bool IEEEFloat::isDenormal() const {
return isFiniteNonZero() && (exponent == semantics->minExponent) &&
- (APInt::tcExtractBit(significandParts(),
+ (APInt::tcExtractBit(significandParts(),
semantics->precision - 1) == 0);
}
// rhs = b23 . b22 ... b0 * 2^e2
// the result of multiplication is:
// *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
- // Note that there are three significant bits at the left-hand side of the
+ // Note that there are three significant bits at the left-hand side of the
// radix point: two for the multiplication, and an overflow bit for the
// addition (that will always be zero at this point). Move the radix point
// toward left by two bits, and adjust exponent accordingly.
exponent += 2;
if (addend && addend->isNonZero()) {
- // The intermediate result of the multiplication has "2 * precision"
+ // The intermediate result of the multiplication has "2 * precision"
// signicant bit; adjust the addend to be consistent with mul result.
//
Significand savedSignificand = significand;
}
// Convert the result having "2 * precision" significant-bits back to the one
- // having "precision" significant-bits. First, move the radix point from
+ // having "precision" significant-bits. First, move the radix point from
// poision "2*precision - 1" to "precision - 1". The exponent need to be
// adjusted by "2*precision - 1" - "precision - 1" = "precision".
exponent -= precision + 1;
// Test if we have a zero number allowing for strings with no null terminators
// and zero decimals with non-zero exponents.
- //
+ //
// We computed firstSigDigit by ignoring all zeros and dots. Thus if
// D->firstSigDigit equals str.end(), every digit must be a zero and there can
// be at most one dot. On the other hand, if we have a zero with a non-zero