on
+ * (which protects us from racing with arc_evict_state),
+ * thus no locking is needed during this check.
+ */
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
+
/*
- * We might be removing the L1hdr of a buffer which was just
- * written out to L2ARC. If such a buffer is compressed then we
- * need to free its b_tmp_cdata before destroying the header.
+ * A buffer must not be moved into the arc_l2c_only
+ * state if it's not finished being written out to the
+ * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
+ * might try to be accessed, even though it was removed.
*/
- if (hdr->b_l1hdr.b_tmp_cdata != NULL &&
- HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
- l2arc_release_cdata_buf(hdr);
+ VERIFY(!HDR_L2_WRITING(hdr));
+ VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
+
nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
}
/*
(state != arc_anon)) {
/* We don't use the L2-only state list. */
if (state != arc_l2c_only) {
+ arc_buf_contents_t type = arc_buf_type(hdr);
uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
- list_t *list = &state->arcs_list[arc_buf_type(hdr)];
- uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
+ multilist_t *list = &state->arcs_list[type];
+ uint64_t *size = &state->arcs_lsize[type];
+
+ multilist_remove(list, hdr);
- ASSERT(!MUTEX_HELD(&state->arcs_mtx));
- mutex_enter(&state->arcs_mtx);
- ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
- list_remove(list, hdr);
if (GHOST_STATE(state)) {
ASSERT0(hdr->b_l1hdr.b_datacnt);
ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
ASSERT(delta > 0);
ASSERT3U(*size, >=, delta);
atomic_add_64(size, -delta);
- mutex_exit(&state->arcs_mtx);
}
/* remove the prefetch flag if we get a reference */
hdr->b_flags &= ~ARC_FLAG_PREFETCH;
*/
if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
(state != arc_anon)) {
- uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
+ arc_buf_contents_t type = arc_buf_type(hdr);
+ multilist_t *list = &state->arcs_list[type];
+ uint64_t *size = &state->arcs_lsize[type];
+
+ multilist_insert(list, hdr);
- ASSERT(!MUTEX_HELD(&state->arcs_mtx));
- mutex_enter(&state->arcs_mtx);
- ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
- list_insert_head(&state->arcs_list[arc_buf_type(hdr)], hdr);
ASSERT(hdr->b_l1hdr.b_datacnt > 0);
atomic_add_64(size, hdr->b_size *
hdr->b_l1hdr.b_datacnt);
- mutex_exit(&state->arcs_mtx);
}
return (cnt);
}
abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
abi->abi_state_contents = arc_buf_type(hdr);
- abi->abi_state_index = -1;
abi->abi_size = hdr->b_size;
-
- if (l1hdr && state && state_index &&
- list_link_active(&l1hdr->b_arc_node)) {
- list_t *list = &state->arcs_list[arc_buf_type(hdr)];
- arc_buf_hdr_t *h;
-
- mutex_enter(&state->arcs_mtx);
- for (h = list_head(list); h != NULL; h = list_next(list, h)) {
- abi->abi_state_index++;
- if (h == hdr)
- break;
- }
- mutex_exit(&state->arcs_mtx);
- }
}
/*
- * Move the supplied buffer to the indicated state. The mutex
+ * Move the supplied buffer to the indicated state. The hash lock
* for the buffer must be held by the caller.
*/
static void
*/
if (refcnt == 0) {
if (old_state != arc_anon && old_state != arc_l2c_only) {
- int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
uint64_t *size = &old_state->arcs_lsize[buftype];
- if (use_mutex)
- mutex_enter(&old_state->arcs_mtx);
-
ASSERT(HDR_HAS_L1HDR(hdr));
- ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
- list_remove(&old_state->arcs_list[buftype], hdr);
+ multilist_remove(&old_state->arcs_list[buftype], hdr);
/*
* If prefetching out of the ghost cache,
}
ASSERT3U(*size, >=, from_delta);
atomic_add_64(size, -from_delta);
-
- if (use_mutex)
- mutex_exit(&old_state->arcs_mtx);
}
if (new_state != arc_anon && new_state != arc_l2c_only) {
- int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
uint64_t *size = &new_state->arcs_lsize[buftype];
/*
* beforehand.
*/
ASSERT(HDR_HAS_L1HDR(hdr));
- if (use_mutex)
- mutex_enter(&new_state->arcs_mtx);
-
- list_insert_head(&new_state->arcs_list[buftype], hdr);
+ multilist_insert(&new_state->arcs_list[buftype], hdr);
/* ghost elements have a ghost size */
if (GHOST_STATE(new_state)) {
to_delta = hdr->b_size;
}
atomic_add_64(size, to_delta);
-
- if (use_mutex)
- mutex_exit(&new_state->arcs_mtx);
}
}
* L2 headers should never be on the L2 state list since they don't
* have L1 headers allocated.
*/
- ASSERT(list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
- list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
+ ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
+ multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
}
void
hdr->b_l1hdr.b_state = arc_anon;
hdr->b_l1hdr.b_arc_access = 0;
hdr->b_l1hdr.b_datacnt = 1;
+ hdr->b_l1hdr.b_tmp_cdata = NULL;
arc_get_data_buf(buf);
data, metadata, hits);
}
+static void
+arc_buf_free_on_write(void *data, size_t size,
+ void (*free_func)(void *, size_t))
+{
+ l2arc_data_free_t *df;
+
+ df = kmem_alloc(sizeof (*df), KM_SLEEP);
+ df->l2df_data = data;
+ df->l2df_size = size;
+ df->l2df_func = free_func;
+ mutex_enter(&l2arc_free_on_write_mtx);
+ list_insert_head(l2arc_free_on_write, df);
+ mutex_exit(&l2arc_free_on_write_mtx);
+}
+
/*
* Free the arc data buffer. If it is an l2arc write in progress,
* the buffer is placed on l2arc_free_on_write to be freed later.
arc_buf_hdr_t *hdr = buf->b_hdr;
if (HDR_L2_WRITING(hdr)) {
- l2arc_data_free_t *df;
- df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
- df->l2df_data = buf->b_data;
- df->l2df_size = hdr->b_size;
- df->l2df_func = free_func;
- mutex_enter(&l2arc_free_on_write_mtx);
- list_insert_head(l2arc_free_on_write, df);
- mutex_exit(&l2arc_free_on_write_mtx);
+ arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
ARCSTAT_BUMP(arcstat_l2_free_on_write);
} else {
free_func(buf->b_data, hdr->b_size);
}
}
+static void
+arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
+{
+ ASSERT(HDR_HAS_L2HDR(hdr));
+ ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
+
+ /*
+ * The b_tmp_cdata field is linked off of the b_l1hdr, so if
+ * that doesn't exist, the header is in the arc_l2c_only state,
+ * and there isn't anything to free (it's already been freed).
+ */
+ if (!HDR_HAS_L1HDR(hdr))
+ return;
+
+ /*
+ * The header isn't being written to the l2arc device, thus it
+ * shouldn't have a b_tmp_cdata to free.
+ */
+ if (!HDR_L2_WRITING(hdr)) {
+ ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
+ return;
+ }
+
+ /*
+ * The header does not have compression enabled. This can be due
+ * to the buffer not being compressible, or because we're
+ * freeing the buffer before the second phase of
+ * l2arc_write_buffer() has started (which does the compression
+ * step). In either case, b_tmp_cdata does not point to a
+ * separately compressed buffer, so there's nothing to free (it
+ * points to the same buffer as the arc_buf_t's b_data field).
+ */
+ if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
+ hdr->b_l1hdr.b_tmp_cdata = NULL;
+ return;
+ }
+
+ /*
+ * There's nothing to free since the buffer was all zero's and
+ * compressed to a zero length buffer.
+ */
+ if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
+ ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
+ return;
+ }
+
+ ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
+
+ arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
+ hdr->b_size, zio_data_buf_free);
+
+ ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
+ hdr->b_l1hdr.b_tmp_cdata = NULL;
+}
+
/*
* Free up buf->b_data and if 'remove' is set, then pull the
* arc_buf_t off of the the arc_buf_hdr_t's list and free it.
*/
static void
-arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
+arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
{
arc_buf_t **bufp;
arc_cksum_verify(buf);
arc_buf_unwatch(buf);
- if (!recycle) {
- if (type == ARC_BUFC_METADATA) {
- arc_buf_data_free(buf, zio_buf_free);
- arc_space_return(size, ARC_SPACE_META);
- } else {
- ASSERT(type == ARC_BUFC_DATA);
- arc_buf_data_free(buf, zio_data_buf_free);
- arc_space_return(size, ARC_SPACE_DATA);
- }
+ if (type == ARC_BUFC_METADATA) {
+ arc_buf_data_free(buf, zio_buf_free);
+ arc_space_return(size, ARC_SPACE_META);
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ arc_buf_data_free(buf, zio_data_buf_free);
+ arc_space_return(size, ARC_SPACE_DATA);
}
- if (list_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
+
+ /* protected by hash lock, if in the hash table */
+ if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
uint64_t *cnt = &state->arcs_lsize[type];
ASSERT(refcount_is_zero(
list_remove(&l2hdr->b_dev->l2ad_buflist, hdr);
+ /*
+ * We don't want to leak the b_tmp_cdata buffer that was
+ * allocated in l2arc_write_buffers()
+ */
+ arc_buf_l2_cdata_free(hdr);
+
arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
arc_buf_t *buf = hdr->b_l1hdr.b_buf;
if (buf->b_efunc != NULL) {
- mutex_enter(&arc_eviction_mtx);
+ mutex_enter(&arc_user_evicts_lock);
mutex_enter(&buf->b_evict_lock);
ASSERT(buf->b_hdr != NULL);
- arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
- FALSE);
+ arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
hdr->b_l1hdr.b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
mutex_exit(&buf->b_evict_lock);
- mutex_exit(&arc_eviction_mtx);
+ cv_signal(&arc_user_evicts_cv);
+ mutex_exit(&arc_user_evicts_lock);
} else {
- arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
- TRUE);
+ arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
}
}
}
ASSERT3P(hdr->b_hash_next, ==, NULL);
if (HDR_HAS_L1HDR(hdr)) {
- ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
kmem_cache_free(hdr_full_cache, hdr);
} else {
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_l1hdr.b_datacnt > 1) {
- arc_buf_destroy(buf, FALSE, TRUE);
+ arc_buf_destroy(buf, TRUE);
} else {
ASSERT(buf == hdr->b_l1hdr.b_buf);
ASSERT(buf->b_efunc == NULL);
* this buffer unless the write completes before we finish
* decrementing the reference count.
*/
- mutex_enter(&arc_eviction_mtx);
+ mutex_enter(&arc_user_evicts_lock);
(void) remove_reference(hdr, NULL, tag);
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
- mutex_exit(&arc_eviction_mtx);
+ mutex_exit(&arc_user_evicts_lock);
if (destroy_hdr)
arc_hdr_destroy(hdr);
} else {
if (remove_reference(hdr, NULL, tag) > 0)
- arc_buf_destroy(buf, FALSE, TRUE);
+ arc_buf_destroy(buf, TRUE);
else
arc_hdr_destroy(hdr);
}
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_l1hdr.b_datacnt > 1) {
if (no_callback)
- arc_buf_destroy(buf, FALSE, TRUE);
+ arc_buf_destroy(buf, TRUE);
} else if (no_callback) {
ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
ASSERT(buf->b_efunc == NULL);
}
/*
- * Evict buffers from list until we've removed the specified number of
- * bytes. Move the removed buffers to the appropriate evict state.
- * If the recycle flag is set, then attempt to "recycle" a buffer:
- * - look for a buffer to evict that is `bytes' long.
- * - return the data block from this buffer rather than freeing it.
- * This flag is used by callers that are trying to make space for a
- * new buffer in a full arc cache.
+ * Evict the arc_buf_hdr that is provided as a parameter. The resultant
+ * state of the header is dependent on its state prior to entering this
+ * function. The following transitions are possible:
*
- * This function makes a "best effort". It skips over any buffers
- * it can't get a hash_lock on, and so may not catch all candidates.
- * It may also return without evicting as much space as requested.
+ * - arc_mru -> arc_mru_ghost
+ * - arc_mfu -> arc_mfu_ghost
+ * - arc_mru_ghost -> arc_l2c_only
+ * - arc_mru_ghost -> deleted
+ * - arc_mfu_ghost -> arc_l2c_only
+ * - arc_mfu_ghost -> deleted
*/
-static void *
-arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
- arc_buf_contents_t type)
+static int64_t
+arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
{
- arc_state_t *evicted_state;
- uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
- arc_buf_hdr_t *hdr, *hdr_prev = NULL;
- list_t *list = &state->arcs_list[type];
- kmutex_t *hash_lock;
- boolean_t have_lock;
- void *stolen = NULL;
- arc_buf_hdr_t marker = {{{ 0 }}};
- int count = 0;
-
- ASSERT(state == arc_mru || state == arc_mfu);
-
- evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
+ arc_state_t *evicted_state, *state;
+ int64_t bytes_evicted = 0;
-top:
- /*
- * The ghost list lock must be acquired first in order to prevent
- * a 3 party deadlock:
- *
- * - arc_evict_ghost acquires arc_*_ghost->arcs_mtx, followed by
- * l2ad_mtx in arc_hdr_realloc
- * - l2arc_write_buffers acquires l2ad_mtx, followed by arc_*->arcs_mtx
- * - arc_evict acquires arc_*_ghost->arcs_mtx, followed by
- * arc_*_ghost->arcs_mtx and forms a deadlock cycle.
- *
- * This situation is avoided by acquiring the ghost list lock first.
- */
- mutex_enter(&evicted_state->arcs_mtx);
- mutex_enter(&state->arcs_mtx);
-
- for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
- hdr_prev = list_prev(list, hdr);
- /* prefetch buffers have a minimum lifespan */
- if (HDR_IO_IN_PROGRESS(hdr) ||
- ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
- ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
- zfs_arc_min_prefetch_lifespan)) {
- skipped++;
- continue;
- }
- /* "lookahead" for better eviction candidate */
- if (recycle && hdr->b_size != bytes &&
- hdr_prev && hdr_prev->b_size == bytes)
- continue;
+ ASSERT(MUTEX_HELD(hash_lock));
+ ASSERT(HDR_HAS_L1HDR(hdr));
- /* ignore markers */
- if (hdr->b_spa == 0)
- continue;
+ state = hdr->b_l1hdr.b_state;
+ if (GHOST_STATE(state)) {
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT(hdr->b_l1hdr.b_buf == NULL);
/*
- * It may take a long time to evict all the bufs requested.
- * To avoid blocking all arc activity, periodically drop
- * the arcs_mtx and give other threads a chance to run
- * before reacquiring the lock.
- *
- * If we are looking for a buffer to recycle, we are in
- * the hot code path, so don't sleep.
+ * l2arc_write_buffers() relies on a header's L1 portion
+ * (i.e. its b_tmp_cdata field) during its write phase.
+ * Thus, we cannot push a header onto the arc_l2c_only
+ * state (removing its L1 piece) until the header is
+ * done being written to the l2arc.
*/
- if (!recycle && count++ > arc_evict_iterations) {
- list_insert_after(list, hdr, &marker);
- mutex_exit(&state->arcs_mtx);
- mutex_exit(&evicted_state->arcs_mtx);
- kpreempt(KPREEMPT_SYNC);
- mutex_enter(&evicted_state->arcs_mtx);
- mutex_enter(&state->arcs_mtx);
- hdr_prev = list_prev(list, &marker);
- list_remove(list, &marker);
- count = 0;
- continue;
+ if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
+ ARCSTAT_BUMP(arcstat_evict_l2_skip);
+ return (bytes_evicted);
}
- hash_lock = HDR_LOCK(hdr);
- have_lock = MUTEX_HELD(hash_lock);
- if (have_lock || mutex_tryenter(hash_lock)) {
- ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
- ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
- while (hdr->b_l1hdr.b_buf) {
- arc_buf_t *buf = hdr->b_l1hdr.b_buf;
- if (!mutex_tryenter(&buf->b_evict_lock)) {
- missed += 1;
- break;
- }
- if (buf->b_data != NULL) {
- bytes_evicted += hdr->b_size;
- if (recycle &&
- arc_buf_type(hdr) == type &&
- hdr->b_size == bytes &&
- !HDR_L2_WRITING(hdr)) {
- stolen = buf->b_data;
- recycle = FALSE;
- }
- }
- if (buf->b_efunc != NULL) {
- mutex_enter(&arc_eviction_mtx);
- arc_buf_destroy(buf,
- buf->b_data == stolen, FALSE);
- hdr->b_l1hdr.b_buf = buf->b_next;
- buf->b_hdr = &arc_eviction_hdr;
- buf->b_next = arc_eviction_list;
- arc_eviction_list = buf;
- mutex_exit(&arc_eviction_mtx);
- mutex_exit(&buf->b_evict_lock);
- } else {
- mutex_exit(&buf->b_evict_lock);
- arc_buf_destroy(buf,
- buf->b_data == stolen, TRUE);
- }
- }
+ ARCSTAT_BUMP(arcstat_deleted);
+ bytes_evicted += hdr->b_size;
- if (HDR_HAS_L2HDR(hdr)) {
- ARCSTAT_INCR(arcstat_evict_l2_cached,
- hdr->b_size);
- } else {
- if (l2arc_write_eligible(hdr->b_spa, hdr)) {
- ARCSTAT_INCR(arcstat_evict_l2_eligible,
- hdr->b_size);
- } else {
- ARCSTAT_INCR(
- arcstat_evict_l2_ineligible,
- hdr->b_size);
- }
- }
+ DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
- if (hdr->b_l1hdr.b_datacnt == 0) {
- arc_change_state(evicted_state, hdr, hash_lock);
- ASSERT(HDR_IN_HASH_TABLE(hdr));
- hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
- hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
- DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
- }
- if (!have_lock)
- mutex_exit(hash_lock);
- if (bytes >= 0 && bytes_evicted >= bytes)
- break;
+ if (HDR_HAS_L2HDR(hdr)) {
+ /*
+ * This buffer is cached on the 2nd Level ARC;
+ * don't destroy the header.
+ */
+ arc_change_state(arc_l2c_only, hdr, hash_lock);
+ /*
+ * dropping from L1+L2 cached to L2-only,
+ * realloc to remove the L1 header.
+ */
+ hdr = arc_hdr_realloc(hdr, hdr_full_cache,
+ hdr_l2only_cache);
} else {
- missed += 1;
+ arc_change_state(arc_anon, hdr, hash_lock);
+ arc_hdr_destroy(hdr);
}
+ return (bytes_evicted);
}
- mutex_exit(&state->arcs_mtx);
- mutex_exit(&evicted_state->arcs_mtx);
+ ASSERT(state == arc_mru || state == arc_mfu);
+ evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
- if (list == &state->arcs_list[ARC_BUFC_DATA] &&
- (bytes < 0 || bytes_evicted < bytes)) {
- /* Prevent second pass from recycling metadata into data */
- recycle = FALSE;
- type = ARC_BUFC_METADATA;
- list = &state->arcs_list[type];
- goto top;
+ /* prefetch buffers have a minimum lifespan */
+ if (HDR_IO_IN_PROGRESS(hdr) ||
+ ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
+ ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
+ arc_min_prefetch_lifespan)) {
+ ARCSTAT_BUMP(arcstat_evict_skip);
+ return (bytes_evicted);
}
- if (bytes_evicted < bytes)
- dprintf("only evicted %lld bytes from %x\n",
- (longlong_t)bytes_evicted, state->arcs_state);
+ ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
+ ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
+ while (hdr->b_l1hdr.b_buf) {
+ arc_buf_t *buf = hdr->b_l1hdr.b_buf;
+ if (!mutex_tryenter(&buf->b_evict_lock)) {
+ ARCSTAT_BUMP(arcstat_mutex_miss);
+ break;
+ }
+ if (buf->b_data != NULL)
+ bytes_evicted += hdr->b_size;
+ if (buf->b_efunc != NULL) {
+ mutex_enter(&arc_user_evicts_lock);
+ arc_buf_destroy(buf, FALSE);
+ hdr->b_l1hdr.b_buf = buf->b_next;
+ buf->b_hdr = &arc_eviction_hdr;
+ buf->b_next = arc_eviction_list;
+ arc_eviction_list = buf;
+ cv_signal(&arc_user_evicts_cv);
+ mutex_exit(&arc_user_evicts_lock);
+ mutex_exit(&buf->b_evict_lock);
+ } else {
+ mutex_exit(&buf->b_evict_lock);
+ arc_buf_destroy(buf, TRUE);
+ }
+ }
- if (skipped)
- ARCSTAT_INCR(arcstat_evict_skip, skipped);
+ if (HDR_HAS_L2HDR(hdr)) {
+ ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
+ } else {
+ if (l2arc_write_eligible(hdr->b_spa, hdr))
+ ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
+ else
+ ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
+ }
- if (missed)
- ARCSTAT_INCR(arcstat_mutex_miss, missed);
+ if (hdr->b_l1hdr.b_datacnt == 0) {
+ arc_change_state(evicted_state, hdr, hash_lock);
+ ASSERT(HDR_IN_HASH_TABLE(hdr));
+ hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
+ hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
+ DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
+ }
- /*
- * Note: we have just evicted some data into the ghost state,
- * potentially putting the ghost size over the desired size. Rather
- * that evicting from the ghost list in this hot code path, leave
- * this chore to the arc_reclaim_thread().
- */
- return (stolen);
+ return (bytes_evicted);
}
-/*
- * Remove buffers from list until we've removed the specified number of
- * bytes. Destroy the buffers that are removed.
- */
-static void
-arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
+static uint64_t
+arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
+ uint64_t spa, int64_t bytes)
{
- arc_buf_hdr_t *hdr, *hdr_prev;
- arc_buf_hdr_t marker;
- list_t *list = &state->arcs_list[ARC_BUFC_DATA];
+ multilist_sublist_t *mls;
+ uint64_t bytes_evicted = 0;
+ arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
- uint64_t bytes_deleted = 0;
- uint64_t bufs_skipped = 0;
- int count = 0;
+ int evict_count = 0;
- ASSERT(GHOST_STATE(state));
- bzero(&marker, sizeof (marker));
-top:
- mutex_enter(&state->arcs_mtx);
- for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
- hdr_prev = list_prev(list, hdr);
- if (arc_buf_type(hdr) >= ARC_BUFC_NUMTYPES)
- panic("invalid hdr=%p", (void *)hdr);
- if (spa && hdr->b_spa != spa)
- continue;
+ ASSERT3P(marker, !=, NULL);
+ ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
+
+ mls = multilist_sublist_lock(ml, idx);
- /* ignore markers */
+ for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
+ hdr = multilist_sublist_prev(mls, marker)) {
+ if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
+ (evict_count >= zfs_arc_evict_batch_limit))
+ break;
+
+ /*
+ * To keep our iteration location, move the marker
+ * forward. Since we're not holding hdr's hash lock, we
+ * must be very careful and not remove 'hdr' from the
+ * sublist. Otherwise, other consumers might mistake the
+ * 'hdr' as not being on a sublist when they call the
+ * multilist_link_active() function (they all rely on
+ * the hash lock protecting concurrent insertions and
+ * removals). multilist_sublist_move_forward() was
+ * specifically implemented to ensure this is the case
+ * (only 'marker' will be removed and re-inserted).
+ */
+ multilist_sublist_move_forward(mls, marker);
+
+ /*
+ * The only case where the b_spa field should ever be
+ * zero, is the marker headers inserted by
+ * arc_evict_state(). It's possible for multiple threads
+ * to be calling arc_evict_state() concurrently (e.g.
+ * dsl_pool_close() and zio_inject_fault()), so we must
+ * skip any markers we see from these other threads.
+ */
if (hdr->b_spa == 0)
continue;
- hash_lock = HDR_LOCK(hdr);
- /* caller may be trying to modify this buffer, skip it */
- if (MUTEX_HELD(hash_lock))
+ /* we're only interested in evicting buffers of a certain spa */
+ if (spa != 0 && hdr->b_spa != spa) {
+ ARCSTAT_BUMP(arcstat_evict_skip);
continue;
+ }
+
+ hash_lock = HDR_LOCK(hdr);
/*
- * It may take a long time to evict all the bufs requested.
- * To avoid blocking all arc activity, periodically drop
- * the arcs_mtx and give other threads a chance to run
- * before reacquiring the lock.
+ * We aren't calling this function from any code path
+ * that would already be holding a hash lock, so we're
+ * asserting on this assumption to be defensive in case
+ * this ever changes. Without this check, it would be
+ * possible to incorrectly increment arcstat_mutex_miss
+ * below (e.g. if the code changed such that we called
+ * this function with a hash lock held).
*/
- if (count++ > arc_evict_iterations) {
- list_insert_after(list, hdr, &marker);
- mutex_exit(&state->arcs_mtx);
- kpreempt(KPREEMPT_SYNC);
- mutex_enter(&state->arcs_mtx);
- hdr_prev = list_prev(list, &marker);
- list_remove(list, &marker);
- count = 0;
- continue;
- }
+ ASSERT(!MUTEX_HELD(hash_lock));
+
if (mutex_tryenter(hash_lock)) {
- ASSERT(!HDR_IO_IN_PROGRESS(hdr));
- ASSERT(!HDR_HAS_L1HDR(hdr) ||
- hdr->b_l1hdr.b_buf == NULL);
- ARCSTAT_BUMP(arcstat_deleted);
- bytes_deleted += hdr->b_size;
+ uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
+ mutex_exit(hash_lock);
- if (HDR_HAS_L2HDR(hdr)) {
- /*
- * This buffer is cached on the 2nd Level ARC;
- * don't destroy the header.
- */
- arc_change_state(arc_l2c_only, hdr, hash_lock);
- /*
- * dropping from L1+L2 cached to L2-only,
- * realloc to remove the L1 header.
- */
- hdr = arc_hdr_realloc(hdr, hdr_full_cache,
- hdr_l2only_cache);
- mutex_exit(hash_lock);
- } else {
- arc_change_state(arc_anon, hdr, hash_lock);
- mutex_exit(hash_lock);
- arc_hdr_destroy(hdr);
- }
+ bytes_evicted += evicted;
- DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
- if (bytes >= 0 && bytes_deleted >= bytes)
- break;
- } else if (bytes < 0) {
/*
- * Insert a list marker and then wait for the
- * hash lock to become available. Once its
- * available, restart from where we left off.
+ * If evicted is zero, arc_evict_hdr() must have
+ * decided to skip this header, don't increment
+ * evict_count in this case.
*/
- list_insert_after(list, hdr, &marker);
- mutex_exit(&state->arcs_mtx);
- mutex_enter(hash_lock);
- mutex_exit(hash_lock);
- mutex_enter(&state->arcs_mtx);
- hdr_prev = list_prev(list, &marker);
- list_remove(list, &marker);
+ if (evicted != 0)
+ evict_count++;
+
+ /*
+ * If arc_size isn't overflowing, signal any
+ * threads that might happen to be waiting.
+ *
+ * For each header evicted, we wake up a single
+ * thread. If we used cv_broadcast, we could
+ * wake up "too many" threads causing arc_size
+ * to significantly overflow arc_c; since
+ * arc_get_data_buf() doesn't check for overflow
+ * when it's woken up (it doesn't because it's
+ * possible for the ARC to be overflowing while
+ * full of un-evictable buffers, and the
+ * function should proceed in this case).
+ *
+ * If threads are left sleeping, due to not
+ * using cv_broadcast, they will be woken up
+ * just before arc_reclaim_thread() sleeps.
+ */
+ mutex_enter(&arc_reclaim_lock);
+ if (!arc_is_overflowing())
+ cv_signal(&arc_reclaim_waiters_cv);
+ mutex_exit(&arc_reclaim_lock);
} else {
- bufs_skipped += 1;
+ ARCSTAT_BUMP(arcstat_mutex_miss);
}
}
- mutex_exit(&state->arcs_mtx);
- if (list == &state->arcs_list[ARC_BUFC_DATA] &&
- (bytes < 0 || bytes_deleted < bytes)) {
- list = &state->arcs_list[ARC_BUFC_METADATA];
- goto top;
- }
-
- if (bufs_skipped) {
- ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
- ASSERT(bytes >= 0);
- }
+ multilist_sublist_unlock(mls);
- if (bytes_deleted < bytes)
- dprintf("only deleted %lld bytes from %p\n",
- (longlong_t)bytes_deleted, state);
+ return (bytes_evicted);
}
-static void
-arc_adjust(void)
+/*
+ * Evict buffers from the given arc state, until we've removed the
+ * specified number of bytes. Move the removed buffers to the
+ * appropriate evict state.
+ *
+ * This function makes a "best effort". It skips over any buffers
+ * it can't get a hash_lock on, and so, may not catch all candidates.
+ * It may also return without evicting as much space as requested.
+ *
+ * If bytes is specified using the special value ARC_EVICT_ALL, this
+ * will evict all available (i.e. unlocked and evictable) buffers from
+ * the given arc state; which is used by arc_flush().
+ */
+static uint64_t
+arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
+ arc_buf_contents_t type)
{
- int64_t adjustment, delta;
+ uint64_t total_evicted = 0;
+ multilist_t *ml = &state->arcs_list[type];
+ int num_sublists;
+ arc_buf_hdr_t **markers;
+ int i;
+
+ ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
+
+ num_sublists = multilist_get_num_sublists(ml);
/*
- * Adjust MRU size
+ * If we've tried to evict from each sublist, made some
+ * progress, but still have not hit the target number of bytes
+ * to evict, we want to keep trying. The markers allow us to
+ * pick up where we left off for each individual sublist, rather
+ * than starting from the tail each time.
*/
+ markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
+ for (i = 0; i < num_sublists; i++) {
+ multilist_sublist_t *mls;
- adjustment = MIN((int64_t)(arc_size - arc_c),
- (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
+ markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
+
+ /*
+ * A b_spa of 0 is used to indicate that this header is
+ * a marker. This fact is used in arc_adjust_type() and
+ * arc_evict_state_impl().
+ */
+ markers[i]->b_spa = 0;
- if (adjustment > 0 && arc_mru->arcs_size > 0) {
- delta = MIN(arc_mru->arcs_size, adjustment);
- (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
+ mls = multilist_sublist_lock(ml, i);
+ multilist_sublist_insert_tail(mls, markers[i]);
+ multilist_sublist_unlock(mls);
}
/*
- * Adjust MFU size
+ * While we haven't hit our target number of bytes to evict, or
+ * we're evicting all available buffers.
*/
+ while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
+ /*
+ * Start eviction using a randomly selected sublist,
+ * this is to try and evenly balance eviction across all
+ * sublists. Always starting at the same sublist
+ * (e.g. index 0) would cause evictions to favor certain
+ * sublists over others.
+ */
+ int sublist_idx = multilist_get_random_index(ml);
+ uint64_t scan_evicted = 0;
- adjustment = arc_size - arc_c;
+ for (i = 0; i < num_sublists; i++) {
+ uint64_t bytes_remaining;
+ uint64_t bytes_evicted;
- if (adjustment > 0 && arc_mfu->arcs_size > 0) {
- delta = MIN(arc_mfu->arcs_size, adjustment);
- (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
- }
+ if (bytes == ARC_EVICT_ALL)
+ bytes_remaining = ARC_EVICT_ALL;
+ else if (total_evicted < bytes)
+ bytes_remaining = bytes - total_evicted;
+ else
+ break;
- /*
- * Adjust ghost lists
- */
+ bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
+ markers[sublist_idx], spa, bytes_remaining);
+
+ scan_evicted += bytes_evicted;
+ total_evicted += bytes_evicted;
+
+ /* we've reached the end, wrap to the beginning */
+ if (++sublist_idx >= num_sublists)
+ sublist_idx = 0;
+ }
+
+ /*
+ * If we didn't evict anything during this scan, we have
+ * no reason to believe we'll evict more during another
+ * scan, so break the loop.
+ */
+ if (scan_evicted == 0) {
+ /* This isn't possible, let's make that obvious */
+ ASSERT3S(bytes, !=, 0);
- adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
+ /*
+ * When bytes is ARC_EVICT_ALL, the only way to
+ * break the loop is when scan_evicted is zero.
+ * In that case, we actually have evicted enough,
+ * so we don't want to increment the kstat.
+ */
+ if (bytes != ARC_EVICT_ALL) {
+ ASSERT3S(total_evicted, <, bytes);
+ ARCSTAT_BUMP(arcstat_evict_not_enough);
+ }
- if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
- delta = MIN(arc_mru_ghost->arcs_size, adjustment);
- arc_evict_ghost(arc_mru_ghost, 0, delta);
+ break;
+ }
}
- adjustment =
- arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
+ for (i = 0; i < num_sublists; i++) {
+ multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
+ multilist_sublist_remove(mls, markers[i]);
+ multilist_sublist_unlock(mls);
- if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
- delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
- arc_evict_ghost(arc_mfu_ghost, 0, delta);
+ kmem_cache_free(hdr_full_cache, markers[i]);
}
+ kmem_free(markers, sizeof (*markers) * num_sublists);
+
+ return (total_evicted);
+}
+
+/*
+ * Flush all "evictable" data of the given type from the arc state
+ * specified. This will not evict any "active" buffers (i.e. referenced).
+ *
+ * When 'retry' is set to FALSE, the function will make a single pass
+ * over the state and evict any buffers that it can. Since it doesn't
+ * continually retry the eviction, it might end up leaving some buffers
+ * in the ARC due to lock misses.
+ *
+ * When 'retry' is set to TRUE, the function will continually retry the
+ * eviction until *all* evictable buffers have been removed from the
+ * state. As a result, if concurrent insertions into the state are
+ * allowed (e.g. if the ARC isn't shutting down), this function might
+ * wind up in an infinite loop, continually trying to evict buffers.
+ */
+static uint64_t
+arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
+ boolean_t retry)
+{
+ uint64_t evicted = 0;
+
+ while (state->arcs_lsize[type] != 0) {
+ evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
+
+ if (!retry)
+ break;
+ }
+
+ return (evicted);
}
/*
mutex_exit(&arc_prune_mtx);
}
+/*
+ * Evict the specified number of bytes from the state specified,
+ * restricting eviction to the spa and type given. This function
+ * prevents us from trying to evict more from a state's list than
+ * is "evictable", and to skip evicting altogether when passed a
+ * negative value for "bytes". In contrast, arc_evict_state() will
+ * evict everything it can, when passed a negative value for "bytes".
+ */
+static uint64_t
+arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
+ arc_buf_contents_t type)
+{
+ int64_t delta;
+
+ if (bytes > 0 && state->arcs_lsize[type] > 0) {
+ delta = MIN(state->arcs_lsize[type], bytes);
+ return (arc_evict_state(state, spa, delta, type));
+ }
+
+ return (0);
+}
+
+/*
+ * The goal of this function is to evict enough meta data buffers from the
+ * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
+ * more complicated than it appears because it is common for data buffers
+ * to have holds on meta data buffers. In addition, dnode meta data buffers
+ * will be held by the dnodes in the block preventing them from being freed.
+ * This means we can't simply traverse the ARC and expect to always find
+ * enough unheld meta data buffer to release.
+ *
+ * Therefore, this function has been updated to make alternating passes
+ * over the ARC releasing data buffers and then newly unheld meta data
+ * buffers. This ensures forward progress is maintained and arc_meta_used
+ * will decrease. Normally this is sufficient, but if required the ARC
+ * will call the registered prune callbacks causing dentry and inodes to
+ * be dropped from the VFS cache. This will make dnode meta data buffers
+ * available for reclaim.
+ */
+static uint64_t
+arc_adjust_meta(void)
+{
+ int64_t adjustmnt, delta, prune = 0;
+ uint64_t total_evicted = 0;
+ arc_buf_contents_t type = ARC_BUFC_DATA;
+ unsigned long restarts = zfs_arc_meta_adjust_restarts;
+
+restart:
+ /*
+ * This slightly differs than the way we evict from the mru in
+ * arc_adjust because we don't have a "target" value (i.e. no
+ * "meta" arc_p). As a result, I think we can completely
+ * cannibalize the metadata in the MRU before we evict the
+ * metadata from the MFU. I think we probably need to implement a
+ * "metadata arc_p" value to do this properly.
+ */
+ adjustmnt = arc_meta_used - arc_meta_limit;
+
+ if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
+ delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
+ total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
+ adjustmnt -= delta;
+ }
+
+ /*
+ * We can't afford to recalculate adjustmnt here. If we do,
+ * new metadata buffers can sneak into the MRU or ANON lists,
+ * thus penalize the MFU metadata. Although the fudge factor is
+ * small, it has been empirically shown to be significant for
+ * certain workloads (e.g. creating many empty directories). As
+ * such, we use the original calculation for adjustmnt, and
+ * simply decrement the amount of data evicted from the MRU.
+ */
+
+ if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
+ delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
+ total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
+ }
+
+ adjustmnt = arc_meta_used - arc_meta_limit;
+
+ if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
+ delta = MIN(adjustmnt,
+ arc_mru_ghost->arcs_lsize[type]);
+ total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
+ adjustmnt -= delta;
+ }
+
+ if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
+ delta = MIN(adjustmnt,
+ arc_mfu_ghost->arcs_lsize[type]);
+ total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
+ }
+
+ /*
+ * If after attempting to make the requested adjustment to the ARC
+ * the meta limit is still being exceeded then request that the
+ * higher layers drop some cached objects which have holds on ARC
+ * meta buffers. Requests to the upper layers will be made with
+ * increasingly large scan sizes until the ARC is below the limit.
+ */
+ if (arc_meta_used > arc_meta_limit) {
+ if (type == ARC_BUFC_DATA) {
+ type = ARC_BUFC_METADATA;
+ } else {
+ type = ARC_BUFC_DATA;
+
+ if (zfs_arc_meta_prune) {
+ prune += zfs_arc_meta_prune;
+ arc_do_user_prune(prune);
+ }
+ }
+
+ if (restarts > 0) {
+ restarts--;
+ goto restart;
+ }
+ }
+ return (total_evicted);
+}
+
+/*
+ * Return the type of the oldest buffer in the given arc state
+ *
+ * This function will select a random sublist of type ARC_BUFC_DATA and
+ * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
+ * is compared, and the type which contains the "older" buffer will be
+ * returned.
+ */
+static arc_buf_contents_t
+arc_adjust_type(arc_state_t *state)
+{
+ multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
+ multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
+ int data_idx = multilist_get_random_index(data_ml);
+ int meta_idx = multilist_get_random_index(meta_ml);
+ multilist_sublist_t *data_mls;
+ multilist_sublist_t *meta_mls;
+ arc_buf_contents_t type;
+ arc_buf_hdr_t *data_hdr;
+ arc_buf_hdr_t *meta_hdr;
+
+ /*
+ * We keep the sublist lock until we're finished, to prevent
+ * the headers from being destroyed via arc_evict_state().
+ */
+ data_mls = multilist_sublist_lock(data_ml, data_idx);
+ meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
+
+ /*
+ * These two loops are to ensure we skip any markers that
+ * might be at the tail of the lists due to arc_evict_state().
+ */
+
+ for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
+ data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
+ if (data_hdr->b_spa != 0)
+ break;
+ }
+
+ for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
+ meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
+ if (meta_hdr->b_spa != 0)
+ break;
+ }
+
+ if (data_hdr == NULL && meta_hdr == NULL) {
+ type = ARC_BUFC_DATA;
+ } else if (data_hdr == NULL) {
+ ASSERT3P(meta_hdr, !=, NULL);
+ type = ARC_BUFC_METADATA;
+ } else if (meta_hdr == NULL) {
+ ASSERT3P(data_hdr, !=, NULL);
+ type = ARC_BUFC_DATA;
+ } else {
+ ASSERT3P(data_hdr, !=, NULL);
+ ASSERT3P(meta_hdr, !=, NULL);
+
+ /* The headers can't be on the sublist without an L1 header */
+ ASSERT(HDR_HAS_L1HDR(data_hdr));
+ ASSERT(HDR_HAS_L1HDR(meta_hdr));
+
+ if (data_hdr->b_l1hdr.b_arc_access <
+ meta_hdr->b_l1hdr.b_arc_access) {
+ type = ARC_BUFC_DATA;
+ } else {
+ type = ARC_BUFC_METADATA;
+ }
+ }
+
+ multilist_sublist_unlock(meta_mls);
+ multilist_sublist_unlock(data_mls);
+
+ return (type);
+}
+
+/*
+ * Evict buffers from the cache, such that arc_size is capped by arc_c.
+ */
+static uint64_t
+arc_adjust(void)
+{
+ uint64_t total_evicted = 0;
+ uint64_t bytes;
+ int64_t target;
+
+ /*
+ * If we're over arc_meta_limit, we want to correct that before
+ * potentially evicting data buffers below.
+ */
+ total_evicted += arc_adjust_meta();
+
+ /*
+ * Adjust MRU size
+ *
+ * If we're over the target cache size, we want to evict enough
+ * from the list to get back to our target size. We don't want
+ * to evict too much from the MRU, such that it drops below
+ * arc_p. So, if we're over our target cache size more than
+ * the MRU is over arc_p, we'll evict enough to get back to
+ * arc_p here, and then evict more from the MFU below.
+ */
+ target = MIN((int64_t)(arc_size - arc_c),
+ (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
+ arc_p));
+
+ /*
+ * If we're below arc_meta_min, always prefer to evict data.
+ * Otherwise, try to satisfy the requested number of bytes to
+ * evict from the type which contains older buffers; in an
+ * effort to keep newer buffers in the cache regardless of their
+ * type. If we cannot satisfy the number of bytes from this
+ * type, spill over into the next type.
+ */
+ if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
+ arc_meta_used > arc_meta_min) {
+ bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * metadata, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
+ } else {
+ bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * data, we try to get the rest from metadata.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
+ }
+
+ /*
+ * Adjust MFU size
+ *
+ * Now that we've tried to evict enough from the MRU to get its
+ * size back to arc_p, if we're still above the target cache
+ * size, we evict the rest from the MFU.
+ */
+ target = arc_size - arc_c;
+
+ if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
+ arc_meta_used > arc_meta_min) {
+ bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * metadata, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
+ } else {
+ bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * data, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
+ }
+
+ /*
+ * Adjust ghost lists
+ *
+ * In addition to the above, the ARC also defines target values
+ * for the ghost lists. The sum of the mru list and mru ghost
+ * list should never exceed the target size of the cache, and
+ * the sum of the mru list, mfu list, mru ghost list, and mfu
+ * ghost list should never exceed twice the target size of the
+ * cache. The following logic enforces these limits on the ghost
+ * caches, and evicts from them as needed.
+ */
+ target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
+
+ bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
+
+ /*
+ * We assume the sum of the mru list and mfu list is less than
+ * or equal to arc_c (we enforced this above), which means we
+ * can use the simpler of the two equations below:
+ *
+ * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
+ * mru ghost + mfu ghost <= arc_c
+ */
+ target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
+
+ bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
+
+ return (total_evicted);
+}
+
static void
arc_do_user_evicts(void)
{
- mutex_enter(&arc_eviction_mtx);
+ mutex_enter(&arc_user_evicts_lock);
while (arc_eviction_list != NULL) {
arc_buf_t *buf = arc_eviction_list;
arc_eviction_list = buf->b_next;
mutex_enter(&buf->b_evict_lock);
buf->b_hdr = NULL;
mutex_exit(&buf->b_evict_lock);
- mutex_exit(&arc_eviction_mtx);
+ mutex_exit(&arc_user_evicts_lock);
if (buf->b_efunc != NULL)
VERIFY0(buf->b_efunc(buf->b_private));
buf->b_efunc = NULL;
buf->b_private = NULL;
kmem_cache_free(buf_cache, buf);
- mutex_enter(&arc_eviction_mtx);
+ mutex_enter(&arc_user_evicts_lock);
}
- mutex_exit(&arc_eviction_mtx);
+ mutex_exit(&arc_user_evicts_lock);
}
-/*
- * The goal of this function is to evict enough meta data buffers from the
- * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
- * more complicated than it appears because it is common for data buffers
- * to have holds on meta data buffers. In addition, dnode meta data buffers
- * will be held by the dnodes in the block preventing them from being freed.
- * This means we can't simply traverse the ARC and expect to always find
- * enough unheld meta data buffer to release.
- *
- * Therefore, this function has been updated to make alternating passes
- * over the ARC releasing data buffers and then newly unheld meta data
- * buffers. This ensures forward progress is maintained and arc_meta_used
- * will decrease. Normally this is sufficient, but if required the ARC
- * will call the registered prune callbacks causing dentry and inodes to
- * be dropped from the VFS cache. This will make dnode meta data buffers
- * available for reclaim.
- */
-static void
-arc_adjust_meta(void)
+void
+arc_flush(spa_t *spa, boolean_t retry)
{
- int64_t adjustmnt, delta, prune = 0;
- arc_buf_contents_t type = ARC_BUFC_DATA;
- unsigned long restarts = zfs_arc_meta_adjust_restarts;
-
-restart:
- /*
- * This slightly differs than the way we evict from the mru in
- * arc_adjust because we don't have a "target" value (i.e. no
- * "meta" arc_p). As a result, I think we can completely
- * cannibalize the metadata in the MRU before we evict the
- * metadata from the MFU. I think we probably need to implement a
- * "metadata arc_p" value to do this properly.
- */
- adjustmnt = arc_meta_used - arc_meta_limit;
-
- if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
- delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
- arc_evict(arc_mru, 0, delta, FALSE, type);
- adjustmnt -= delta;
- }
-
- /*
- * We can't afford to recalculate adjustmnt here. If we do,
- * new metadata buffers can sneak into the MRU or ANON lists,
- * thus penalize the MFU metadata. Although the fudge factor is
- * small, it has been empirically shown to be significant for
- * certain workloads (e.g. creating many empty directories). As
- * such, we use the original calculation for adjustmnt, and
- * simply decrement the amount of data evicted from the MRU.
- */
-
- if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
- delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
- arc_evict(arc_mfu, 0, delta, FALSE, type);
- }
-
- adjustmnt = arc_meta_used - arc_meta_limit;
-
- if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
- delta = MIN(adjustmnt,
- arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA]);
- arc_evict_ghost(arc_mru_ghost, 0, delta);
- }
-
- if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
- delta = MIN(adjustmnt,
- arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA]);
- arc_evict_ghost(arc_mfu_ghost, 0, delta);
- }
+ uint64_t guid = 0;
/*
- * If after attempting to make the requested adjustment to the ARC
- * the meta limit is still being exceeded then request that the
- * higher layers drop some cached objects which have holds on ARC
- * meta buffers. Requests to the upper layers will be made with
- * increasingly large scan sizes until the ARC is below the limit.
+ * If retry is TRUE, a spa must not be specified since we have
+ * no good way to determine if all of a spa's buffers have been
+ * evicted from an arc state.
*/
- if (arc_meta_used > arc_meta_limit) {
- if (type == ARC_BUFC_DATA) {
- type = ARC_BUFC_METADATA;
- } else {
- type = ARC_BUFC_DATA;
-
- if (zfs_arc_meta_prune) {
- prune += zfs_arc_meta_prune;
- arc_do_user_prune(prune);
- }
- }
-
- if (restarts > 0) {
- restarts--;
- goto restart;
- }
- }
-}
-
-/*
- * Flush all *evictable* data from the cache for the given spa.
- * NOTE: this will not touch "active" (i.e. referenced) data.
- */
-void
-arc_flush(spa_t *spa)
-{
- uint64_t guid = 0;
+ ASSERT(!retry || spa == 0);
if (spa != NULL)
guid = spa_load_guid(spa);
- while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
- (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
- if (spa != NULL)
- break;
- }
- while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
- (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
- if (spa != NULL)
- break;
- }
- while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
- (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
- if (spa != NULL)
- break;
- }
- while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
- (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
- if (spa != NULL)
- break;
- }
+ (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
+
+ (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
+
+ (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
- arc_evict_ghost(arc_mru_ghost, guid, -1);
- arc_evict_ghost(arc_mfu_ghost, guid, -1);
+ (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
- mutex_enter(&arc_reclaim_thr_lock);
arc_do_user_evicts();
- mutex_exit(&arc_reclaim_thr_lock);
ASSERT(spa || arc_eviction_list == NULL);
}
}
if (arc_size > arc_c)
- arc_adjust();
+ (void) arc_adjust();
}
static void
}
}
+ kmem_cache_reap_now(buf_cache);
kmem_cache_reap_now(hdr_full_cache);
kmem_cache_reap_now(hdr_l2only_cache);
}
* reclamation has been entirely delegated to the arc_shrinker_func()
* which is registered with the VM. To reflect this change in behavior
* the arc_reclaim thread has been renamed to arc_adapt.
+ *
+ * The following comment from arc_reclaim_thread() in illumos is still
+ * applicable:
+ *
+ * Threads can block in arc_get_data_buf() waiting for this thread to evict
+ * enough data and signal them to proceed. When this happens, the threads in
+ * arc_get_data_buf() are sleeping while holding the hash lock for their
+ * particular arc header. Thus, we must be careful to never sleep on a
+ * hash lock in this thread. This is to prevent the following deadlock:
+ *
+ * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
+ * waiting for the reclaim thread to signal it.
+ *
+ * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
+ * fails, and goes to sleep forever.
+ *
+ * This possible deadlock is avoided by always acquiring a hash lock
+ * using mutex_tryenter() from arc_reclaim_thread().
*/
static void
arc_adapt_thread(void)
{
callb_cpr_t cpr;
fstrans_cookie_t cookie;
+ uint64_t arc_evicted;
- CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
+ CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
cookie = spl_fstrans_mark();
- mutex_enter(&arc_reclaim_thr_lock);
- while (arc_thread_exit == 0) {
+ mutex_enter(&arc_reclaim_lock);
+ while (arc_reclaim_thread_exit == 0) {
#ifndef _KERNEL
arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
+ mutex_exit(&arc_reclaim_lock);
if (spa_get_random(100) == 0) {
if (arc_no_grow) {
arc_kmem_reap_now(last_reclaim, 0);
arc_warm = B_TRUE;
}
+#else /* _KERNEL */
+ mutex_exit(&arc_reclaim_lock);
#endif /* !_KERNEL */
/* No recent memory pressure allow the ARC to grow. */
ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
arc_no_grow = FALSE;
- arc_adjust_meta();
+ arc_evicted = arc_adjust();
- arc_adjust();
+ /*
+ * We're either no longer overflowing, or we
+ * can't evict anything more, so we should wake
+ * up any threads before we go to sleep.
+ */
+ if (arc_size <= arc_c || arc_evicted == 0)
+ cv_broadcast(&arc_reclaim_waiters_cv);
- if (arc_eviction_list != NULL)
- arc_do_user_evicts();
+ mutex_enter(&arc_reclaim_lock);
/* block until needed, or one second, whichever is shorter */
CALLB_CPR_SAFE_BEGIN(&cpr);
- (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
- &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
- CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
+ (void) cv_timedwait_interruptible(&arc_reclaim_thread_cv,
+ &arc_reclaim_lock, (ddi_get_lbolt() + hz));
+ CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
/* Allow the module options to be changed */
zfs_arc_meta_limit <= arc_c_max &&
zfs_arc_meta_limit != arc_meta_limit)
arc_meta_limit = zfs_arc_meta_limit;
+ }
+ arc_reclaim_thread_exit = 0;
+ cv_broadcast(&arc_reclaim_thread_cv);
+ CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
+ spl_fstrans_unmark(cookie);
+ thread_exit();
+}
+
+static void
+arc_user_evicts_thread(void)
+{
+ callb_cpr_t cpr;
+ fstrans_cookie_t cookie;
+ CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
+ cookie = spl_fstrans_mark();
+ mutex_enter(&arc_user_evicts_lock);
+ while (!arc_user_evicts_thread_exit) {
+ mutex_exit(&arc_user_evicts_lock);
+
+ arc_do_user_evicts();
+
+ /*
+ * This is necessary in order for the mdb ::arc dcmd to
+ * show up to date information. Since the ::arc command
+ * does not call the kstat's update function, without
+ * this call, the command may show stale stats for the
+ * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
+ * with this change, the data might be up to 1 second
+ * out of date; but that should suffice. The arc_state_t
+ * structures can be queried directly if more accurate
+ * information is needed.
+ */
+ if (arc_ksp != NULL)
+ arc_ksp->ks_update(arc_ksp, KSTAT_READ);
+
+ mutex_enter(&arc_user_evicts_lock);
+
+ /*
+ * Block until signaled, or after one second (we need to
+ * call the arc's kstat update function regularly).
+ */
+ CALLB_CPR_SAFE_BEGIN(&cpr);
+ (void) cv_timedwait_interruptible(&arc_user_evicts_cv,
+ &arc_user_evicts_lock, ddi_get_lbolt() + hz);
+ CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
}
- arc_thread_exit = 0;
- cv_broadcast(&arc_reclaim_thr_cv);
- CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
+ arc_user_evicts_thread_exit = FALSE;
+ cv_broadcast(&arc_user_evicts_cv);
+ CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
spl_fstrans_unmark(cookie);
thread_exit();
}
return (SHRINK_STOP);
/* Reclaim in progress */
- if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
+ if (mutex_tryenter(&arc_reclaim_lock) == 0)
return (SHRINK_STOP);
+ mutex_exit(&arc_reclaim_lock);
+
/*
* Evict the requested number of pages by shrinking arc_c the
* requested amount. If there is nothing left to evict just
pages = SHRINK_STOP;
}
+ /*
+ * We've reaped what we can, wake up threads.
+ */
+ cv_broadcast(&arc_reclaim_waiters_cv);
+
/*
* When direct reclaim is observed it usually indicates a rapid
* increase in memory pressure. This occurs because the kswapd
ARCSTAT_BUMP(arcstat_memory_direct_count);
}
- mutex_exit(&arc_reclaim_thr_lock);
-
return (pages);
}
SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
}
/*
- * Check if the cache has reached its limits and eviction is required
- * prior to insert.
+ * Check if arc_size has grown past our upper threshold, determined by
+ * zfs_arc_overflow_shift.
*/
-static int
-arc_evict_needed(arc_buf_contents_t type)
+static boolean_t
+arc_is_overflowing(void)
{
- if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
- return (1);
-
- if (arc_no_grow)
- return (1);
+ /* Always allow at least one block of overflow */
+ uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
+ arc_c >> zfs_arc_overflow_shift);
- return (arc_size > arc_c);
+ return (arc_size >= arc_c + overflow);
}
/*
- * The buffer, supplied as the first argument, needs a data block.
- * So, if we are at cache max, determine which cache should be victimized.
- * We have the following cases:
- *
- * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
- * In this situation if we're out of space, but the resident size of the MFU is
- * under the limit, victimize the MFU cache to satisfy this insertion request.
- *
- * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
- * Here, we've used up all of the available space for the MRU, so we need to
- * evict from our own cache instead. Evict from the set of resident MRU
- * entries.
- *
- * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
- * c minus p represents the MFU space in the cache, since p is the size of the
- * cache that is dedicated to the MRU. In this situation there's still space on
- * the MFU side, so the MRU side needs to be victimized.
- *
- * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
- * MFU's resident set is consuming more space than it has been allotted. In
- * this situation, we must victimize our own cache, the MFU, for this insertion.
+ * The buffer, supplied as the first argument, needs a data block. If we
+ * are hitting the hard limit for the cache size, we must sleep, waiting
+ * for the eviction thread to catch up. If we're past the target size
+ * but below the hard limit, we'll only signal the reclaim thread and
+ * continue on.
*/
static void
arc_get_data_buf(arc_buf_t *buf)
arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
uint64_t size = buf->b_hdr->b_size;
arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
- arc_buf_contents_t evict = ARC_BUFC_DATA;
- boolean_t recycle = TRUE;
arc_adapt(size, state);
/*
- * We have not yet reached cache maximum size,
- * just allocate a new buffer.
+ * If arc_size is currently overflowing, and has grown past our
+ * upper limit, we must be adding data faster than the evict
+ * thread can evict. Thus, to ensure we don't compound the
+ * problem by adding more data and forcing arc_size to grow even
+ * further past it's target size, we halt and wait for the
+ * eviction thread to catch up.
+ *
+ * It's also possible that the reclaim thread is unable to evict
+ * enough buffers to get arc_size below the overflow limit (e.g.
+ * due to buffers being un-evictable, or hash lock collisions).
+ * In this case, we want to proceed regardless if we're
+ * overflowing; thus we don't use a while loop here.
*/
- if (!arc_evict_needed(type)) {
- if (type == ARC_BUFC_METADATA) {
- buf->b_data = zio_buf_alloc(size);
- arc_space_consume(size, ARC_SPACE_META);
- } else {
- ASSERT(type == ARC_BUFC_DATA);
- buf->b_data = zio_data_buf_alloc(size);
- arc_space_consume(size, ARC_SPACE_DATA);
+ if (arc_is_overflowing()) {
+ mutex_enter(&arc_reclaim_lock);
+
+ /*
+ * Now that we've acquired the lock, we may no longer be
+ * over the overflow limit, lets check.
+ *
+ * We're ignoring the case of spurious wake ups. If that
+ * were to happen, it'd let this thread consume an ARC
+ * buffer before it should have (i.e. before we're under
+ * the overflow limit and were signalled by the reclaim
+ * thread). As long as that is a rare occurrence, it
+ * shouldn't cause any harm.
+ */
+ if (arc_is_overflowing()) {
+ cv_signal(&arc_reclaim_thread_cv);
+ cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
}
- goto out;
- }
- /*
- * If we are prefetching from the mfu ghost list, this buffer
- * will end up on the mru list; so steal space from there.
- */
- if (state == arc_mfu_ghost)
- state = HDR_PREFETCH(buf->b_hdr) ? arc_mru : arc_mfu;
- else if (state == arc_mru_ghost)
- state = arc_mru;
-
- if (state == arc_mru || state == arc_anon) {
- uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
- state = (arc_mfu->arcs_lsize[type] >= size &&
- arc_p > mru_used) ? arc_mfu : arc_mru;
- } else {
- /* MFU cases */
- uint64_t mfu_space = arc_c - arc_p;
- state = (arc_mru->arcs_lsize[type] >= size &&
- mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
+ mutex_exit(&arc_reclaim_lock);
}
- /*
- * Evict data buffers prior to metadata buffers, unless we're
- * over the metadata limit and adding a metadata buffer.
- */
if (type == ARC_BUFC_METADATA) {
- if (arc_meta_used >= arc_meta_limit)
- evict = ARC_BUFC_METADATA;
- else
- /*
- * In this case, we're evicting data while
- * adding metadata. Thus, to prevent recycling a
- * data buffer into a metadata buffer, recycling
- * is disabled in the following arc_evict call.
- */
- recycle = FALSE;
+ buf->b_data = zio_buf_alloc(size);
+ arc_space_consume(size, ARC_SPACE_META);
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ buf->b_data = zio_data_buf_alloc(size);
+ arc_space_consume(size, ARC_SPACE_DATA);
}
- if ((buf->b_data = arc_evict(state, 0, size, recycle, evict)) == NULL) {
- if (type == ARC_BUFC_METADATA) {
- buf->b_data = zio_buf_alloc(size);
- arc_space_consume(size, ARC_SPACE_META);
-
- /*
- * If we are unable to recycle an existing meta buffer
- * signal the reclaim thread. It will notify users
- * via the prune callback to drop references. The
- * prune callback in run in the context of the reclaim
- * thread to avoid deadlocking on the hash_lock.
- * Of course, only do this when recycle is true.
- */
- if (recycle)
- cv_signal(&arc_reclaim_thr_cv);
- } else {
- ASSERT(type == ARC_BUFC_DATA);
- buf->b_data = zio_data_buf_alloc(size);
- arc_space_consume(size, ARC_SPACE_DATA);
- }
-
- /* Only bump this if we tried to recycle and failed */
- if (recycle)
- ARCSTAT_BUMP(arcstat_recycle_miss);
- }
- ASSERT(buf->b_data != NULL);
-out:
/*
* Update the state size. Note that ghost states have a
* "ghost size" and so don't need to be updated.
arc_buf_hdr_t *hdr = buf->b_hdr;
atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
- if (list_link_active(&hdr->b_l1hdr.b_arc_node)) {
+
+ /*
+ * If this is reached via arc_read, the link is
+ * protected by the hash lock. If reached via
+ * arc_buf_alloc, the header should not be accessed by
+ * any other thread. And, if reached via arc_read_done,
+ * the hash lock will protect it if it's found in the
+ * hash table; otherwise no other thread should be
+ * trying to [add|remove]_reference it.
+ */
+ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
size);
* If we are growing the cache, and we are adding anonymous
* data, and we have outgrown arc_p, update arc_p
*/
- if (!zfs_arc_p_aggressive_disable &&
- arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
+ if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
arc_p = MIN(arc_c, arc_p + size);
}
*/
if (HDR_PREFETCH(hdr)) {
if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
- ASSERT(list_link_active(
+ /* link protected by hash lock */
+ ASSERT(multilist_link_active(
&hdr->b_l1hdr.b_arc_node));
} else {
hdr->b_flags &= ~ARC_FLAG_PREFETCH;
*/
if ((HDR_PREFETCH(hdr)) != 0) {
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
- ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
+ /* link protected by hash_lock */
+ ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
}
atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
ARCSTAT_BUMP(arcstat_mfu_hits);
ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
- ASSERT(hdr->b_l1hdr.b_buf == NULL);
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_FLAG_PREFETCH)
if (hdr->b_l1hdr.b_datacnt > 1) {
mutex_exit(&buf->b_evict_lock);
- arc_buf_destroy(buf, FALSE, TRUE);
+ arc_buf_destroy(buf, TRUE);
} else {
ASSERT(buf == hdr->b_l1hdr.b_buf);
hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
arc_buf_hdr_t *hdr = buf->b_hdr;
/*
- * It would be nice to assert that if it's DMU metadata (level >
+ * It would be nice to assert that if its DMU metadata (level >
* 0 || it's the dnode file), then it must be syncing context.
* But we don't know that information at this level.
*/
mutex_enter(&buf->b_evict_lock);
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
/*
* We don't grab the hash lock prior to this check, because if
* the buffer's header is in the arc_anon state, it won't be
mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
list_remove(&hdr->b_l2hdr.b_dev->l2ad_buflist, hdr);
+
+ /*
+ * We don't want to leak the b_tmp_cdata buffer that was
+ * allocated in l2arc_write_buffers()
+ */
+ arc_buf_l2_cdata_free(hdr);
+
mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
nhdr->b_l1hdr.b_datacnt = 1;
nhdr->b_l1hdr.b_state = arc_anon;
nhdr->b_l1hdr.b_arc_access = 0;
+ nhdr->b_l1hdr.b_tmp_cdata = NULL;
nhdr->b_freeze_cksum = NULL;
(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
} else {
mutex_exit(&buf->b_evict_lock);
ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
- /* protected by hash lock */
- ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
+ /* protected by hash lock, or hdr is on arc_anon */
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
hdr->b_l1hdr.b_mru_hits = 0;
hdr->b_l1hdr.b_mru_ghost_hits = 0;
return (0);
}
+/*
+ * This function *must* return indices evenly distributed between all
+ * sublists of the multilist. This is needed due to how the ARC eviction
+ * code is laid out; arc_evict_state() assumes ARC buffers are evenly
+ * distributed between all sublists and uses this assumption when
+ * deciding which sublist to evict from and how much to evict from it.
+ */
+unsigned int
+arc_state_multilist_index_func(multilist_t *ml, void *obj)
+{
+ arc_buf_hdr_t *hdr = obj;
+
+ /*
+ * We rely on b_dva to generate evenly distributed index
+ * numbers using buf_hash below. So, as an added precaution,
+ * let's make sure we never add empty buffers to the arc lists.
+ */
+ ASSERT(!BUF_EMPTY(hdr));
+
+ /*
+ * The assumption here, is the hash value for a given
+ * arc_buf_hdr_t will remain constant throughout its lifetime
+ * (i.e. its b_spa, b_dva, and b_birth fields don't change).
+ * Thus, we don't need to store the header's sublist index
+ * on insertion, as this index can be recalculated on removal.
+ *
+ * Also, the low order bits of the hash value are thought to be
+ * distributed evenly. Otherwise, in the case that the multilist
+ * has a power of two number of sublists, each sublists' usage
+ * would not be evenly distributed.
+ */
+ return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
+ multilist_get_num_sublists(ml));
+}
+
void
arc_init(void)
{
- mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
- cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
+ mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
+ cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
+
+ mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
/* Convert seconds to clock ticks */
zfs_arc_min_prefetch_lifespan = 1 * hz;
if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
arc_meta_limit = zfs_arc_meta_limit;
+ if (zfs_arc_num_sublists_per_state < 1)
+ zfs_arc_num_sublists_per_state = num_online_cpus();
+
/* if kmem_flags are set, lets try to use less memory */
if (kmem_debugging())
arc_c = arc_c / 2;
arc_l2c_only = &ARC_l2c_only;
arc_size = 0;
- mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
-
- list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
+ multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
- list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
+ multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
- offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
arc_anon->arcs_state = ARC_STATE_ANON;
arc_mru->arcs_state = ARC_STATE_MRU;
buf_init();
- arc_thread_exit = 0;
+ arc_reclaim_thread_exit = FALSE;
+ arc_user_evicts_thread_exit = FALSE;
list_create(&arc_prune_list, sizeof (arc_prune_t),
offsetof(arc_prune_t, p_node));
arc_eviction_list = NULL;
mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
(void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
TS_RUN, minclsyspri);
+ (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
+ TS_RUN, minclsyspri);
+
arc_dead = FALSE;
arc_warm = B_FALSE;
{
arc_prune_t *p;
- mutex_enter(&arc_reclaim_thr_lock);
#ifdef _KERNEL
spl_unregister_shrinker(&arc_shrinker);
#endif /* _KERNEL */
- arc_thread_exit = 1;
- while (arc_thread_exit != 0)
- cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
- mutex_exit(&arc_reclaim_thr_lock);
+ mutex_enter(&arc_reclaim_lock);
+ arc_reclaim_thread_exit = TRUE;
+ /*
+ * The reclaim thread will set arc_reclaim_thread_exit back to
+ * FALSE when it is finished exiting; we're waiting for that.
+ */
+ while (arc_reclaim_thread_exit) {
+ cv_signal(&arc_reclaim_thread_cv);
+ cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
+ }
+ mutex_exit(&arc_reclaim_lock);
+
+ mutex_enter(&arc_user_evicts_lock);
+ arc_user_evicts_thread_exit = TRUE;
+ /*
+ * The user evicts thread will set arc_user_evicts_thread_exit
+ * to FALSE when it is finished exiting; we're waiting for that.
+ */
+ while (arc_user_evicts_thread_exit) {
+ cv_signal(&arc_user_evicts_cv);
+ cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
+ }
+ mutex_exit(&arc_user_evicts_lock);
- arc_flush(NULL);
+ /* Use TRUE to ensure *all* buffers are evicted */
+ arc_flush(NULL, TRUE);
arc_dead = TRUE;
list_destroy(&arc_prune_list);
mutex_destroy(&arc_prune_mtx);
- mutex_destroy(&arc_eviction_mtx);
- mutex_destroy(&arc_reclaim_thr_lock);
- cv_destroy(&arc_reclaim_thr_cv);
-
- list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
- list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
- list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
- list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
- list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
- list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
- list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
- list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
-
- mutex_destroy(&arc_anon->arcs_mtx);
- mutex_destroy(&arc_mru->arcs_mtx);
- mutex_destroy(&arc_mru_ghost->arcs_mtx);
- mutex_destroy(&arc_mfu->arcs_mtx);
- mutex_destroy(&arc_mfu_ghost->arcs_mtx);
- mutex_destroy(&arc_l2c_only->arcs_mtx);
+ mutex_destroy(&arc_reclaim_lock);
+ cv_destroy(&arc_reclaim_thread_cv);
+ cv_destroy(&arc_reclaim_waiters_cv);
+
+ mutex_destroy(&arc_user_evicts_lock);
+ cv_destroy(&arc_user_evicts_cv);
+
+ multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
buf_fini();
if (zio->io_error != 0)
ARCSTAT_BUMP(arcstat_l2_writes_error);
- mutex_enter(&dev->l2ad_mtx);
-
/*
* All writes completed, or an error was hit.
*/
+top:
+ mutex_enter(&dev->l2ad_mtx);
for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
hdr_prev = list_prev(buflist, hdr);
hash_lock = HDR_LOCK(hdr);
+
+ /*
+ * We cannot use mutex_enter or else we can deadlock
+ * with l2arc_write_buffers (due to swapping the order
+ * the hash lock and l2ad_mtx are taken).
+ */
if (!mutex_tryenter(hash_lock)) {
/*
- * This buffer misses out. It may be in a stage
- * of eviction. Its ARC_FLAG_L2_WRITING flag will be
- * left set, denying reads to this buffer.
+ * Missed the hash lock. We must retry so we
+ * don't leave the ARC_FLAG_L2_WRITING bit set.
*/
- ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
- continue;
+ ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
+
+ /*
+ * We don't want to rescan the headers we've
+ * already marked as having been written out, so
+ * we reinsert the head node so we can pick up
+ * where we left off.
+ */
+ list_remove(buflist, head);
+ list_insert_after(buflist, hdr, head);
+
+ mutex_exit(&dev->l2ad_mtx);
+
+ /*
+ * We wait for the hash lock to become available
+ * to try and prevent busy waiting, and increase
+ * the chance we'll be able to acquire the lock
+ * the next time around.
+ */
+ mutex_enter(hash_lock);
+ mutex_exit(hash_lock);
+ goto top;
}
/*
- * It's possible that this buffer got evicted from the L1 cache
- * before we grabbed the vdev + hash locks, in which case
- * arc_hdr_realloc freed b_tmp_cdata for us if it was allocated.
- * Only free the buffer if we still have an L1 hdr.
+ * We could not have been moved into the arc_l2c_only
+ * state while in-flight due to our ARC_FLAG_L2_WRITING
+ * bit being set. Let's just ensure that's being enforced.
+ */
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ /*
+ * We may have allocated a buffer for L2ARC compression,
+ * we must release it to avoid leaking this data.
*/
- if (HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_tmp_cdata != NULL &&
- HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
- l2arc_release_cdata_buf(hdr);
+ l2arc_release_cdata_buf(hdr);
if (zio->io_error != 0) {
/*
}
/*
- * Allow ARC to begin reads to this L2ARC entry.
+ * Allow ARC to begin reads and ghost list evictions to
+ * this L2ARC entry.
*/
hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
* the data lists. This function returns a locked list, and also returns
* the lock pointer.
*/
-static list_t *
-l2arc_list_locked(int list_num, kmutex_t **lock)
+static multilist_sublist_t *
+l2arc_sublist_lock(int list_num)
{
- list_t *list = NULL;
+ multilist_t *ml = NULL;
+ unsigned int idx;
ASSERT(list_num >= 0 && list_num <= 3);
switch (list_num) {
case 0:
- list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
- *lock = &arc_mfu->arcs_mtx;
+ ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
break;
case 1:
- list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
- *lock = &arc_mru->arcs_mtx;
+ ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
break;
case 2:
- list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
- *lock = &arc_mfu->arcs_mtx;
+ ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
break;
case 3:
- list = &arc_mru->arcs_list[ARC_BUFC_DATA];
- *lock = &arc_mru->arcs_mtx;
+ ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
break;
}
- ASSERT(!(MUTEX_HELD(*lock)));
- mutex_enter(*lock);
- return (list);
+ /*
+ * Return a randomly-selected sublist. This is acceptable
+ * because the caller feeds only a little bit of data for each
+ * call (8MB). Subsequent calls will result in different
+ * sublists being selected.
+ */
+ idx = multilist_get_random_index(ml);
+ return (multilist_sublist_lock(ml, idx));
}
/*
hdr_prev = list_prev(buflist, hdr);
hash_lock = HDR_LOCK(hdr);
+
+ /*
+ * We cannot use mutex_enter or else we can deadlock
+ * with l2arc_write_buffers (due to swapping the order
+ * the hash lock and l2ad_mtx are taken).
+ */
if (!mutex_tryenter(hash_lock)) {
/*
* Missed the hash lock. Retry.
hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
list_remove(buflist, hdr);
- /* This may have been leftover after a failed write. */
- hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
+ /* Ensure this header has finished being written */
+ ASSERT(!HDR_L2_WRITING(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
}
mutex_exit(hash_lock);
}
boolean_t *headroom_boost)
{
arc_buf_hdr_t *hdr, *hdr_prev, *head;
- list_t *list;
uint64_t write_asize, write_psize, write_sz, headroom,
buf_compress_minsz;
void *buf_data;
- kmutex_t *list_lock = NULL;
boolean_t full;
l2arc_write_callback_t *cb;
zio_t *pio, *wzio;
/*
* Copy buffers for L2ARC writing.
*/
- mutex_enter(&dev->l2ad_mtx);
for (try = 0; try <= 3; try++) {
+ multilist_sublist_t *mls = l2arc_sublist_lock(try);
uint64_t passed_sz = 0;
- list = l2arc_list_locked(try, &list_lock);
-
/*
* L2ARC fast warmup.
*
* head of the ARC lists rather than the tail.
*/
if (arc_warm == B_FALSE)
- hdr = list_head(list);
+ hdr = multilist_sublist_head(mls);
else
- hdr = list_tail(list);
+ hdr = multilist_sublist_tail(mls);
headroom = target_sz * l2arc_headroom;
if (do_headroom_boost)
uint64_t buf_sz;
if (arc_warm == B_FALSE)
- hdr_prev = list_next(list, hdr);
+ hdr_prev = multilist_sublist_next(mls, hdr);
else
- hdr_prev = list_prev(list, hdr);
+ hdr_prev = multilist_sublist_prev(mls, hdr);
hash_lock = HDR_LOCK(hdr);
if (!mutex_tryenter(hash_lock)) {
* l2arc_write_done() can find where the
* write buffers begin without searching.
*/
+ mutex_enter(&dev->l2ad_mtx);
list_insert_head(&dev->l2ad_buflist, head);
+ mutex_exit(&dev->l2ad_mtx);
cb = kmem_alloc(sizeof (l2arc_write_callback_t),
KM_SLEEP);
buf_sz = hdr->b_size;
hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
+ mutex_enter(&dev->l2ad_mtx);
list_insert_head(&dev->l2ad_buflist, hdr);
+ mutex_exit(&dev->l2ad_mtx);
/*
* Compute and store the buffer cksum before
write_sz += buf_sz;
}
- mutex_exit(list_lock);
+ multilist_sublist_unlock(mls);
if (full == B_TRUE)
break;
/* No buffers selected for writing? */
if (pio == NULL) {
ASSERT0(write_sz);
- mutex_exit(&dev->l2ad_mtx);
ASSERT(!HDR_HAS_L1HDR(head));
kmem_cache_free(hdr_l2only_cache, head);
return (0);
}
+ mutex_enter(&dev->l2ad_mtx);
+
/*
* Now start writing the buffers. We're starting at the write head
* and work backwards, retracing the course of the buffer selector
hdr = list_prev(&dev->l2ad_buflist, hdr)) {
uint64_t buf_sz;
+ /*
+ * We rely on the L1 portion of the header below, so
+ * it's invalid for this header to have been evicted out
+ * of the ghost cache, prior to being written out. The
+ * ARC_FLAG_L2_WRITING bit ensures this won't happen.
+ */
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
/*
* We shouldn't need to lock the buffer here, since we flagged
* it as ARC_FLAG_L2_WRITING in the previous step, but we must
static void
l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
{
+ enum zio_compress comp = HDR_GET_COMPRESS(hdr);
+
ASSERT(HDR_HAS_L1HDR(hdr));
- if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_EMPTY) {
+ ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
+
+ if (comp == ZIO_COMPRESS_OFF) {
+ /*
+ * In this case, b_tmp_cdata points to the same buffer
+ * as the arc_buf_t's b_data field. We don't want to
+ * free it, since the arc_buf_t will handle that.
+ */
+ hdr->b_l1hdr.b_tmp_cdata = NULL;
+ } else if (comp == ZIO_COMPRESS_EMPTY) {
+ /*
+ * In this case, b_tmp_cdata was compressed to an empty
+ * buffer, thus there's nothing to free and b_tmp_cdata
+ * should have been set to NULL in l2arc_write_buffers().
+ */
+ ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
+ } else {
/*
* If the data was compressed, then we've allocated a
* temporary buffer for it, so now we need to release it.
ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
hdr->b_size);
+ hdr->b_l1hdr.b_tmp_cdata = NULL;
}
- hdr->b_l1hdr.b_tmp_cdata = NULL;
+
}
/*
module_param(zfs_arc_meta_limit, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
+module_param(zfs_arc_meta_min, ulong, 0644);
+MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
+
module_param(zfs_arc_meta_prune, int, 0644);
MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
+module_param(zfs_arc_num_sublists_per_state, int, 0644);
+MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
+ "Number of sublists used in each of the ARC state lists");
+
module_param(l2arc_write_max, ulong, 0644);
MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");