--- /dev/null
+//===- ThreadSafetyLogical.h -----------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file defines a representation for logical expressions with SExpr leaves
+// that are used as part of fact-checking capability expressions.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_THREAD_SAFETY_LOGICAL_H
+#define LLVM_CLANG_THREAD_SAFETY_LOGICAL_H
+
+#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
+
+namespace clang {
+namespace threadSafety {
+namespace lexpr {
+
+class LExpr {
+public:
+ enum Opcode {
+ Terminal,
+ And,
+ Or,
+ Not
+ };
+ Opcode kind() const { return Kind; }
+
+ /// \brief Logical implication. Returns true if the LExpr implies RHS, i.e. if
+ /// the LExpr holds, then RHS must hold. For example, (A & B) implies A.
+ inline bool implies(const LExpr *RHS) const;
+
+protected:
+ LExpr(Opcode Kind) : Kind(Kind) {}
+
+private:
+ Opcode Kind;
+};
+
+class Terminal : public LExpr {
+ til::SExprRef Expr;
+
+public:
+ Terminal(til::SExpr *Expr) : LExpr(LExpr::Terminal), Expr(Expr) {}
+
+ const til::SExpr *expr() const { return Expr.get(); }
+ til::SExpr *expr() { return Expr.get(); }
+
+ static bool classof(const LExpr *E) { return E->kind() == LExpr::Terminal; }
+};
+
+class BinOp : public LExpr {
+ LExpr *LHS, *RHS;
+
+protected:
+ BinOp(LExpr *LHS, LExpr *RHS, Opcode Code) : LExpr(Code), LHS(LHS), RHS(RHS) {}
+
+public:
+ const LExpr *left() const { return LHS; }
+ LExpr *left() { return LHS; }
+
+ const LExpr *right() const { return RHS; }
+ LExpr *right() { return RHS; }
+};
+
+class And : public BinOp {
+public:
+ And(LExpr *LHS, LExpr *RHS) : BinOp(LHS, RHS, LExpr::And) {}
+
+ static bool classof(const LExpr *E) { return E->kind() == LExpr::And; }
+};
+
+class Or : public BinOp {
+public:
+ Or(LExpr *LHS, LExpr *RHS) : BinOp(LHS, RHS, LExpr::Or) {}
+
+ static bool classof(const LExpr *E) { return E->kind() == LExpr::Or; }
+};
+
+class Not : public LExpr {
+ LExpr *Exp;
+
+public:
+ Not(LExpr *Exp) : LExpr(LExpr::Not), Exp(Exp) {}
+
+ const LExpr *exp() const { return Exp; }
+ LExpr *exp() { return Exp; }
+
+ static bool classof(const LExpr *E) { return E->kind() == LExpr::Not; }
+};
+
+/// \brief Logical implication. Returns true if LHS implies RHS, i.e. if LHS
+/// holds, then RHS must hold. For example, (A & B) implies A.
+bool implies(const LExpr *LHS, const LExpr *RHS);
+
+bool LExpr::implies(const LExpr *RHS) const {
+ return lexpr::implies(this, RHS);
+}
+
+}
+}
+}
+
+#endif // LLVM_CLANG_THREAD_SAFETY_LOGICAL_H
+
#ifndef LLVM_CLANG_THREAD_SAFETY_UTIL_H
#define LLVM_CLANG_THREAD_SAFETY_UTIL_H
+#include "llvm/ADT/StringRef.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstddef>
+#include <vector>
#include <utility>
namespace clang {
PseudoConstantAnalysis.cpp
ReachableCode.cpp
ScanfFormatString.cpp
- ThreadSafetyCommon.cpp
ThreadSafety.cpp
+ ThreadSafetyCommon.cpp
+ ThreadSafetyLogical.cpp
UninitializedValues.cpp
LINK_LIBS
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
}
};
+/// \brief Attempts to create an LExpr from a Clang Expr. If an LExpr cannot be
+/// constructed, returns a null pointer. Recursive function that terminates when
+/// the complete expression is handled, or when a failure to create an LExpr
+/// occurs.
+static clang::threadSafety::lexpr::LExpr *
+buildLExpr(threadSafety::til::MemRegionRef &Arena, const Expr *CurExpr) {
+ using namespace clang::threadSafety::lexpr;
+ using namespace clang::threadSafety::til;
+
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(CurExpr)) {
+ // TODO: Construct the til::SExpr leaf properly.
+ return new Terminal(new (Arena) Variable());
+ } else if (const auto *ME = dyn_cast<MemberExpr>(CurExpr)) {
+ // TODO: Construct the til::SExpr leaf properly.
+ return new Terminal(new (Arena) Variable());
+ } else if (const auto *BOE = dyn_cast<BinaryOperator>(CurExpr)) {
+ switch (BOE->getOpcode()) {
+ case BO_LOr:
+ case BO_LAnd: {
+ auto *LHS = buildLExpr(Arena, BOE->getLHS());
+ auto *RHS = buildLExpr(Arena, BOE->getRHS());
+ if (!LHS || !RHS)
+ return nullptr;
+
+ if (BOE->getOpcode() == BO_LOr)
+ return new Or(LHS, RHS);
+ else
+ return new And(LHS, RHS);
+ }
+ default:
+ break;
+ }
+ } else if (const auto *UOE = dyn_cast<UnaryOperator>(CurExpr)) {
+ if (UOE->getOpcode() == UO_LNot) {
+ auto *E = buildLExpr(Arena, UOE->getSubExpr());
+ return new Not(E);
+ }
+ } else if (const auto *CE = dyn_cast<CastExpr>(CurExpr)) {
+ return buildLExpr(Arena, CE->getSubExpr());
+ } else if (const auto *PE = dyn_cast<ParenExpr>(CurExpr)) {
+ return buildLExpr(Arena, PE->getSubExpr());
+ }
+
+ return nullptr;
+}
+
/// \brief A short list of SExprs
class MutexIDList : public SmallVector<SExpr, 3> {
public:
--- /dev/null
+//===- ThreadSafetyLogical.cpp ---------------------------------*- C++ --*-===//\r
+//\r
+// The LLVM Compiler Infrastructure\r
+//\r
+// This file is distributed under the University of Illinois Open Source\r
+// License. See LICENSE.TXT for details.\r
+//\r
+//===----------------------------------------------------------------------===//\r
+// This file defines a representation for logical expressions with SExpr leaves\r
+// that are used as part of fact-checking capability expressions.\r
+//===----------------------------------------------------------------------===//\r
+\r
+#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"\r
+\r
+using namespace llvm;\r
+using namespace clang::threadSafety::lexpr;\r
+\r
+// Implication. We implement De Morgan's Laws by maintaining LNeg and RNeg\r
+// to keep track of whether LHS and RHS are negated.\r
+static bool implies(const LExpr *LHS, bool LNeg, const LExpr *RHS, bool RNeg) {\r
+ // In comments below, we write => for implication.\r
+\r
+ // Calculates the logical AND implication operator.\r
+ const auto LeftAndOperator = [=](const BinOp *A) {\r
+ return implies(A->left(), LNeg, RHS, RNeg) &&\r
+ implies(A->right(), LNeg, RHS, RNeg);\r
+ };\r
+ const auto RightAndOperator = [=](const BinOp *A) {\r
+ return implies(LHS, LNeg, A->left(), RNeg) &&\r
+ implies(LHS, LNeg, A->right(), RNeg);\r
+ };\r
+\r
+ // Calculates the logical OR implication operator.\r
+ const auto LeftOrOperator = [=](const BinOp *A) {\r
+ return implies(A->left(), LNeg, RHS, RNeg) ||\r
+ implies(A->right(), LNeg, RHS, RNeg);\r
+ };\r
+ const auto RightOrOperator = [=](const BinOp *A) {\r
+ return implies(LHS, LNeg, A->left(), RNeg) ||\r
+ implies(LHS, LNeg, A->right(), RNeg);\r
+ };\r
+\r
+ // Recurse on right.\r
+ switch (RHS->kind()) {\r
+ case LExpr::And:\r
+ // When performing right recursion:\r
+ // C => A & B [if] C => A and C => B\r
+ // When performing right recursion (negated):\r
+ // C => !(A & B) [if] C => !A | !B [===] C => !A or C => !B\r
+ return RNeg ? RightOrOperator(cast<And>(RHS))\r
+ : RightAndOperator(cast<And>(RHS));\r
+ case LExpr::Or:\r
+ // When performing right recursion:\r
+ // C => (A | B) [if] C => A or C => B\r
+ // When performing right recursion (negated):\r
+ // C => !(A | B) [if] C => !A & !B [===] C => !A and C => !B\r
+ return RNeg ? RightAndOperator(cast<Or>(RHS))\r
+ : RightOrOperator(cast<Or>(RHS));\r
+ case LExpr::Not:\r
+ // Note that C => !A is very different from !(C => A). It would be incorrect\r
+ // to return !implies(LHS, RHS).\r
+ return implies(LHS, LNeg, cast<Not>(RHS)->exp(), !RNeg);\r
+ case LExpr::Terminal:\r
+ // After reaching the terminal, it's time to recurse on the left.\r
+ break;\r
+ }\r
+\r
+ // RHS is now a terminal. Recurse on Left.\r
+ switch (LHS->kind()) {\r
+ case LExpr::And:\r
+ // When performing left recursion:\r
+ // A & B => C [if] A => C or B => C\r
+ // When performing left recursion (negated):\r
+ // !(A & B) => C [if] !A | !B => C [===] !A => C and !B => C\r
+ return LNeg ? LeftAndOperator(cast<And>(LHS))\r
+ : LeftOrOperator(cast<And>(LHS));\r
+ case LExpr::Or:\r
+ // When performing left recursion:\r
+ // A | B => C [if] A => C and B => C\r
+ // When performing left recursion (negated):\r
+ // !(A | B) => C [if] !A & !B => C [===] !A => C or !B => C\r
+ return LNeg ? LeftOrOperator(cast<Or>(LHS))\r
+ : LeftAndOperator(cast<Or>(LHS));\r
+ case LExpr::Not:\r
+ // Note that A => !C is very different from !(A => C). It would be incorrect\r
+ // to return !implies(LHS, RHS).\r
+ return implies(cast<Not>(LHS)->exp(), !LNeg, RHS, RNeg);\r
+ case LExpr::Terminal:\r
+ // After reaching the terminal, it's time to perform identity comparisons.\r
+ break;\r
+ }\r
+\r
+ // A => A\r
+ // !A => !A\r
+ if (LNeg != RNeg)\r
+ return false;\r
+\r
+ // FIXME -- this should compare SExprs for equality, not pointer equality.\r
+ return cast<Terminal>(LHS)->expr() == cast<Terminal>(RHS)->expr();\r
+}\r
+\r
+namespace clang {\r
+namespace threadSafety {\r
+namespace lexpr {\r
+\r
+bool implies(const LExpr *LHS, const LExpr *RHS) {\r
+ // Start out by assuming that LHS and RHS are not negated.\r
+ return ::implies(LHS, false, RHS, false);\r
+}\r
+}\r
+}\r
+}\r