if (!Ptr)
continue;
+ // True if all users of Ptr are memory accesses that have Ptr as their
+ // pointer operand.
+ auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool {
+ return getPointerOperand(U) == Ptr;
+ });
+
// Ensure the memory instruction will not be scalarized, making its
- // pointer operand non-uniform.
- if (memoryInstructionMustBeScalarized(&I))
+ // pointer operand non-uniform. If the pointer operand is used by some
+ // instruction other than a memory access, we're not going to check if
+ // that other instruction may be scalarized here. Thus, conservatively
+ // assume the pointer operand may be non-uniform.
+ if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I))
PossibleNonUniformPtrs.insert(Ptr);
// If the memory instruction will be vectorized and its pointer operand
}
}
+ // Returns true if Ptr is the pointer operand of a memory access instruction
+ // I, and I is known to not require scalarization.
+ auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
+ return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I);
+ };
+
// For an instruction to be added into Worklist above, all its users inside
// the loop should also be in Worklist. However, this condition cannot be
// true for phi nodes that form a cyclic dependence. We must process phi
// nodes separately. An induction variable will remain uniform if all users
// of the induction variable and induction variable update remain uniform.
+ // The code below handles both pointer and non-pointer induction variables.
for (auto &Induction : Inductions) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// vectorization.
auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
+ return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
+ isVectorizedMemAccessUse(I, Ind);
});
if (!UniformInd)
continue;
// uniform after vectorization.
auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
+ return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
+ isVectorizedMemAccessUse(I, IndUpdate);
});
if (!UniformIndUpdate)
continue;
for.end:
ret void
}
+
+; CHECK-LABEL: pointer_iv_uniform
+;
+; Check that a pointer induction variable is recognized as uniform and remains
+; uniform after vectorization.
+;
+; CHECK: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
+; CHECK: vector.body
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK-NOT: getelementptr
+; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
+; CHECK-NOT: getelementptr
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define void @pointer_iv_uniform(i32* %a, i32 %x, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
+ store i32 %x, i32* %p, align 8
+ %tmp03 = getelementptr inbounds i32, i32* %p, i32 1
+ %i.next = add nuw nsw i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; INTER-LABEL: pointer_iv_non_uniform_0
+;
+; Check that a pointer induction variable with a non-uniform user is not
+; recognized as uniform and is not uniform after vectorization. The pointer
+; induction variable is used by getelementptr instructions that are non-uniform
+; due to scalarization of the stores.
+;
+; INTER-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
+; INTER: vector.body
+; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; INTER: %[[I0:.+]] = shl i64 %index, 2
+; INTER: %next.gep = getelementptr i32, i32* %a, i64 %[[I0]]
+; INTER: %[[S1:.+]] = shl i64 %index, 2
+; INTER: %[[I1:.+]] = or i64 %[[S1]], 4
+; INTER: %next.gep2 = getelementptr i32, i32* %a, i64 %[[I1]]
+; INTER: %[[S2:.+]] = shl i64 %index, 2
+; INTER: %[[I2:.+]] = or i64 %[[S2]], 8
+; INTER: %next.gep3 = getelementptr i32, i32* %a, i64 %[[I2]]
+; INTER: %[[S3:.+]] = shl i64 %index, 2
+; INTER: %[[I3:.+]] = or i64 %[[S3]], 12
+; INTER: %next.gep4 = getelementptr i32, i32* %a, i64 %[[I3]]
+; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define void @pointer_iv_non_uniform_0(i32* %a, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
+ %tmp00 = load i32, i32* %p, align 8
+ %tmp01 = getelementptr inbounds i32, i32* %p, i32 1
+ %tmp02 = load i32, i32* %tmp01, align 8
+ %tmp03 = getelementptr inbounds i32, i32* %p, i32 4
+ %tmp04 = load i32, i32* %tmp03, align 8
+ %tmp05 = getelementptr inbounds i32, i32* %p, i32 5
+ %tmp06 = load i32, i32* %tmp05, align 8
+ %tmp07 = sub i32 %tmp04, %tmp00
+ %tmp08 = sub i32 %tmp02, %tmp02
+ %tmp09 = getelementptr inbounds i32, i32* %p, i32 2
+ store i32 %tmp07, i32* %tmp09, align 8
+ %tmp10 = getelementptr inbounds i32, i32* %p, i32 3
+ store i32 %tmp08, i32* %tmp10, align 8
+ %i.next = add nuw nsw i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; CHECK-LABEL: pointer_iv_non_uniform_1
+;
+; Check that a pointer induction variable with a non-uniform user is not
+; recognized as uniform and is not uniform after vectorization. The pointer
+; induction variable is used by a store that will be scalarized.
+;
+; CHECK-NOT: LV: Found uniform instruction: %p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
+; CHECK: vector.body
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %next.gep = getelementptr x86_fp80, x86_fp80* %a, i64 %index
+; CHECK: %[[I1:.+]] = or i64 %index, 1
+; CHECK: %next.gep2 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I1]]
+; CHECK: %[[I2:.+]] = or i64 %index, 2
+; CHECK: %next.gep3 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I2]]
+; CHECK: %[[I3:.+]] = or i64 %index, 3
+; CHECK: %next.gep4 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I3]]
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define void @pointer_iv_non_uniform_1(x86_fp80* %a, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
+ %tmp0 = sitofp i32 1 to x86_fp80
+ store x86_fp80 %tmp0, x86_fp80* %p, align 16
+ %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %p, i32 1
+ %i.next = add i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; CHECK-LABEL: pointer_iv_mixed
+;
+; Check multiple pointer induction variables where only one is recognized as
+; uniform and remains uniform after vectorization. The other pointer induction
+; variable is not recognized as uniform and is not uniform after vectorization
+; because it is stored to memory.
+;
+; CHECK-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
+; CHECK: LV: Found uniform instruction: %q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
+; CHECK: vector.body
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
+; CHECK: %[[I1:.+]] = or i64 %index, 1
+; CHECK: %next.gep10 = getelementptr i32, i32* %a, i64 %[[I1]]
+; CHECK: %[[I2:.+]] = or i64 %index, 2
+; CHECK: %next.gep11 = getelementptr i32, i32* %a, i64 %[[I2]]
+; CHECK: %[[I3:.+]] = or i64 %index, 3
+; CHECK: %next.gep12 = getelementptr i32, i32* %a, i64 %[[I3]]
+; CHECK: %[[V0:.+]] = insertelement <4 x i32*> undef, i32* %next.gep, i32 0
+; CHECK: %[[V1:.+]] = insertelement <4 x i32*> %[[V0]], i32* %next.gep10, i32 1
+; CHECK: %[[V2:.+]] = insertelement <4 x i32*> %[[V1]], i32* %next.gep11, i32 2
+; CHECK: %[[V3:.+]] = insertelement <4 x i32*> %[[V2]], i32* %next.gep12, i32 3
+; CHECK-NOT: getelementptr
+; CHECK: %next.gep13 = getelementptr i32*, i32** %b, i64 %index
+; CHECK-NOT: getelementptr
+; CHECK: %[[B0:.+]] = bitcast i32** %next.gep13 to <4 x i32*>*
+; CHECK: store <4 x i32*> %[[V3]], <4 x i32*>* %[[B0]], align 8
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @pointer_iv_mixed(i32* %a, i32** %b, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
+ %q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
+ %tmp0 = phi i32 [ %tmp2, %for.body ], [ 0, %entry ]
+ %tmp1 = load i32, i32* %p, align 8
+ %tmp2 = add i32 %tmp1, %tmp0
+ store i32* %p, i32** %q, align 8
+ %tmp3 = getelementptr inbounds i32, i32* %p, i32 1
+ %tmp4 = getelementptr inbounds i32*, i32** %q, i32 1
+ %i.next = add nuw nsw i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ %tmp5 = phi i32 [ %tmp2, %for.body ]
+ ret i32 %tmp5
+}