from fractions import Fraction
from decimal import Decimal
+from itertools import groupby
+
# === Exceptions ===
# === Private utilities ===
def _sum(data, start=0):
- """_sum(data [, start]) -> value
+ """_sum(data [, start]) -> (type, sum, count)
+
+ Return a high-precision sum of the given numeric data as a fraction,
+ together with the type to be converted to and the count of items.
- Return a high-precision sum of the given numeric data. If optional
- argument ``start`` is given, it is added to the total. If ``data`` is
- empty, ``start`` (defaulting to 0) is returned.
+ If optional argument ``start`` is given, it is added to the total.
+ If ``data`` is empty, ``start`` (defaulting to 0) is returned.
Examples
--------
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
- 11.0
+ (<class 'float'>, Fraction(11, 1), 5)
Some sources of round-off error will be avoided:
>>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero.
- 1000.0
+ (<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
>>> from fractions import Fraction as F
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
- Fraction(63, 20)
+ (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
>>> from decimal import Decimal as D
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
>>> _sum(data)
- Decimal('0.6963')
+ (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Mixed types are currently treated as an error, except that int is
allowed.
"""
- # We fail as soon as we reach a value that is not an int or the type of
- # the first value which is not an int. E.g. _sum([int, int, float, int])
- # is okay, but sum([int, int, float, Fraction]) is not.
- allowed_types = set([int, type(start)])
+ count = 0
n, d = _exact_ratio(start)
- partials = {d: n} # map {denominator: sum of numerators}
- # Micro-optimizations.
- exact_ratio = _exact_ratio
+ partials = {d: n}
partials_get = partials.get
- # Add numerators for each denominator.
- for x in data:
- _check_type(type(x), allowed_types)
- n, d = exact_ratio(x)
- partials[d] = partials_get(d, 0) + n
- # Find the expected result type. If allowed_types has only one item, it
- # will be int; if it has two, use the one which isn't int.
- assert len(allowed_types) in (1, 2)
- if len(allowed_types) == 1:
- assert allowed_types.pop() is int
- T = int
- else:
- T = (allowed_types - set([int])).pop()
+ T = _coerce(int, type(start))
+ for typ, values in groupby(data, type):
+ T = _coerce(T, typ) # or raise TypeError
+ for n,d in map(_exact_ratio, values):
+ count += 1
+ partials[d] = partials_get(d, 0) + n
if None in partials:
- assert issubclass(T, (float, Decimal))
- assert not math.isfinite(partials[None])
- return T(partials[None])
- total = Fraction()
- for d, n in sorted(partials.items()):
- total += Fraction(n, d)
- if issubclass(T, int):
- assert total.denominator == 1
- return T(total.numerator)
- if issubclass(T, Decimal):
- return T(total.numerator)/total.denominator
- return T(total)
-
-
-def _check_type(T, allowed):
- if T not in allowed:
- if len(allowed) == 1:
- allowed.add(T)
- else:
- types = ', '.join([t.__name__ for t in allowed] + [T.__name__])
- raise TypeError("unsupported mixed types: %s" % types)
+ # The sum will be a NAN or INF. We can ignore all the finite
+ # partials, and just look at this special one.
+ total = partials[None]
+ assert not _isfinite(total)
+ else:
+ # Sum all the partial sums using builtin sum.
+ # FIXME is this faster if we sum them in order of the denominator?
+ total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
+ return (T, total, count)
+
+
+def _isfinite(x):
+ try:
+ return x.is_finite() # Likely a Decimal.
+ except AttributeError:
+ return math.isfinite(x) # Coerces to float first.
+
+
+def _coerce(T, S):
+ """Coerce types T and S to a common type, or raise TypeError.
+
+ Coercion rules are currently an implementation detail. See the CoerceTest
+ test class in test_statistics for details.
+ """
+ # See http://bugs.python.org/issue24068.
+ assert T is not bool, "initial type T is bool"
+ # If the types are the same, no need to coerce anything. Put this
+ # first, so that the usual case (no coercion needed) happens as soon
+ # as possible.
+ if T is S: return T
+ # Mixed int & other coerce to the other type.
+ if S is int or S is bool: return T
+ if T is int: return S
+ # If one is a (strict) subclass of the other, coerce to the subclass.
+ if issubclass(S, T): return S
+ if issubclass(T, S): return T
+ # Ints coerce to the other type.
+ if issubclass(T, int): return S
+ if issubclass(S, int): return T
+ # Mixed fraction & float coerces to float (or float subclass).
+ if issubclass(T, Fraction) and issubclass(S, float):
+ return S
+ if issubclass(T, float) and issubclass(S, Fraction):
+ return T
+ # Any other combination is disallowed.
+ msg = "don't know how to coerce %s and %s"
+ raise TypeError(msg % (T.__name__, S.__name__))
def _exact_ratio(x):
- """Convert Real number x exactly to (numerator, denominator) pair.
+ """Return Real number x to exact (numerator, denominator) pair.
>>> _exact_ratio(0.25)
(1, 4)
x is expected to be an int, Fraction, Decimal or float.
"""
try:
+ # Optimise the common case of floats. We expect that the most often
+ # used numeric type will be builtin floats, so try to make this as
+ # fast as possible.
+ if type(x) is float:
+ return x.as_integer_ratio()
try:
- # int, Fraction
+ # x may be an int, Fraction, or Integral ABC.
return (x.numerator, x.denominator)
except AttributeError:
- # float
try:
+ # x may be a float subclass.
return x.as_integer_ratio()
except AttributeError:
- # Decimal
try:
+ # x may be a Decimal.
return _decimal_to_ratio(x)
except AttributeError:
- msg = "can't convert type '{}' to numerator/denominator"
- raise TypeError(msg.format(type(x).__name__)) from None
+ # Just give up?
+ pass
except (OverflowError, ValueError):
- # INF or NAN
- if __debug__:
- # Decimal signalling NANs cannot be converted to float :-(
- if isinstance(x, Decimal):
- assert not x.is_finite()
- else:
- assert not math.isfinite(x)
+ # float NAN or INF.
+ assert not math.isfinite(x)
return (x, None)
+ msg = "can't convert type '{}' to numerator/denominator"
+ raise TypeError(msg.format(type(x).__name__))
# FIXME This is faster than Fraction.from_decimal, but still too slow.
sign, digits, exp = d.as_tuple()
if exp in ('F', 'n', 'N'): # INF, NAN, sNAN
assert not d.is_finite()
- raise ValueError
+ return (d, None)
num = 0
for digit in digits:
num = num*10 + digit
return (num, den)
+def _convert(value, T):
+ """Convert value to given numeric type T."""
+ if type(value) is T:
+ # This covers the cases where T is Fraction, or where value is
+ # a NAN or INF (Decimal or float).
+ return value
+ if issubclass(T, int) and value.denominator != 1:
+ T = float
+ try:
+ # FIXME: what do we do if this overflows?
+ return T(value)
+ except TypeError:
+ if issubclass(T, Decimal):
+ return T(value.numerator)/T(value.denominator)
+ else:
+ raise
+
+
def _counts(data):
# Generate a table of sorted (value, frequency) pairs.
table = collections.Counter(iter(data)).most_common()
n = len(data)
if n < 1:
raise StatisticsError('mean requires at least one data point')
- return _sum(data)/n
+ T, total, count = _sum(data)
+ assert count == n
+ return _convert(total/n, T)
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
"""
if c is None:
c = mean(data)
- ss = _sum((x-c)**2 for x in data)
+ T, total, count = _sum((x-c)**2 for x in data)
# The following sum should mathematically equal zero, but due to rounding
# error may not.
- ss -= _sum((x-c) for x in data)**2/len(data)
- assert not ss < 0, 'negative sum of square deviations: %f' % ss
- return ss
+ U, total2, count2 = _sum((x-c) for x in data)
+ assert T == U and count == count2
+ total -= total2**2/len(data)
+ assert not total < 0, 'negative sum of square deviations: %f' % total
+ return (T, total)
def variance(data, xbar=None):
n = len(data)
if n < 2:
raise StatisticsError('variance requires at least two data points')
- ss = _ss(data, xbar)
- return ss/(n-1)
+ T, ss = _ss(data, xbar)
+ return _convert(ss/(n-1), T)
def pvariance(data, mu=None):
if n < 1:
raise StatisticsError('pvariance requires at least one data point')
ss = _ss(data, mu)
- return ss/n
+ T, ss = _ss(data, mu)
+ return _convert(ss/n, T)
def stdev(data, xbar=None):
# === Helper functions and class ===
+def _nan_equal(a, b):
+ """Return True if a and b are both the same kind of NAN.
+
+ >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
+ True
+ >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
+ True
+ >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
+ False
+ >>> _nan_equal(Decimal(42), Decimal('NAN'))
+ False
+
+ >>> _nan_equal(float('NAN'), float('NAN'))
+ True
+ >>> _nan_equal(float('NAN'), 0.5)
+ False
+
+ >>> _nan_equal(float('NAN'), Decimal('NAN'))
+ False
+
+ NAN payloads are not compared.
+ """
+ if type(a) is not type(b):
+ return False
+ if isinstance(a, float):
+ return math.isnan(a) and math.isnan(b)
+ aexp = a.as_tuple()[2]
+ bexp = b.as_tuple()[2]
+ return (aexp == bexp) and (aexp in ('n', 'N')) # Both NAN or both sNAN.
+
+
def _calc_errors(actual, expected):
"""Return the absolute and relative errors between two numbers.
self.assertEqual(_exact_ratio(D("12.345")), (12345, 1000))
self.assertEqual(_exact_ratio(D("-1.98")), (-198, 100))
+ def test_inf(self):
+ INF = float("INF")
+ class MyFloat(float):
+ pass
+ class MyDecimal(Decimal):
+ pass
+ for inf in (INF, -INF):
+ for type_ in (float, MyFloat, Decimal, MyDecimal):
+ x = type_(inf)
+ ratio = statistics._exact_ratio(x)
+ self.assertEqual(ratio, (x, None))
+ self.assertEqual(type(ratio[0]), type_)
+ self.assertTrue(math.isinf(ratio[0]))
+
+ def test_float_nan(self):
+ NAN = float("NAN")
+ class MyFloat(float):
+ pass
+ for nan in (NAN, MyFloat(NAN)):
+ ratio = statistics._exact_ratio(nan)
+ self.assertTrue(math.isnan(ratio[0]))
+ self.assertIs(ratio[1], None)
+ self.assertEqual(type(ratio[0]), type(nan))
+
+ def test_decimal_nan(self):
+ NAN = Decimal("NAN")
+ sNAN = Decimal("sNAN")
+ class MyDecimal(Decimal):
+ pass
+ for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
+ ratio = statistics._exact_ratio(nan)
+ self.assertTrue(_nan_equal(ratio[0], nan))
+ self.assertIs(ratio[1], None)
+ self.assertEqual(type(ratio[0]), type(nan))
+
class DecimalToRatioTest(unittest.TestCase):
# Test _decimal_to_ratio private function.
- def testSpecialsRaise(self):
- # Test that NANs and INFs raise ValueError.
- # Non-special values are covered by _exact_ratio above.
- for d in (Decimal('NAN'), Decimal('sNAN'), Decimal('INF')):
- self.assertRaises(ValueError, statistics._decimal_to_ratio, d)
+ def test_infinity(self):
+ # Test that INFs are handled correctly.
+ inf = Decimal('INF')
+ self.assertEqual(statistics._decimal_to_ratio(inf), (inf, None))
+ self.assertEqual(statistics._decimal_to_ratio(-inf), (-inf, None))
+
+ def test_nan(self):
+ # Test that NANs are handled correctly.
+ for nan in (Decimal('NAN'), Decimal('sNAN')):
+ num, den = statistics._decimal_to_ratio(nan)
+ # Because NANs always compare non-equal, we cannot use assertEqual.
+ # Nor can we use an identity test, as we don't guarantee anything
+ # about the object identity.
+ self.assertTrue(_nan_equal(num, nan))
+ self.assertIs(den, None)
def test_sign(self):
# Test sign is calculated correctly.
self.assertEqual(t, (147000, 1))
-class CheckTypeTest(unittest.TestCase):
- # Test _check_type private function.
+class IsFiniteTest(unittest.TestCase):
+ # Test _isfinite private function.
+
+ def test_finite(self):
+ # Test that finite numbers are recognised as finite.
+ for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
+ self.assertTrue(statistics._isfinite(x))
- def test_allowed(self):
- # Test that a type which should be allowed is allowed.
- allowed = set([int, float])
- statistics._check_type(int, allowed)
- statistics._check_type(float, allowed)
+ def test_infinity(self):
+ # Test that INFs are not recognised as finite.
+ for x in (float("inf"), Decimal("inf")):
+ self.assertFalse(statistics._isfinite(x))
+
+ def test_nan(self):
+ # Test that NANs are not recognised as finite.
+ for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
+ self.assertFalse(statistics._isfinite(x))
+
+
+class CoerceTest(unittest.TestCase):
+ # Test that private function _coerce correctly deals with types.
+
+ # The coercion rules are currently an implementation detail, although at
+ # some point that should change. The tests and comments here define the
+ # correct implementation.
+
+ # Pre-conditions of _coerce:
+ #
+ # - The first time _sum calls _coerce, the
+ # - coerce(T, S) will never be called with bool as the first argument;
+ # this is a pre-condition, guarded with an assertion.
+
+ #
+ # - coerce(T, T) will always return T; we assume T is a valid numeric
+ # type. Violate this assumption at your own risk.
+ #
+ # - Apart from as above, bool is treated as if it were actually int.
+ #
+ # - coerce(int, X) and coerce(X, int) return X.
+ # -
+ def test_bool(self):
+ # bool is somewhat special, due to the pre-condition that it is
+ # never given as the first argument to _coerce, and that it cannot
+ # be subclassed. So we test it specially.
+ for T in (int, float, Fraction, Decimal):
+ self.assertIs(statistics._coerce(T, bool), T)
+ class MyClass(T): pass
+ self.assertIs(statistics._coerce(MyClass, bool), MyClass)
+
+ def assertCoerceTo(self, A, B):
+ """Assert that type A coerces to B."""
+ self.assertIs(statistics._coerce(A, B), B)
+ self.assertIs(statistics._coerce(B, A), B)
+
+ def check_coerce_to(self, A, B):
+ """Checks that type A coerces to B, including subclasses."""
+ # Assert that type A is coerced to B.
+ self.assertCoerceTo(A, B)
+ # Subclasses of A are also coerced to B.
+ class SubclassOfA(A): pass
+ self.assertCoerceTo(SubclassOfA, B)
+ # A, and subclasses of A, are coerced to subclasses of B.
+ class SubclassOfB(B): pass
+ self.assertCoerceTo(A, SubclassOfB)
+ self.assertCoerceTo(SubclassOfA, SubclassOfB)
+
+ def assertCoerceRaises(self, A, B):
+ """Assert that coercing A to B, or vice versa, raises TypeError."""
+ self.assertRaises(TypeError, statistics._coerce, (A, B))
+ self.assertRaises(TypeError, statistics._coerce, (B, A))
+
+ def check_type_coercions(self, T):
+ """Check that type T coerces correctly with subclasses of itself."""
+ assert T is not bool
+ # Coercing a type with itself returns the same type.
+ self.assertIs(statistics._coerce(T, T), T)
+ # Coercing a type with a subclass of itself returns the subclass.
+ class U(T): pass
+ class V(T): pass
+ class W(U): pass
+ for typ in (U, V, W):
+ self.assertCoerceTo(T, typ)
+ self.assertCoerceTo(U, W)
+ # Coercing two subclasses that aren't parent/child is an error.
+ self.assertCoerceRaises(U, V)
+ self.assertCoerceRaises(V, W)
- def test_not_allowed(self):
- # Test that a type which should not be allowed raises.
- allowed = set([int, float])
- self.assertRaises(TypeError, statistics._check_type, Decimal, allowed)
+ def test_int(self):
+ # Check that int coerces correctly.
+ self.check_type_coercions(int)
+ for typ in (float, Fraction, Decimal):
+ self.check_coerce_to(int, typ)
- def test_add_to_allowed(self):
- # Test that a second type will be added to the allowed set.
- allowed = set([int])
- statistics._check_type(float, allowed)
- self.assertEqual(allowed, set([int, float]))
+ def test_fraction(self):
+ # Check that Fraction coerces correctly.
+ self.check_type_coercions(Fraction)
+ self.check_coerce_to(Fraction, float)
+
+ def test_decimal(self):
+ # Check that Decimal coerces correctly.
+ self.check_type_coercions(Decimal)
+
+ def test_float(self):
+ # Check that float coerces correctly.
+ self.check_type_coercions(float)
+
+ def test_non_numeric_types(self):
+ for bad_type in (str, list, type(None), tuple, dict):
+ for good_type in (int, float, Fraction, Decimal):
+ self.assertCoerceRaises(good_type, bad_type)
+
+ def test_incompatible_types(self):
+ # Test that incompatible types raise.
+ for T in (float, Fraction):
+ class MySubclass(T): pass
+ self.assertCoerceRaises(T, Decimal)
+ self.assertCoerceRaises(MySubclass, Decimal)
+
+
+class ConvertTest(unittest.TestCase):
+ # Test private _convert function.
+
+ def check_exact_equal(self, x, y):
+ """Check that x equals y, and has the same type as well."""
+ self.assertEqual(x, y)
+ self.assertIs(type(x), type(y))
+
+ def test_int(self):
+ # Test conversions to int.
+ x = statistics._convert(Fraction(71), int)
+ self.check_exact_equal(x, 71)
+ class MyInt(int): pass
+ x = statistics._convert(Fraction(17), MyInt)
+ self.check_exact_equal(x, MyInt(17))
+
+ def test_fraction(self):
+ # Test conversions to Fraction.
+ x = statistics._convert(Fraction(95, 99), Fraction)
+ self.check_exact_equal(x, Fraction(95, 99))
+ class MyFraction(Fraction):
+ def __truediv__(self, other):
+ return self.__class__(super().__truediv__(other))
+ x = statistics._convert(Fraction(71, 13), MyFraction)
+ self.check_exact_equal(x, MyFraction(71, 13))
+
+ def test_float(self):
+ # Test conversions to float.
+ x = statistics._convert(Fraction(-1, 2), float)
+ self.check_exact_equal(x, -0.5)
+ class MyFloat(float):
+ def __truediv__(self, other):
+ return self.__class__(super().__truediv__(other))
+ x = statistics._convert(Fraction(9, 8), MyFloat)
+ self.check_exact_equal(x, MyFloat(1.125))
+
+ def test_decimal(self):
+ # Test conversions to Decimal.
+ x = statistics._convert(Fraction(1, 40), Decimal)
+ self.check_exact_equal(x, Decimal("0.025"))
+ class MyDecimal(Decimal):
+ def __truediv__(self, other):
+ return self.__class__(super().__truediv__(other))
+ x = statistics._convert(Fraction(-15, 16), MyDecimal)
+ self.check_exact_equal(x, MyDecimal("-0.9375"))
+
+ def test_inf(self):
+ for INF in (float('inf'), Decimal('inf')):
+ for inf in (INF, -INF):
+ x = statistics._convert(inf, type(inf))
+ self.check_exact_equal(x, inf)
+
+ def test_nan(self):
+ for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
+ x = statistics._convert(nan, type(nan))
+ self.assertTrue(_nan_equal(x, nan))
# === Tests for public functions ===
self.assertIs(type(result), kind)
-class TestSum(NumericTestCase, UnivariateCommonMixin, UnivariateTypeMixin):
+class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
+ # Common test cases for statistics._sum() function.
+
+ # This test suite looks only at the numeric value returned by _sum,
+ # after conversion to the appropriate type.
+ def setUp(self):
+ def simplified_sum(*args):
+ T, value, n = statistics._sum(*args)
+ return statistics._coerce(value, T)
+ self.func = simplified_sum
+
+
+class TestSum(NumericTestCase):
# Test cases for statistics._sum() function.
+ # These tests look at the entire three value tuple returned by _sum.
+
def setUp(self):
self.func = statistics._sum
def test_empty_data(self):
# Override test for empty data.
for data in ([], (), iter([])):
- self.assertEqual(self.func(data), 0)
- self.assertEqual(self.func(data, 23), 23)
- self.assertEqual(self.func(data, 2.3), 2.3)
+ self.assertEqual(self.func(data), (int, Fraction(0), 0))
+ self.assertEqual(self.func(data, 23), (int, Fraction(23), 0))
+ self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0))
def test_ints(self):
- self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), 60)
- self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), 1008)
+ self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
+ (int, Fraction(60), 8))
+ self.assertEqual(self.func([4, 2, 3, -8, 7], 1000),
+ (int, Fraction(1008), 5))
def test_floats(self):
- self.assertEqual(self.func([0.25]*20), 5.0)
- self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), 3.125)
+ self.assertEqual(self.func([0.25]*20),
+ (float, Fraction(5.0), 20))
+ self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5),
+ (float, Fraction(3.125), 4))
def test_fractions(self):
- F = Fraction
- self.assertEqual(self.func([Fraction(1, 1000)]*500), Fraction(1, 2))
+ self.assertEqual(self.func([Fraction(1, 1000)]*500),
+ (Fraction, Fraction(1, 2), 500))
def test_decimals(self):
D = Decimal
data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
D("3.974"), D("2.328"), D("4.617"), D("2.843"),
]
- self.assertEqual(self.func(data), Decimal("20.686"))
+ self.assertEqual(self.func(data),
+ (Decimal, Decimal("20.686"), 8))
def test_compare_with_math_fsum(self):
# Compare with the math.fsum function.
# Ideally we ought to get the exact same result, but sometimes
# we differ by a very slight amount :-(
data = [random.uniform(-100, 1000) for _ in range(1000)]
- self.assertApproxEqual(self.func(data), math.fsum(data), rel=2e-16)
+ self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
def test_start_argument(self):
# Test that the optional start argument works correctly.
data = [random.uniform(1, 1000) for _ in range(100)]
- t = self.func(data)
- self.assertEqual(t+42, self.func(data, 42))
- self.assertEqual(t-23, self.func(data, -23))
- self.assertEqual(t+1e20, self.func(data, 1e20))
+ t = self.func(data)[1]
+ self.assertEqual(t+42, self.func(data, 42)[1])
+ self.assertEqual(t-23, self.func(data, -23)[1])
+ self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1])
def test_strings_fail(self):
# Sum of strings should fail.
def test_mixed_sum(self):
# Mixed input types are not (currently) allowed.
# Check that mixed data types fail.
- self.assertRaises(TypeError, self.func, [1, 2.0, Fraction(1, 2)])
+ self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
# And so does mixed start argument.
self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
class SumTortureTest(NumericTestCase):
def test_torture(self):
# Tim Peters' torture test for sum, and variants of same.
- self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), 20000.0)
- self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), 20000.0)
- self.assertApproxEqual(
- statistics._sum([1e-100, 1, 1e-100, -1]*10000), 2.0e-96, rel=5e-16
- )
+ self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
+ (float, Fraction(20000.0), 40000))
+ self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
+ (float, Fraction(20000.0), 40000))
+ T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
+ self.assertIs(T, float)
+ self.assertEqual(count, 40000)
+ self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
class SumSpecialValues(NumericTestCase):
def test_nan(self):
for type_ in (float, Decimal):
nan = type_('nan')
- result = statistics._sum([1, nan, 2])
+ result = statistics._sum([1, nan, 2])[1]
self.assertIs(type(result), type_)
self.assertTrue(math.isnan(result))
def do_test_inf(self, inf):
# Adding a single infinity gives infinity.
- result = statistics._sum([1, 2, inf, 3])
+ result = statistics._sum([1, 2, inf, 3])[1]
self.check_infinity(result, inf)
# Adding two infinities of the same sign also gives infinity.
- result = statistics._sum([1, 2, inf, 3, inf, 4])
+ result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
self.check_infinity(result, inf)
def test_float_inf(self):
def test_float_mismatched_infs(self):
# Test that adding two infinities of opposite sign gives a NAN.
inf = float('inf')
- result = statistics._sum([1, 2, inf, 3, -inf, 4])
+ result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
self.assertTrue(math.isnan(result))
def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
inf = Decimal('inf')
data = [1, 2, inf, 3, -inf, 4]
with decimal.localcontext(decimal.ExtendedContext):
- self.assertTrue(math.isnan(statistics._sum(data)))
+ self.assertTrue(math.isnan(statistics._sum(data)[1]))
def test_decimal_basiccontext_mismatched_infs_to_nan(self):
# Test adding Decimal INFs with opposite sign raises InvalidOperation.
d = Decimal('1e4')
self.assertEqual(statistics.mean([d]), d)
+ def test_regression_25177(self):
+ # Regression test for issue 25177.
+ # Ensure very big and very small floats don't overflow.
+ # See http://bugs.python.org/issue25177.
+ self.assertEqual(statistics.mean(
+ [8.988465674311579e+307, 8.98846567431158e+307]),
+ 8.98846567431158e+307)
+ big = 8.98846567431158e+307
+ tiny = 5e-324
+ for n in (2, 3, 5, 200):
+ self.assertEqual(statistics.mean([big]*n), big)
+ self.assertEqual(statistics.mean([tiny]*n), tiny)
+
class TestMedian(NumericTestCase, AverageMixin):
# Common tests for median and all median.* functions.