/// implementation needs such an interface.
unsigned size() const { return NumBlockIDs; }
+ /// Returns true if the CFG has no branches. Usually it boils down to the CFG
+ /// having exactly three blocks (entry, the actual code, exit), but sometimes
+ /// more blocks appear due to having control flow that can be fully
+ /// resolved in compile time.
+ bool isLinear() const;
+
//===--------------------------------------------------------------------===//
// CFG Debugging: Pretty-Printing and Visualization.
//===--------------------------------------------------------------------===//
AnalyzerOptions &Opts,
const EvalCallOptions &CallOpts);
+ /// See if the given AnalysisDeclContext is built for a function that we
+ /// should always inline simply because it's small enough.
+ /// Apart from "small" functions, we also have "large" functions
+ /// (cf. isLarge()), some of which are huge (cf. isHuge()), and we classify
+ /// the remaining functions as "medium".
+ bool isSmall(AnalysisDeclContext *ADC) const;
+
+ /// See if the given AnalysisDeclContext is built for a function that we
+ /// should inline carefully because it looks pretty large.
+ bool isLarge(AnalysisDeclContext *ADC) const;
+
+ /// See if the given AnalysisDeclContext is built for a function that we
+ /// should never inline because it's legit gigantic.
+ bool isHuge(AnalysisDeclContext *ADC) const;
+
+ /// See if the given AnalysisDeclContext is built for a function that we
+ /// should inline, just by looking at the declaration of the function.
+ bool mayInlineDecl(AnalysisDeclContext *ADC) const;
+
/// Checks our policies and decides weither the given call should be inlined.
bool shouldInlineCall(const CallEvent &Call, const Decl *D,
const ExplodedNode *Pred,
return Builder.buildCFG(D, Statement);
}
+bool CFG::isLinear() const {
+ // Quick path: if we only have the ENTRY block, the EXIT block, and some code
+ // in between, then we have no room for control flow.
+ if (size() <= 3)
+ return true;
+
+ // Traverse the CFG until we find a branch.
+ // TODO: While this should still be very fast,
+ // maybe we should cache the answer.
+ llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
+ const CFGBlock *B = Entry;
+ while (B != Exit) {
+ auto IteratorAndFlag = Visited.insert(B);
+ if (!IteratorAndFlag.second) {
+ // We looped back to a block that we've already visited. Not linear.
+ return false;
+ }
+
+ // Iterate over reachable successors.
+ const CFGBlock *FirstReachableB = nullptr;
+ for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
+ if (!AB.isReachable())
+ continue;
+
+ if (FirstReachableB == nullptr) {
+ FirstReachableB = &*AB;
+ } else {
+ // We've encountered a branch. It's not a linear CFG.
+ return false;
+ }
+ }
+
+ if (!FirstReachableB) {
+ // We reached a dead end. EXIT is unreachable. This is linear enough.
+ return true;
+ }
+
+ // There's only one way to move forward. Proceed.
+ B = FirstReachableB;
+ }
+
+ // We reached EXIT and found no branches.
+ return true;
+}
+
const CXXDestructorDecl *
CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
switch (getKind()) {
// initialize its out-parameter, and additionally check that such
// precondition can actually be fulfilled on the current path.
if (Call.isInSystemHeader()) {
- // We make an exception for system header functions that have no branches,
- // i.e. have exactly 3 CFG blocks: begin, all its code, end. Such
- // functions unconditionally fail to initialize the variable.
+ // We make an exception for system header functions that have no branches.
+ // Such functions unconditionally fail to initialize the variable.
// If they call other functions that have more paths within them,
// this suppression would still apply when we visit these inner functions.
// One common example of a standard function that doesn't ever initialize
// its out parameter is operator placement new; it's up to the follow-up
// constructor (if any) to initialize the memory.
- if (N->getStackFrame()->getCFG()->size() > 3)
+ if (!N->getStackFrame()->getCFG()->isLinear())
R.markInvalid(getTag(), nullptr);
return nullptr;
}
}
}
+bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const {
+ // When there are no branches in the function, it means that there's no
+ // exponential complexity introduced by inlining such function.
+ // Such functions also don't trigger various fundamental problems
+ // with our inlining mechanism, such as the problem of
+ // inlined defensive checks. Hence isLinear().
+ const CFG *Cfg = ADC->getCFG();
+ return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize;
+}
+
+bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const {
+ const CFG *Cfg = ADC->getCFG();
+ return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge;
+}
+
+bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const {
+ const CFG *Cfg = ADC->getCFG();
+ return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize;
+}
+
void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
bool &IsRecursive, unsigned &StackDepth) {
IsRecursive = false;
// Do not count the small functions when determining the stack depth.
AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
- const CFG *CalleeCFG = CalleeADC->getCFG();
- if (CalleeCFG->getNumBlockIDs() > AMgr.options.AlwaysInlineSize)
+ if (!isSmall(CalleeADC))
++StackDepth;
}
LCtx = LCtx->getParent();
/// This checks static properties of the function, such as its signature and
/// CFG, to determine whether the analyzer should ever consider inlining it,
/// in any context.
-static bool mayInlineDecl(AnalysisManager &AMgr,
- AnalysisDeclContext *CalleeADC) {
+bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const {
AnalyzerOptions &Opts = AMgr.getAnalyzerOptions();
// FIXME: Do not inline variadic calls.
if (CallEvent::isVariadic(CalleeADC->getDecl()))
return false;
// Do not inline large functions.
- if (CalleeCFG->getNumBlockIDs() > Opts.MaxInlinableSize)
+ if (isHuge(CalleeADC))
return false;
// It is possible that the live variables analysis cannot be
} else {
// We haven't actually checked the static properties of this function yet.
// Do that now, and record our decision in the function summaries.
- if (mayInlineDecl(getAnalysisManager(), CalleeADC)) {
+ if (mayInlineDecl(CalleeADC)) {
Engine.FunctionSummaries->markMayInline(D);
} else {
Engine.FunctionSummaries->markShouldNotInline(D);
return false;
}
- const CFG *CalleeCFG = CalleeADC->getCFG();
-
// Do not inline if recursive or we've reached max stack frame count.
bool IsRecursive = false;
unsigned StackDepth = 0;
examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
if ((StackDepth >= Opts.InlineMaxStackDepth) &&
- ((CalleeCFG->getNumBlockIDs() > Opts.AlwaysInlineSize)
- || IsRecursive))
+ (!isSmall(CalleeADC) || IsRecursive))
return false;
// Do not inline large functions too many times.
if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
Opts.MaxTimesInlineLarge) &&
- CalleeCFG->getNumBlockIDs() >=
- Opts.MinCFGSizeTreatFunctionsAsLarge) {
+ isLarge(CalleeADC)) {
NumReachedInlineCountMax++;
return false;
}
- if (HowToInline == Inline_Minimal &&
- (CalleeCFG->getNumBlockIDs() > Opts.AlwaysInlineSize
- || IsRecursive))
+ if (HowToInline == Inline_Minimal && (!isSmall(CalleeADC) || IsRecursive))
return false;
return true;
--- /dev/null
+// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection \
+// RUN: -analyzer-inline-max-stack-depth=5 -w -std=c++17 -verify %s
+
+void clang_analyzer_eval(bool);
+
+namespace inline_large_functions_with_if_constexpr {
+bool f0() { if constexpr (true); return true; }
+bool f1() { if constexpr (true); return f0(); }
+bool f2() { if constexpr (true); return f1(); }
+bool f3() { if constexpr (true); return f2(); }
+bool f4() { if constexpr (true); return f3(); }
+bool f5() { if constexpr (true); return f4(); }
+bool f6() { if constexpr (true); return f5(); }
+bool f7() { if constexpr (true); return f6(); }
+void bar() {
+ clang_analyzer_eval(f7()); // expected-warning{{TRUE}}
+}
+} // namespace inline_large_functions_with_if_constexpr
namespace analysis {
namespace {
-enum BuildResult {
- ToolFailed,
- ToolRan,
- SawFunctionBody,
- BuiltCFG,
+class BuildResult {
+public:
+ enum Status {
+ ToolFailed,
+ ToolRan,
+ SawFunctionBody,
+ BuiltCFG,
+ };
+
+ BuildResult(Status S, std::unique_ptr<CFG> Cfg = nullptr)
+ : S(S), Cfg(std::move(Cfg)) {}
+
+ Status getStatus() const { return S; }
+ CFG *getCFG() const { return Cfg.get(); }
+
+private:
+ Status S;
+ std::unique_ptr<CFG> Cfg;
};
class CFGCallback : public ast_matchers::MatchFinder::MatchCallback {
public:
- BuildResult TheBuildResult = ToolRan;
+ BuildResult TheBuildResult = BuildResult::ToolRan;
void run(const ast_matchers::MatchFinder::MatchResult &Result) override {
const auto *Func = Result.Nodes.getNodeAs<FunctionDecl>("func");
Stmt *Body = Func->getBody();
if (!Body)
return;
- TheBuildResult = SawFunctionBody;
+ TheBuildResult = BuildResult::SawFunctionBody;
CFG::BuildOptions Options;
Options.AddImplicitDtors = true;
- if (CFG::buildCFG(nullptr, Body, Result.Context, Options))
- TheBuildResult = BuiltCFG;
+ if (std::unique_ptr<CFG> Cfg =
+ CFG::buildCFG(nullptr, Body, Result.Context, Options))
+ TheBuildResult = {BuildResult::BuiltCFG, std::move(Cfg)};
}
};
tooling::newFrontendActionFactory(&Finder));
std::vector<std::string> Args = {"-std=c++11", "-fno-delayed-template-parsing"};
if (!tooling::runToolOnCodeWithArgs(Factory->create(), Code, Args))
- return ToolFailed;
- return Callback.TheBuildResult;
+ return BuildResult::ToolFailed;
+ return std::move(Callback.TheBuildResult);
}
// Constructing a CFG for a range-based for over a dependent type fails (but
" for (const Foo *TheFoo : Range) {\n"
" }\n"
"}\n";
- EXPECT_EQ(SawFunctionBody, BuildCFG(Code));
+ EXPECT_EQ(BuildResult::SawFunctionBody, BuildCFG(Code).getStatus());
}
// Constructing a CFG containing a delete expression on a dependent type should
"void f(T t) {\n"
" delete t;\n"
"}\n";
- EXPECT_EQ(BuiltCFG, BuildCFG(Code));
+ EXPECT_EQ(BuildResult::BuiltCFG, BuildCFG(Code).getStatus());
}
// Constructing a CFG on a function template with a variable of incomplete type
" class Undefined;\n"
" Undefined u;\n"
"}\n";
- EXPECT_EQ(BuiltCFG, BuildCFG(Code));
+ EXPECT_EQ(BuildResult::BuiltCFG, BuildCFG(Code).getStatus());
+}
+
+TEST(CFG, IsLinear) {
+ auto expectLinear = [](bool IsLinear, const char *Code) {
+ BuildResult B = BuildCFG(Code);
+ EXPECT_EQ(BuildResult::BuiltCFG, B.getStatus());
+ EXPECT_EQ(IsLinear, B.getCFG()->isLinear());
+ };
+
+ expectLinear(true, "void foo() {}");
+ expectLinear(true, "void foo() { if (true) return; }");
+ expectLinear(true, "void foo() { if constexpr (false); }");
+ expectLinear(false, "void foo(bool coin) { if (coin) return; }");
+ expectLinear(false, "void foo() { for(;;); }");
+ expectLinear(false, "void foo() { do {} while (true); }");
+ expectLinear(true, "void foo() { do {} while (false); }");
+ expectLinear(true, "void foo() { foo(); }"); // Recursion is not our problem.
}
} // namespace