else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
// Conservatively refuse to convert an instruction which isn't in the same
// BB as the comparison.
- // For CMPri, we need to check Sub, thus we can't return here.
+ // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
+ // Thus we cannot return here.
if (CmpInstr->getOpcode() == ARM::CMPri ||
CmpInstr->getOpcode() == ARM::t2CMPri)
MI = nullptr;
case ARM::t2EORrr:
case ARM::t2EORri: {
// Scan forward for the use of CPSR
- // When checking against MI: if it's a conditional code requires
- // checking of V bit, then this is not safe to do.
+ // When checking against MI: if it's a conditional code that requires
+ // checking of the V bit or C bit, then this is not safe to do.
// It is safe to remove CmpInstr if CPSR is redefined or killed.
// If we are done with the basic block, we need to check whether CPSR is
// live-out.
OperandsToUpdate.push_back(
std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
}
- } else
+ } else {
+ // No Sub, so this is x = <op> y, z; cmp x, 0.
switch (CC) {
- default:
+ case ARMCC::EQ: // Z
+ case ARMCC::NE: // Z
+ case ARMCC::MI: // N
+ case ARMCC::PL: // N
+ case ARMCC::AL: // none
// CPSR can be used multiple times, we should continue.
break;
- case ARMCC::VS:
- case ARMCC::VC:
- case ARMCC::GE:
- case ARMCC::LT:
- case ARMCC::GT:
- case ARMCC::LE:
+ case ARMCC::HS: // C
+ case ARMCC::LO: // C
+ case ARMCC::VS: // V
+ case ARMCC::VC: // V
+ case ARMCC::HI: // C Z
+ case ARMCC::LS: // C Z
+ case ARMCC::GE: // N V
+ case ARMCC::LT: // N V
+ case ARMCC::GT: // Z N V
+ case ARMCC::LE: // Z N V
+ // The instruction uses the V bit or C bit which is not safe.
return false;
}
+ }
}
}
ret i32 23
}
+; When considering the producer of cmp's src as the subsuming instruction,
+; only consider that when the comparison is to 0.
+define i32 @cmp_src_nonzero(i32 %a, i32 %b, i32 %x, i32 %y) {
+entry:
+; CHECK-LABEL: cmp_src_nonzero:
+; CHECK: sub
+; CHECK: cmp
+ %sub = sub i32 %a, %b
+ %cmp = icmp eq i32 %sub, 17
+ %ret = select i1 %cmp, i32 %x, i32 %y
+ ret i32 %ret
+}
+
define float @float_sel(i32 %a, i32 %b, float %x, float %y) {
entry:
; CHECK-LABEL: float_sel:
store i32 %sub, i32* @t
ret double %ret
}
+
+declare void @abort()
+declare void @exit(i32)
+
+; If the comparison uses the V bit (signed overflow/underflow), we can't
+; omit the comparison.
+define i32 @cmp_slt0(i32 %a, i32 %b, i32 %x, i32 %y) {
+entry:
+; CHECK-LABEL: cmp_slt0
+; CHECK: sub
+; CHECK: cmp
+; CHECK: bge
+ %load = load i32* @t, align 4
+ %sub = sub i32 %load, 17
+ %cmp = icmp slt i32 %sub, 0
+ br i1 %cmp, label %if.then, label %if.else
+
+if.then:
+ call void @abort()
+ unreachable
+
+if.else:
+ call void @exit(i32 0)
+ unreachable
+}
+
+; Same for the C bit. (Note the ult X, 0 is trivially
+; false, so the DAG combiner may or may not optimize it).
+define i32 @cmp_ult0(i32 %a, i32 %b, i32 %x, i32 %y) {
+entry:
+; CHECK-LABEL: cmp_ult0
+; CHECK: sub
+; CHECK: cmp
+; CHECK: bhs
+ %load = load i32* @t, align 4
+ %sub = sub i32 %load, 17
+ %cmp = icmp ult i32 %sub, 0
+ br i1 %cmp, label %if.then, label %if.else
+
+if.then:
+ call void @abort()
+ unreachable
+
+if.else:
+ call void @exit(i32 0)
+ unreachable
+}