Value *Dividend = SlowDivOrRem->getOperand(0);
Value *Divisor = SlowDivOrRem->getOperand(1);
- if (isa<ConstantInt>(Divisor)) {
- // Keep division by a constant for DAGCombiner.
- return None;
- }
-
VisitedSetTy SetL;
ValueRange DividendRange = getValueRange(Dividend, SetL);
if (DividendRange == VALRNG_LIKELY_LONG)
if (DividendShort && DivisorShort) {
// If both operands are known to be short then just replace the long
- // division with a short one in-place.
+ // division with a short one in-place. Since we're not introducing control
+ // flow in this case, narrowing the division is always a win, even if the
+ // divisor is a constant (and will later get replaced by a multiplication).
IRBuilder<> Builder(SlowDivOrRem);
Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType);
Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType());
Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType());
return QuotRemPair(ExtDiv, ExtRem);
- } else if (DividendShort && !isSignedOp()) {
+ }
+
+ if (isa<ConstantInt>(Divisor)) {
+ // If the divisor is not a constant, DAGCombiner will convert it to a
+ // multiplication by a magic constant. It isn't clear if it is worth
+ // introducing control flow to get a narrower multiply.
+ return None;
+ }
+
+ if (DividendShort && !isSignedOp()) {
// If the division is unsigned and Dividend is known to be short, then
// either
// 1) Divisor is less or equal to Dividend, and the result can be computed
store i64 %d, i64* %retptr
ret void
}
+
+; CHECK-LABEL: @udiv_by_constant(
+define i64 @udiv_by_constant(i32 %a) {
+; CHECK-NEXT: [[A_ZEXT:%.*]] = zext i32 [[A:%.*]] to i64
+; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[A_ZEXT]] to i32
+; CHECK-NEXT: [[TMP2:%.*]] = udiv i32 [[TMP1]], 50
+; CHECK-NEXT: [[TMP3:%.*]] = zext i32 [[TMP2]] to i64
+; CHECK-NEXT: ret i64 [[TMP3]]
+
+ %a.zext = zext i32 %a to i64
+ %wide.div = udiv i64 %a.zext, 50
+ ret i64 %wide.div
+}
+
+; CHECK-LABEL: @urem_by_constant(
+define i64 @urem_by_constant(i32 %a) {
+; CHECK-NEXT: [[A_ZEXT:%.*]] = zext i32 [[A:%.*]] to i64
+; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[A_ZEXT]] to i32
+; CHECK-NEXT: [[TMP2:%.*]] = urem i32 [[TMP1]], 50
+; CHECK-NEXT: [[TMP3:%.*]] = zext i32 [[TMP2]] to i64
+; CHECK-NEXT: ret i64 [[TMP3]]
+
+ %a.zext = zext i32 %a to i64
+ %wide.div = urem i64 %a.zext, 50
+ ret i64 %wide.div
+}
+
+; Negative test: instead of emitting a runtime check on %a, we prefer to let the
+; DAGCombiner transform this division by constant into a multiplication (with a
+; "magic constant").
+;
+; CHECK-LABEL: @udiv_by_constant_negative_0(
+define i64 @udiv_by_constant_negative_0(i64 %a) {
+; CHECK-NEXT: [[WIDE_DIV:%.*]] = udiv i64 [[A:%.*]], 50
+; CHECK-NEXT: ret i64 [[WIDE_DIV]]
+
+ %wide.div = udiv i64 %a, 50
+ ret i64 %wide.div
+}
+
+; Negative test: while we know the dividend is short, the divisor isn't. This
+; test is here for completeness, but instcombine will optimize this to return 0.
+;
+; CHECK-LABEL: @udiv_by_constant_negative_1(
+define i64 @udiv_by_constant_negative_1(i32 %a) {
+; CHECK-NEXT: [[A_ZEXT:%.*]] = zext i32 [[A:%.*]] to i64
+; CHECK-NEXT: [[WIDE_DIV:%.*]] = udiv i64 [[A_ZEXT]], 8589934592
+; CHECK-NEXT: ret i64 [[WIDE_DIV]]
+
+ %a.zext = zext i32 %a to i64
+ %wide.div = udiv i64 %a.zext, 8589934592 ;; == 1 << 33
+ ret i64 %wide.div
+}
+
+; URem version of udiv_by_constant_negative_0
+;
+; CHECK-LABEL: @urem_by_constant_negative_0(
+define i64 @urem_by_constant_negative_0(i64 %a) {
+; CHECK-NEXT: [[WIDE_DIV:%.*]] = urem i64 [[A:%.*]], 50
+; CHECK-NEXT: ret i64 [[WIDE_DIV]]
+
+ %wide.div = urem i64 %a, 50
+ ret i64 %wide.div
+}
+
+; URem version of udiv_by_constant_negative_1
+;
+; CHECK-LABEL: @urem_by_constant_negative_1(
+define i64 @urem_by_constant_negative_1(i32 %a) {
+; CHECK-NEXT: [[A_ZEXT:%.*]] = zext i32 [[A:%.*]] to i64
+; CHECK-NEXT: [[WIDE_DIV:%.*]] = urem i64 [[A_ZEXT]], 8589934592
+; CHECK-NEXT: ret i64 [[WIDE_DIV]]
+
+ %a.zext = zext i32 %a to i64
+ %wide.div = urem i64 %a.zext, 8589934592 ;; == 1 << 33
+ ret i64 %wide.div
+}