int q;
int num_mbs = cpi->common.MBs;
int target_norm_bits_per_mb;
+ RATE_CONTROL *const rc = &cpi->rc;
- double section_err = fpstats->coded_error / fpstats->count;
- double err_per_mb = section_err / num_mbs;
- double err_correction_factor;
+ const double section_err = fpstats->coded_error / fpstats->count;
+ const double err_per_mb = section_err / num_mbs;
if (section_target_bandwitdh <= 0)
- return cpi->rc.worst_quality; // Highest value allowed
+ return rc->worst_quality; // Highest value allowed
target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20)
? (512 * section_target_bandwitdh) / num_mbs
// Try and pick a max Q that will be high enough to encode the
// content at the given rate.
- for (q = cpi->rc.best_quality; q < cpi->rc.worst_quality; q++) {
- int bits_per_mb_at_this_q;
-
- err_correction_factor = calc_correction_factor(err_per_mb,
- ERR_DIVISOR, 0.5, 0.90, q);
-
- bits_per_mb_at_this_q = vp9_rc_bits_per_mb(INTER_FRAME, q,
- err_correction_factor);
-
+ for (q = rc->best_quality; q < rc->worst_quality; q++) {
+ const double err_correction_factor = calc_correction_factor(err_per_mb,
+ ERR_DIVISOR, 0.5, 0.90, q);
+ const int bits_per_mb_at_this_q = vp9_rc_bits_per_mb(INTER_FRAME, q,
+ err_correction_factor);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
if (EOF == input_stats(&cpi->twopass, &tmp_next_frame))
break;
- zz_inter =
- (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
+ zz_inter = (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
if (zz_inter < 0.999)
break;
}
int b_boost = 0;
int flash_detected;
int active_max_gf_interval;
+ RATE_CONTROL *const rc = &cpi->rc;
cpi->twopass.gf_group_bits = 0;
// If this is a key frame or the overlay from a previous arf then
// The error score / cost of this frame has already been accounted for.
- if (cpi->common.frame_type == KEY_FRAME || cpi->rc.source_alt_ref_active)
+ if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
gf_group_err -= gf_first_frame_err;
// Motion breakout threshold for loop below depends on image size.
// interval to spread the cost of the GF.
//
active_max_gf_interval =
- 12 + ((int)vp9_convert_qindex_to_q(cpi->rc.last_q[INTER_FRAME]) >> 5);
+ 12 + ((int)vp9_convert_qindex_to_q(rc->last_q[INTER_FRAME]) >> 5);
- if (active_max_gf_interval > cpi->rc.max_gf_interval)
- active_max_gf_interval = cpi->rc.max_gf_interval;
+ if (active_max_gf_interval > rc->max_gf_interval)
+ active_max_gf_interval = rc->max_gf_interval;
i = 0;
while ((i < cpi->twopass.static_scene_max_gf_interval) &&
- (i < cpi->rc.frames_to_key)) {
+ (i < rc->frames_to_key)) {
i++; // Increment the loop counter
// Accumulate error score of frames in this gf group
}
// Calculate a boost number for this frame
- boost_score +=
- (decay_accumulator *
+ boost_score += (decay_accumulator *
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out));
// Break out conditions.
cpi->twopass.gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
// Don't allow a gf too near the next kf
- if ((cpi->rc.frames_to_key - i) < MIN_GF_INTERVAL) {
- while (i < (cpi->rc.frames_to_key + !cpi->rc.next_key_frame_forced)) {
+ if ((rc->frames_to_key - i) < MIN_GF_INTERVAL) {
+ while (i < (rc->frames_to_key + !rc->next_key_frame_forced)) {
i++;
if (EOF == input_stats(&cpi->twopass, this_frame))
break;
- if (i < cpi->rc.frames_to_key) {
+ if (i < rc->frames_to_key) {
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
}
#endif
// Set the interval until the next gf.
- if (cpi->common.frame_type == KEY_FRAME || cpi->rc.source_alt_ref_active)
- cpi->rc.baseline_gf_interval = i - 1;
+ if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
+ rc->baseline_gf_interval = i - 1;
else
- cpi->rc.baseline_gf_interval = i;
+ rc->baseline_gf_interval = i;
// Should we use the alternate reference frame
if (allow_alt_ref &&
(i < cpi->oxcf.lag_in_frames) &&
(i >= MIN_GF_INTERVAL) &&
// for real scene cuts (not forced kfs) dont allow arf very near kf.
- (cpi->rc.next_key_frame_forced ||
- (i <= (cpi->rc.frames_to_key - MIN_GF_INTERVAL))) &&
+ (rc->next_key_frame_forced ||
+ (i <= (rc->frames_to_key - MIN_GF_INTERVAL))) &&
((next_frame.pcnt_inter > 0.75) ||
(next_frame.pcnt_second_ref > 0.5)) &&
((mv_in_out_accumulator / (double)i > -0.2) ||
(boost_score > 100)) {
// Alternative boost calculation for alt ref
- cpi->rc.gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
- &b_boost);
- cpi->rc.source_alt_ref_pending = 1;
+ rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
+ &b_boost);
+ rc->source_alt_ref_pending = 1;
#if CONFIG_MULTIPLE_ARF
// Set the ARF schedule.
if (cpi->multi_arf_enabled) {
- schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
+ schedule_frames(cpi, 0, -(rc->baseline_gf_interval - 1), 2, 1, 0);
}
#endif
} else {
- cpi->rc.gfu_boost = (int)boost_score;
- cpi->rc.source_alt_ref_pending = 0;
+ rc->gfu_boost = (int)boost_score;
+ rc->source_alt_ref_pending = 0;
#if CONFIG_MULTIPLE_ARF
// Set the GF schedule.
if (cpi->multi_arf_enabled) {
- schedule_frames(cpi, 0, cpi->rc.baseline_gf_interval - 1, 2, 0, 0);
+ schedule_frames(cpi, 0, rc->baseline_gf_interval - 1, 2, 0, 0);
assert(cpi->new_frame_coding_order_period ==
- cpi->rc.baseline_gf_interval);
+ rc->baseline_gf_interval);
}
#endif
}
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
- if (cpi->twopass.gf_group_bits >
- (int64_t)max_bits * cpi->rc.baseline_gf_interval)
- cpi->twopass.gf_group_bits =
- (int64_t)max_bits * cpi->rc.baseline_gf_interval;
+ if (cpi->twopass.gf_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
+ cpi->twopass.gf_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
// Reset the file position
reset_fpf_position(&cpi->twopass, start_pos);
// Assign bits to the arf or gf.
- for (i = 0;
- i <= (cpi->rc.source_alt_ref_pending &&
- cpi->common.frame_type != KEY_FRAME);
- ++i) {
+ for (i = 0; i <= (rc->source_alt_ref_pending &&
+ cpi->common.frame_type != KEY_FRAME); ++i) {
int allocation_chunks;
- int q = cpi->rc.last_q[INTER_FRAME];
+ int q = rc->last_q[INTER_FRAME];
int gf_bits;
- int boost = (cpi->rc.gfu_boost * gfboost_qadjust(q)) / 100;
+ int boost = (rc->gfu_boost * gfboost_qadjust(q)) / 100;
// Set max and minimum boost and hence minimum allocation
- boost = clamp(boost, 125, (cpi->rc.baseline_gf_interval + 1) * 200);
+ boost = clamp(boost, 125, (rc->baseline_gf_interval + 1) * 200);
- if (cpi->rc.source_alt_ref_pending && i == 0)
- allocation_chunks = ((cpi->rc.baseline_gf_interval + 1) * 100) + boost;
+ if (rc->source_alt_ref_pending && i == 0)
+ allocation_chunks = ((rc->baseline_gf_interval + 1) * 100) + boost;
else
- allocation_chunks = (cpi->rc.baseline_gf_interval * 100) + (boost - 100);
+ allocation_chunks = (rc->baseline_gf_interval * 100) + (boost - 100);
// Prevent overflow
if (boost > 1023) {
// If the frame that is to be boosted is simpler than the average for
// the gf/arf group then use an alternative calculation
// based on the error score of the frame itself
- if (cpi->rc.baseline_gf_interval < 1 ||
- mod_frame_err < gf_group_err / (double)cpi->rc.baseline_gf_interval) {
- double alt_gf_grp_bits =
- (double)cpi->twopass.kf_group_bits *
- (mod_frame_err * (double)cpi->rc.baseline_gf_interval) /
+ if (rc->baseline_gf_interval < 1 ||
+ mod_frame_err < gf_group_err / (double)rc->baseline_gf_interval) {
+ double alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits *
+ (mod_frame_err * (double)rc->baseline_gf_interval) /
DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left);
int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
if (i == 0) {
cpi->twopass.gf_bits = gf_bits;
}
- if (i == 1 || (!cpi->rc.source_alt_ref_pending
- && (cpi->common.frame_type != KEY_FRAME))) {
+ if (i == 1 ||
+ (!rc->source_alt_ref_pending &&
+ (cpi->common.frame_type != KEY_FRAME))) {
// Per frame bit target for this frame
- cpi->rc.per_frame_bandwidth = gf_bits;
+ rc->per_frame_bandwidth = gf_bits;
}
}
// the remaining bits amoung the other frames/
// For normal GFs remove the score for the GF itself unless this is
// also a key frame in which case it has already been accounted for.
- if (cpi->rc.source_alt_ref_pending) {
+ if (rc->source_alt_ref_pending) {
cpi->twopass.gf_group_error_left = (int64_t)gf_group_err - mod_frame_err;
} else if (cpi->common.frame_type != KEY_FRAME) {
cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err
// This condition could fail if there are two kfs very close together
// despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
// calculation of alt_extra_bits.
- if (cpi->rc.baseline_gf_interval >= 3) {
- const int boost = cpi->rc.source_alt_ref_pending ?
- b_boost : cpi->rc.gfu_boost;
+ if (rc->baseline_gf_interval >= 3) {
+ const int boost = rc->source_alt_ref_pending ? b_boost : rc->gfu_boost;
if (boost >= 150) {
int alt_extra_bits;
zero_stats(§ionstats);
reset_fpf_position(&cpi->twopass, start_pos);
- for (i = 0; i < cpi->rc.baseline_gf_interval; i++) {
+ for (i = 0; i < rc->baseline_gf_interval; i++) {
input_stats(&cpi->twopass, &next_frame);
accumulate_stats(§ionstats, &next_frame);
}
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS this_frame_copy;
+ RATE_CONTROL *rc = &cpi->rc;
double this_frame_intra_error;
double this_frame_coded_error;
vp9_clear_system_state();
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- cpi->rc.active_worst_quality = cpi->oxcf.cq_level;
+ rc->active_worst_quality = cpi->oxcf.cq_level;
} else if (cpi->common.current_video_frame == 0) {
// Special case code for first frame.
int section_target_bandwidth =
tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
section_target_bandwidth);
- cpi->rc.active_worst_quality = tmp_q;
- cpi->rc.ni_av_qi = tmp_q;
- cpi->rc.avg_q = vp9_convert_qindex_to_q(tmp_q);
+ rc->active_worst_quality = tmp_q;
+ rc->ni_av_qi = tmp_q;
+ rc->avg_q = vp9_convert_qindex_to_q(tmp_q);
// Limit the maxq value returned subsequently.
// This increases the risk of overspend or underspend if the initial
this_frame_coded_error = this_frame.coded_error;
// keyframe and section processing !
- if (cpi->rc.frames_to_key == 0) {
+ if (rc->frames_to_key == 0) {
// Define next KF group and assign bits to it
this_frame_copy = this_frame;
find_next_key_frame(cpi, &this_frame_copy);
}
// Is this a GF / ARF (Note that a KF is always also a GF)
- if (cpi->rc.frames_till_gf_update_due == 0) {
+ if (rc->frames_till_gf_update_due == 0) {
// Define next gf group and assign bits to it
this_frame_copy = this_frame;
cpi->enable_encode_breakout = 2;
}
- cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
cpi->refresh_golden_frame = 1;
} else {
// Otherwise this is an ordinary frame
}
// Set nominal per second bandwidth for this frame
- cpi->target_bandwidth = (int)(cpi->rc.per_frame_bandwidth
- * cpi->output_framerate);
+ cpi->target_bandwidth = (int)(rc->per_frame_bandwidth *
+ cpi->output_framerate);
if (cpi->target_bandwidth < 0)
cpi->target_bandwidth = 0;
// Cumulative effect of decay in prediction quality
if (local_next_frame.pcnt_inter > 0.85)
- decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
+ decay_accumulator *= local_next_frame.pcnt_inter;
else
- decay_accumulator =
- decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
+ decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
// decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
double kf_group_coded_err = 0.0;
double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
+ RATE_CONTROL *const rc = &cpi->rc;
+
vp9_zero(next_frame);
vp9_clear_system_state(); // __asm emms;
cpi->common.frame_type = KEY_FRAME;
// is this a forced key frame by interval
- cpi->rc.this_key_frame_forced = cpi->rc.next_key_frame_forced;
+ rc->this_key_frame_forced = rc->next_key_frame_forced;
// Clear the alt ref active flag as this can never be active on a key frame
- cpi->rc.source_alt_ref_active = 0;
+ rc->source_alt_ref_active = 0;
// Kf is always a gf so clear frames till next gf counter
- cpi->rc.frames_till_gf_update_due = 0;
+ rc->frames_till_gf_update_due = 0;
- cpi->rc.frames_to_key = 1;
+ rc->frames_to_key = 1;
// Take a copy of the initial frame details
first_frame = *this_frame;
break;
// Step on to the next frame
- cpi->rc.frames_to_key++;
+ rc->frames_to_key++;
// If we don't have a real key frame within the next two
// forcekeyframeevery intervals then break out of the loop.
- if (cpi->rc.frames_to_key >= 2 * (int)cpi->key_frame_frequency)
+ if (rc->frames_to_key >= 2 * (int)cpi->key_frame_frequency)
break;
} else {
- cpi->rc.frames_to_key++;
+ rc->frames_to_key++;
}
i++;
}
// We already breakout of the loop above at 2x max.
// This code centers the extra kf if the actual natural
// interval is between 1x and 2x
- if (cpi->oxcf.auto_key
- && cpi->rc.frames_to_key > (int)cpi->key_frame_frequency) {
+ if (cpi->oxcf.auto_key &&
+ rc->frames_to_key > (int)cpi->key_frame_frequency) {
FIRSTPASS_STATS tmp_frame;
- cpi->rc.frames_to_key /= 2;
+ rc->frames_to_key /= 2;
// Copy first frame details
tmp_frame = first_frame;
kf_group_coded_err = 0;
// Rescan to get the correct error data for the forced kf group
- for (i = 0; i < cpi->rc.frames_to_key; i++) {
+ for (i = 0; i < rc->frames_to_key; i++) {
// Accumulate kf group errors
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
kf_group_intra_err += tmp_frame.intra_error;
// Load a the next frame's stats
input_stats(&cpi->twopass, &tmp_frame);
}
- cpi->rc.next_key_frame_forced = 1;
+ rc->next_key_frame_forced = 1;
} else if (cpi->twopass.stats_in == cpi->twopass.stats_in_end) {
- cpi->rc.next_key_frame_forced = 1;
+ rc->next_key_frame_forced = 1;
} else {
- cpi->rc.next_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
}
// Special case for the last key frame of the file
cpi->twopass.modified_error_left));
// Clip based on maximum per frame rate defined by the user.
- max_grp_bits = (int64_t)max_bits * (int64_t)cpi->rc.frames_to_key;
+ max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
if (cpi->twopass.kf_group_bits > max_grp_bits)
cpi->twopass.kf_group_bits = max_grp_bits;
} else {
loop_decay_rate = 1.00; // Starting decay rate
// Scan through the kf group collating various stats.
- for (i = 0; i < cpi->rc.frames_to_key; i++) {
+ for (i = 0; i < rc->frames_to_key; i++) {
double r;
if (EOF == input_stats(&cpi->twopass, &next_frame))
}
// For the first few frames collect data to decide kf boost.
- if (i <= (cpi->rc.max_gf_interval * 2)) {
+ if (i <= (rc->max_gf_interval * 2)) {
if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
r = (IIKFACTOR2 * next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
zero_stats(§ionstats);
reset_fpf_position(&cpi->twopass, start_position);
- for (i = 0; i < cpi->rc.frames_to_key; i++) {
+ for (i = 0; i < rc->frames_to_key; i++) {
input_stats(&cpi->twopass, &next_frame);
accumulate_stats(§ionstats, &next_frame);
}
avg_stats(§ionstats);
- cpi->twopass.section_intra_rating = (int)
- (sectionstats.intra_error
- / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
+ cpi->twopass.section_intra_rating = (int) (sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
}
// Reset the first pass file position
int allocation_chunks;
int alt_kf_bits;
- if (kf_boost < (cpi->rc.frames_to_key * 3))
- kf_boost = (cpi->rc.frames_to_key * 3);
+ if (kf_boost < (rc->frames_to_key * 3))
+ kf_boost = (rc->frames_to_key * 3);
if (kf_boost < 300) // Min KF boost
kf_boost = 300;
// Make a note of baseline boost and the zero motion
// accumulator value for use elsewhere.
- cpi->rc.kf_boost = kf_boost;
+ rc->kf_boost = kf_boost;
cpi->twopass.kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
// We do three calculations for kf size.
// care of by kf_boost.
if (zero_motion_accumulator >= 0.99) {
allocation_chunks =
- ((cpi->rc.frames_to_key - 1) * 10) + kf_boost;
+ ((rc->frames_to_key - 1) * 10) + kf_boost;
} else {
allocation_chunks =
- ((cpi->rc.frames_to_key - 1) * 100) + kf_boost;
+ ((rc->frames_to_key - 1) * 100) + kf_boost;
}
// Prevent overflow
allocation_chunks /= divisor;
}
- cpi->twopass.kf_group_bits =
- (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
+ cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0
+ : cpi->twopass.kf_group_bits;
// Calculate the number of bits to be spent on the key frame
- cpi->twopass.kf_bits =
- (int)((double)kf_boost *
+ cpi->twopass.kf_bits = (int)((double)kf_boost *
((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
// If the key frame is actually easier than the average for the
// kf group (which does sometimes happen... eg a blank intro frame)
// Then use an alternate calculation based on the kf error score
// which should give a smaller key frame.
- if (kf_mod_err < kf_group_err / cpi->rc.frames_to_key) {
+ if (kf_mod_err < kf_group_err / rc->frames_to_key) {
double alt_kf_grp_bits =
((double)cpi->twopass.bits_left *
- (kf_mod_err * (double)cpi->rc.frames_to_key) /
+ (kf_mod_err * (double)rc->frames_to_key) /
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
alt_kf_bits = (int)((double)kf_boost *
// Else if it is much harder than other frames in the group make sure
// it at least receives an allocation in keeping with its relative
// error score
- alt_kf_bits =
- (int)((double)cpi->twopass.bits_left *
+ alt_kf_bits = (int)((double)cpi->twopass.bits_left *
(kf_mod_err /
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
// Peer frame bit target for this frame
- cpi->rc.per_frame_bandwidth = cpi->twopass.kf_bits;
+ rc->per_frame_bandwidth = cpi->twopass.kf_bits;
// Convert to a per second bitrate
cpi->target_bandwidth = (int)(cpi->twopass.kf_bits *
cpi->output_framerate);