A compare function is any callable that accept two arguments, compares them,
and returns a negative number for less-than, zero for equality, or a positive
number for greater-than. A key function is a callable that accepts one
- argument and returns another value that indicates the position in the desired
+ argument and returns another value indicating the position in the desired
collation sequence.
Example::
Since a dictionary is used to cache results, the positional and keyword
arguments to the function must be hashable.
+ If *maxsize* is set to None, the LRU feature is disabled and the cache
+ can grow without bound.
+
To help measure the effectiveness of the cache and tune the *maxsize*
parameter, the wrapped function is instrumented with a :func:`cache_info`
function that returns a :term:`named tuple` showing *hits*, *misses*,
- *maxsize* and *currsize*.
+ *maxsize* and *currsize*. In a multi-threaded environment, the hits
+ and misses are approximate.
The decorator also provides a :func:`cache_clear` function for clearing or
invalidating the cache.
>>> print(get_pep.cache_info())
CacheInfo(hits=3, misses=8, maxsize=20, currsize=8)
- .. versionadded:: 3.2
+ Example of efficiently computing
+ `Fibonacci numbers <http://en.wikipedia.org/wiki/Fibonacci_number>`_
+ using a cache to implement a
+ `dynamic programming <http://en.wikipedia.org/wiki/Dynamic_programming>`_
+ technique::
+
+ @lru_cache(maxsize=None)
+ def fib(n):
+ if n < 2:
+ return n
+ return fib(n-1) + fib(n-2)
- .. seealso::
+ >>> print([fib(n) for n in range(16)])
+ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
- Recipe for a `plain cache without the LRU feature
- <http://code.activestate.com/recipes/577479-simple-caching-decorator/>`_.
+ >>> print(fib.cache_info())
+ CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
+
+ .. versionadded:: 3.2
.. decorator:: total_ordering
def lru_cache(maxsize=100):
"""Least-recently-used cache decorator.
+ If *maxsize* is set to None, the LRU features are disabled and the cache
+ can grow without bound.
+
Arguments to the cached function must be hashable.
View the cache statistics named tuple (hits, misses, maxsize, currsize) with
def decorating_function(user_function,
tuple=tuple, sorted=sorted, len=len, KeyError=KeyError):
- cache = OrderedDict() # ordered least recent to most recent
- cache_popitem = cache.popitem
- cache_renew = cache.move_to_end
hits = misses = 0
kwd_mark = object() # separates positional and keyword args
lock = Lock()
- @wraps(user_function)
- def wrapper(*args, **kwds):
- nonlocal hits, misses
- key = args
- if kwds:
- key += (kwd_mark,) + tuple(sorted(kwds.items()))
- try:
- with lock:
+ if maxsize is None:
+ cache = dict() # simple cache without ordering or size limit
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ nonlocal hits, misses
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ try:
result = cache[key]
- cache_renew(key) # record recent use of this key
hits += 1
- except KeyError:
- result = user_function(*args, **kwds)
- with lock:
- cache[key] = result # record recent use of this key
+ except KeyError:
+ result = user_function(*args, **kwds)
+ cache[key] = result
misses += 1
- if len(cache) > maxsize:
- cache_popitem(0) # purge least recently used cache entry
- return result
+ return result
+ else:
+ cache = OrderedDict() # ordered least recent to most recent
+ cache_popitem = cache.popitem
+ cache_renew = cache.move_to_end
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ nonlocal hits, misses
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ try:
+ with lock:
+ result = cache[key]
+ cache_renew(key) # record recent use of this key
+ hits += 1
+ except KeyError:
+ result = user_function(*args, **kwds)
+ with lock:
+ cache[key] = result # record recent use of this key
+ misses += 1
+ if len(cache) > maxsize:
+ cache_popitem(0) # purge least recently used cache entry
+ return result
def cache_info():
"""Report cache statistics"""
self.assertEqual(misses, 4)
self.assertEqual(currsize, 2)
+ def test_lru_with_maxsize_none(self):
+ @functools.lru_cache(maxsize=None)
+ def fib(n):
+ if n < 2:
+ return n
+ return fib(n-1) + fib(n-2)
+ self.assertEqual([fib(n) for n in range(16)],
+ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610])
+ self.assertEqual(fib.cache_info(),
+ functools._CacheInfo(hits=28, misses=16, maxsize=None, currsize=16))
+ fib.cache_clear()
+ self.assertEqual(fib.cache_info(),
+ functools._CacheInfo(hits=0, misses=0, maxsize=None, currsize=0))
+
def test_main(verbose=None):
test_classes = (
TestPartial,