return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
// If we reach this point, the expression cannot be simplified.
- // Make a SymbolVal for the entire expression.
- return makeNonLoc(LHS, op, RHS, resultTy);
+ // Make a SymbolVal for the entire expression, after converting the RHS.
+ const llvm::APSInt *ConvertedRHS = &RHS;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the symbolic value
+ // with the given constant.
+ // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
+ ASTContext &Ctx = getContext();
+ QualType SymbolType = LHS->getType(Ctx);
+ uint64_t ValWidth = RHS.getBitWidth();
+ uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
+
+ if (ValWidth < TypeWidth) {
+ // If the value is too small, extend it.
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ } else if (ValWidth == TypeWidth) {
+ // If the value is signed but the symbol is unsigned, do the comparison
+ // in unsigned space. [C99 6.3.1.8]
+ // (For the opposite case, the value is already unsigned.)
+ if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ }
+ } else
+ ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
+
+ return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
}
SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
}
}
case nonloc::ConcreteIntKind: {
- const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
-
- // Is the RHS a symbol we can simplify?
- // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
- if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
- SymbolRef RSym = srhs->getSymbol();
- if (RSym->getType(Context)->isIntegerType()) {
- if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
- // The symbol evaluates to a constant.
- const llvm::APSInt *rhs_I;
- if (BinaryOperator::isComparisonOp(op))
- rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
- else
- rhs_I = &BasicVals.Convert(resultTy, *Constant);
-
- rhs = nonloc::ConcreteInt(*rhs_I);
+ llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
+
+ // If we're dealing with two known constants, just perform the operation.
+ if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
+ llvm::APSInt RHSValue = *KnownRHSValue;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the two values.
+ uint32_t LeftWidth = LHSValue.getBitWidth();
+ uint32_t RightWidth = RHSValue.getBitWidth();
+
+ // Based on the conversion rules of [C99 6.3.1.8] and the example
+ // in SemaExpr's handleIntegerConversion().
+ if (LeftWidth > RightWidth)
+ RHSValue = RHSValue.extend(LeftWidth);
+ else if (LeftWidth < RightWidth)
+ LHSValue = LHSValue.extend(RightWidth);
+ else if (LHSValue.isUnsigned() != RHSValue.isUnsigned()) {
+ LHSValue.setIsUnsigned(true);
+ RHSValue.setIsUnsigned(true);
}
+ } else if (!BinaryOperator::isShiftOp(op)) {
+ // FIXME: These values don't need to be persistent.
+ LHSValue = BasicVals.Convert(resultTy, LHSValue);
+ RHSValue = BasicVals.Convert(resultTy, RHSValue);
}
- }
- if (isa<nonloc::ConcreteInt>(rhs)) {
- return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
- } else {
- const llvm::APSInt& lhsValue = lhsInt.getValue();
-
- // Swap the left and right sides and flip the operator if doing so
- // allows us to better reason about the expression (this is a form
- // of expression canonicalization).
- // While we're at it, catch some special cases for non-commutative ops.
- NonLoc tmp = rhs;
- rhs = lhs;
- lhs = tmp;
+ const llvm::APSInt *Result =
+ BasicVals.evalAPSInt(op, LHSValue, RHSValue);
+ if (!Result)
+ return UndefinedVal();
- switch (op) {
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- op = ReverseComparison(op);
- continue;
- case BO_EQ:
- case BO_NE:
- case BO_Add:
- case BO_Mul:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- continue;
- case BO_Shr:
- if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
- // At this point lhs and rhs have been swapped.
- return rhs;
- // FALL-THROUGH
- case BO_Shl:
- if (lhsValue == 0)
- // At this point lhs and rhs have been swapped.
- return rhs;
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- default:
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- }
+ return nonloc::ConcreteInt(*Result);
+ }
+
+ // Swap the left and right sides and flip the operator if doing so
+ // allows us to better reason about the expression (this is a form
+ // of expression canonicalization).
+ // While we're at it, catch some special cases for non-commutative ops.
+ switch (op) {
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ op = ReverseComparison(op);
+ // FALL-THROUGH
+ case BO_EQ:
+ case BO_NE:
+ case BO_Add:
+ case BO_Mul:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ std::swap(lhs, rhs);
+ continue;
+ case BO_Shr:
+ // (~0)>>a
+ if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
+ return evalCastFromNonLoc(lhs, resultTy);
+ // FALL-THROUGH
+ case BO_Shl:
+ // 0<<a and 0>>a
+ if (LHSValue == 0)
+ return evalCastFromNonLoc(lhs, resultTy);
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ default:
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
}
}
case nonloc::SymbolValKind: {
- nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs);
+ // We only handle LHS as simple symbols or SymIntExprs.
+ SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
// LHS is a symbolic expression.
- if (selhs->isExpression()) {
-
- // Only handle LHS of the form "$sym op constant", at least for now.
- const SymIntExpr *symIntExpr =
- dyn_cast<SymIntExpr>(selhs->getSymbol());
-
- if (!symIntExpr)
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
// Is this a logical not? (!x is represented as x == 0.)
if (op == BO_EQ && rhs.isZeroConstant()) {
}
// For now, only handle expressions whose RHS is a constant.
- const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
- if (!rhsInt)
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
-
- // If both the LHS and the current expression are additive,
- // fold their constants.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- const llvm::APSInt &first =
- BasicVals.Convert(resultTy, symIntExpr->getRHS());
- const llvm::APSInt &second =
- BasicVals.Convert(resultTy, rhsInt->getValue());
- const llvm::APSInt *newRHS;
- if (lop == op)
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- else
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
+ // If both the LHS and the current expression are additive,
+ // fold their constants and try again.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // Convert the two constants to a common type, then combine them.
+
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+
+ // FIXME: These values don't need to be persistent.
+ const llvm::APSInt &first =
+ BasicVals.Convert(resultTy, symIntExpr->getRHS());
+ const llvm::APSInt &second =
+ BasicVals.Convert(resultTy, *RHSValue);
+
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+
+ assert(newRHS && "Invalid operation despite common type!");
+ rhs = nonloc::ConcreteInt(*newRHS);
+ lhs = nonloc::SymbolVal(symIntExpr->getLHS());
+ op = lop;
+ continue;
+ }
}
+
+ // Otherwise, make a SymIntExpr out of the expression.
+ return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
}
- // Otherwise, make a SymbolVal out of the expression.
- return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- // LHS is a simple symbol (not a symbolic expression).
- } else {
- nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
- SymbolRef Sym = slhs->getSymbol();
+ } else if (isa<SymbolData>(Sym)) {
+ // LHS is a simple symbol (not a symbolic expression).
QualType lhsType = Sym->getType(Context);
- // The conversion type is usually the result type, but not in the case
- // of relational expressions.
- QualType conversionType = resultTy;
- if (BinaryOperator::isComparisonOp(op))
- conversionType = lhsType;
- const llvm::APSInt *conversionPrototype = NULL;
-
// Does the symbol simplify to a constant? If so, "fold" the constant
// by setting 'lhs' to a ConcreteInt and try again.
- if (lhsType->isIntegerType())
- if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
- // Promote the RHS if necessary. Shift operations do not
- // need their arguments to match in type, but others do.
- if (!BinaryOperator::isShiftOp(op)) {
- // If the RHS is a constant, we need to promote it.
- if (nonloc::ConcreteInt *rhs_I =
- dyn_cast<nonloc::ConcreteInt>(&rhs)) {
- const llvm::APSInt &val = rhs_I->getValue();
-
- // The RHS may have a better type for performing comparisons.
- // Consider x == 0xF00, where x is a fully constrained char.
- if (BinaryOperator::isComparisonOp(op)) {
- const ASTContext &Ctx = getContext();
- unsigned width = std::max((unsigned)Ctx.getTypeSize(lhsType),
- (unsigned)val.getBitWidth());
-
- // Use the LHS's signedness.
- bool isUnsigned =
- lhsType->isUnsignedIntegerOrEnumerationType();
-
- conversionPrototype = &BasicVals.getValue(val.getSExtValue(),
- width, isUnsigned);
- } else {
- conversionPrototype = &BasicVals.Convert(resultTy, val);
- }
-
- // Record the promoted value.
- rhs = nonloc::ConcreteInt(*conversionPrototype);
- }
- }
-
- // Promote the LHS constant to the appropriate type.
- const llvm::APSInt &lhs_I = conversionPrototype ?
- BasicVals.Convert(*conversionPrototype, *Constant) :
- BasicVals.Convert(conversionType, *Constant);
- lhs = nonloc::ConcreteInt(lhs_I);
-
- continue;
- }
-
- // Is the RHS a symbol we can simplify?
- if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
- SymbolRef RSym = srhs->getSymbol();
- if (RSym->getType(Context)->isIntegerType()) {
- if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
- // The symbol evaluates to a constant.
- // FIXME: This may not be the proper conversion type. Consider
- // x > y, where y is a fully constrained int but x is a char.
- const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
- *Constant);
- rhs = nonloc::ConcreteInt(rhs_I);
- }
- }
- }
-
- if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
- return MakeSymIntVal(slhs->getSymbol(), op,
- rhs_I->getValue(), resultTy);
+ if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
+ lhs = nonloc::ConcreteInt(*Constant);
+ continue;
}
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ // Is the RHS a constant?
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
+ return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
}
+
+ // Give up -- this is not a symbolic expression we can handle.
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
}
}
}