]> granicus.if.org Git - python/commitdiff
Convert heapq.py to a C implementation.
authorRaymond Hettinger <python@rcn.com>
Sat, 8 Nov 2003 10:24:38 +0000 (10:24 +0000)
committerRaymond Hettinger <python@rcn.com>
Sat, 8 Nov 2003 10:24:38 +0000 (10:24 +0000)
Lib/heapq.py [deleted file]
Lib/test/test___all__.py
Misc/NEWS
Modules/heapqmodule.c [new file with mode: 0644]
PC/config.c
PCbuild/pythoncore.dsp
setup.py

diff --git a/Lib/heapq.py b/Lib/heapq.py
deleted file mode 100644 (file)
index 2223a97..0000000
+++ /dev/null
@@ -1,255 +0,0 @@
-# -*- coding: Latin-1 -*-
-
-"""Heap queue algorithm (a.k.a. priority queue).
-
-Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
-all k, counting elements from 0.  For the sake of comparison,
-non-existing elements are considered to be infinite.  The interesting
-property of a heap is that a[0] is always its smallest element.
-
-Usage:
-
-heap = []            # creates an empty heap
-heappush(heap, item) # pushes a new item on the heap
-item = heappop(heap) # pops the smallest item from the heap
-item = heap[0]       # smallest item on the heap without popping it
-heapify(x)           # transforms list into a heap, in-place, in linear time
-item = heapreplace(heap, item) # pops and returns smallest item, and adds
-                               # new item; the heap size is unchanged
-
-Our API differs from textbook heap algorithms as follows:
-
-- We use 0-based indexing.  This makes the relationship between the
-  index for a node and the indexes for its children slightly less
-  obvious, but is more suitable since Python uses 0-based indexing.
-
-- Our heappop() method returns the smallest item, not the largest.
-
-These two make it possible to view the heap as a regular Python list
-without surprises: heap[0] is the smallest item, and heap.sort()
-maintains the heap invariant!
-"""
-
-# Original code by Kevin O'Connor, augmented by Tim Peters
-
-__about__ = """Heap queues
-
-[explanation by François Pinard]
-
-Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
-all k, counting elements from 0.  For the sake of comparison,
-non-existing elements are considered to be infinite.  The interesting
-property of a heap is that a[0] is always its smallest element.
-
-The strange invariant above is meant to be an efficient memory
-representation for a tournament.  The numbers below are `k', not a[k]:
-
-                                   0
-
-                  1                                 2
-
-          3               4                5               6
-
-      7       8       9       10      11      12      13      14
-
-    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30
-
-
-In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
-an usual binary tournament we see in sports, each cell is the winner
-over the two cells it tops, and we can trace the winner down the tree
-to see all opponents s/he had.  However, in many computer applications
-of such tournaments, we do not need to trace the history of a winner.
-To be more memory efficient, when a winner is promoted, we try to
-replace it by something else at a lower level, and the rule becomes
-that a cell and the two cells it tops contain three different items,
-but the top cell "wins" over the two topped cells.
-
-If this heap invariant is protected at all time, index 0 is clearly
-the overall winner.  The simplest algorithmic way to remove it and
-find the "next" winner is to move some loser (let's say cell 30 in the
-diagram above) into the 0 position, and then percolate this new 0 down
-the tree, exchanging values, until the invariant is re-established.
-This is clearly logarithmic on the total number of items in the tree.
-By iterating over all items, you get an O(n ln n) sort.
-
-A nice feature of this sort is that you can efficiently insert new
-items while the sort is going on, provided that the inserted items are
-not "better" than the last 0'th element you extracted.  This is
-especially useful in simulation contexts, where the tree holds all
-incoming events, and the "win" condition means the smallest scheduled
-time.  When an event schedule other events for execution, they are
-scheduled into the future, so they can easily go into the heap.  So, a
-heap is a good structure for implementing schedulers (this is what I
-used for my MIDI sequencer :-).
-
-Various structures for implementing schedulers have been extensively
-studied, and heaps are good for this, as they are reasonably speedy,
-the speed is almost constant, and the worst case is not much different
-than the average case.  However, there are other representations which
-are more efficient overall, yet the worst cases might be terrible.
-
-Heaps are also very useful in big disk sorts.  You most probably all
-know that a big sort implies producing "runs" (which are pre-sorted
-sequences, which size is usually related to the amount of CPU memory),
-followed by a merging passes for these runs, which merging is often
-very cleverly organised[1].  It is very important that the initial
-sort produces the longest runs possible.  Tournaments are a good way
-to that.  If, using all the memory available to hold a tournament, you
-replace and percolate items that happen to fit the current run, you'll
-produce runs which are twice the size of the memory for random input,
-and much better for input fuzzily ordered.
-
-Moreover, if you output the 0'th item on disk and get an input which
-may not fit in the current tournament (because the value "wins" over
-the last output value), it cannot fit in the heap, so the size of the
-heap decreases.  The freed memory could be cleverly reused immediately
-for progressively building a second heap, which grows at exactly the
-same rate the first heap is melting.  When the first heap completely
-vanishes, you switch heaps and start a new run.  Clever and quite
-effective!
-
-In a word, heaps are useful memory structures to know.  I use them in
-a few applications, and I think it is good to keep a `heap' module
-around. :-)
-
---------------------
-[1] The disk balancing algorithms which are current, nowadays, are
-more annoying than clever, and this is a consequence of the seeking
-capabilities of the disks.  On devices which cannot seek, like big
-tape drives, the story was quite different, and one had to be very
-clever to ensure (far in advance) that each tape movement will be the
-most effective possible (that is, will best participate at
-"progressing" the merge).  Some tapes were even able to read
-backwards, and this was also used to avoid the rewinding time.
-Believe me, real good tape sorts were quite spectacular to watch!
-From all times, sorting has always been a Great Art! :-)
-"""
-
-__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace']
-
-def heappush(heap, item):
-    """Push item onto heap, maintaining the heap invariant."""
-    heap.append(item)
-    _siftdown(heap, 0, len(heap)-1)
-
-def heappop(heap):
-    """Pop the smallest item off the heap, maintaining the heap invariant."""
-    lastelt = heap.pop()    # raises appropriate IndexError if heap is empty
-    if heap:
-        returnitem = heap[0]
-        heap[0] = lastelt
-        _siftup(heap, 0)
-    else:
-        returnitem = lastelt
-    return returnitem
-
-def heapreplace(heap, item):
-    """Pop and return the current smallest value, and add the new item.
-
-    This is more efficient than heappop() followed by heappush(), and can be
-    more appropriate when using a fixed-size heap.  Note that the value
-    returned may be larger than item!  That constrains reasonable uses of
-    this routine.
-    """
-    returnitem = heap[0]    # raises appropriate IndexError if heap is empty
-    heap[0] = item
-    _siftup(heap, 0)
-    return returnitem
-
-def heapify(x):
-    """Transform list into a heap, in-place, in O(len(heap)) time."""
-    n = len(x)
-    # Transform bottom-up.  The largest index there's any point to looking at
-    # is the largest with a child index in-range, so must have 2*i + 1 < n,
-    # or i < (n-1)/2.  If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
-    # j-1 is the largest, which is n//2 - 1.  If n is odd = 2*j+1, this is
-    # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
-    for i in reversed(xrange(n//2)):
-        _siftup(x, i)
-
-# 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
-# is the index of a leaf with a possibly out-of-order value.  Restore the
-# heap invariant.
-def _siftdown(heap, startpos, pos):
-    newitem = heap[pos]
-    # Follow the path to the root, moving parents down until finding a place
-    # newitem fits.
-    while pos > startpos:
-        parentpos = (pos - 1) >> 1
-        parent = heap[parentpos]
-        if parent <= newitem:
-            break
-        heap[pos] = parent
-        pos = parentpos
-    heap[pos] = newitem
-
-# The child indices of heap index pos are already heaps, and we want to make
-# a heap at index pos too.  We do this by bubbling the smaller child of
-# pos up (and so on with that child's children, etc) until hitting a leaf,
-# then using _siftdown to move the oddball originally at index pos into place.
-#
-# We *could* break out of the loop as soon as we find a pos where newitem <=
-# both its children, but turns out that's not a good idea, and despite that
-# many books write the algorithm that way.  During a heap pop, the last array
-# element is sifted in, and that tends to be large, so that comparing it
-# against values starting from the root usually doesn't pay (= usually doesn't
-# get us out of the loop early).  See Knuth, Volume 3, where this is
-# explained and quantified in an exercise.
-#
-# Cutting the # of comparisons is important, since these routines have no
-# way to extract "the priority" from an array element, so that intelligence
-# is likely to be hiding in custom __cmp__ methods, or in array elements
-# storing (priority, record) tuples.  Comparisons are thus potentially
-# expensive.
-#
-# On random arrays of length 1000, making this change cut the number of
-# comparisons made by heapify() a little, and those made by exhaustive
-# heappop() a lot, in accord with theory.  Here are typical results from 3
-# runs (3 just to demonstrate how small the variance is):
-#
-# Compares needed by heapify     Compares needed by 1000 heappops
-# --------------------------     --------------------------------
-# 1837 cut to 1663               14996 cut to 8680
-# 1855 cut to 1659               14966 cut to 8678
-# 1847 cut to 1660               15024 cut to 8703
-#
-# Building the heap by using heappush() 1000 times instead required
-# 2198, 2148, and 2219 compares:  heapify() is more efficient, when
-# you can use it.
-#
-# The total compares needed by list.sort() on the same lists were 8627,
-# 8627, and 8632 (this should be compared to the sum of heapify() and
-# heappop() compares):  list.sort() is (unsurprisingly!) more efficient
-# for sorting.
-
-def _siftup(heap, pos):
-    endpos = len(heap)
-    startpos = pos
-    newitem = heap[pos]
-    # Bubble up the smaller child until hitting a leaf.
-    childpos = 2*pos + 1    # leftmost child position
-    while childpos < endpos:
-        # Set childpos to index of smaller child.
-        rightpos = childpos + 1
-        if rightpos < endpos and heap[rightpos] <= heap[childpos]:
-            childpos = rightpos
-        # Move the smaller child up.
-        heap[pos] = heap[childpos]
-        pos = childpos
-        childpos = 2*pos + 1
-    # The leaf at pos is empty now.  Put newitem there, and bubble it up
-    # to its final resting place (by sifting its parents down).
-    heap[pos] = newitem
-    _siftdown(heap, startpos, pos)
-
-if __name__ == "__main__":
-    # Simple sanity test
-    heap = []
-    data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
-    for item in data:
-        heappush(heap, item)
-    sort = []
-    while heap:
-        sort.append(heappop(heap))
-    print sort
index 6643a1984a1b896aadae6a1b981fbb2505ce0abc..99eaa591bad7fbc7194dbfeb52a1ebcc3f838afc 100644 (file)
@@ -100,7 +100,6 @@ class AllTest(unittest.TestCase):
         self.check_all("glob")
         self.check_all("gopherlib")
         self.check_all("gzip")
-        self.check_all("heapq")
         self.check_all("htmllib")
         self.check_all("httplib")
         self.check_all("ihooks")
index 838cfc8009b5928a98032e83e598650f47557348..16fc1197ebe2d5fa32acef4fe975777be5380404 100644 (file)
--- a/Misc/NEWS
+++ b/Misc/NEWS
@@ -104,6 +104,8 @@ Extension modules
 Library
 -------
 
+- heapq.py has been converted to C for improved performance
+
 - traceback.format_exc has been added (similar to print_exc but it returns
   a string).
 
diff --git a/Modules/heapqmodule.c b/Modules/heapqmodule.c
new file mode 100644 (file)
index 0000000..8a6a4f5
--- /dev/null
@@ -0,0 +1,357 @@
+/* Drop in replacement for heapq.py 
+
+C implementation derived directly from heapq.py in Py2.3
+which was written by Kevin O'Connor, augmented by Tim Peters,
+annotated by François Pinard, and converted to C by Raymond Hettinger.
+
+*/
+
+#include "Python.h"
+
+int
+_siftdown(PyListObject *heap, int startpos, int pos)
+{
+       PyObject *newitem, *parent;
+       int cmp, parentpos;
+
+       if (pos >= PyList_GET_SIZE(heap)) {
+               PyErr_SetString(PyExc_IndexError, "index out of range");
+               return -1;
+       }
+
+       newitem = PyList_GET_ITEM(heap, pos);
+       Py_INCREF(newitem);
+       /* Follow the path to the root, moving parents down until finding
+          a place newitem fits. */
+       while (pos > startpos){
+               parentpos = (pos - 1) >> 1;
+               parent = PyList_GET_ITEM(heap, parentpos);
+               cmp = PyObject_RichCompareBool(parent, newitem, Py_LE);
+               if (cmp == -1)
+                       return -1;
+               if (cmp == 1)
+                       break;
+               Py_INCREF(parent);
+               Py_DECREF(PyList_GET_ITEM(heap, pos));
+               PyList_SET_ITEM(heap, pos, parent);
+               pos = parentpos;
+       }
+       Py_DECREF(PyList_GET_ITEM(heap, pos));
+       PyList_SET_ITEM(heap, pos, newitem);
+       return 0;
+}
+
+int
+_siftup(PyListObject *heap, int pos)
+{
+       int startpos, endpos, childpos, rightpos;
+       int cmp;
+       PyObject *newitem, *tmp;
+
+       endpos = PyList_GET_SIZE(heap);
+       startpos = pos;
+       if (pos >= endpos) {
+               PyErr_SetString(PyExc_IndexError, "index out of range");
+               return -1;
+       }
+       newitem = PyList_GET_ITEM(heap, pos);
+       Py_INCREF(newitem);
+
+       /* Bubble up the smaller child until hitting a leaf. */
+       childpos = 2*pos + 1;    /* leftmost child position  */
+       while (childpos < endpos) {
+               /* Set childpos to index of smaller child.   */
+               rightpos = childpos + 1;
+               if (rightpos < endpos) {
+                       cmp = PyObject_RichCompareBool(
+                               PyList_GET_ITEM(heap, rightpos),
+                               PyList_GET_ITEM(heap, childpos),
+                               Py_LE);
+                       if (cmp == -1)
+                               return -1;
+                       if (cmp == 1)
+                               childpos = rightpos;
+               }
+               /* Move the smaller child up. */
+               tmp = PyList_GET_ITEM(heap, childpos);
+               Py_INCREF(tmp);
+               Py_DECREF(PyList_GET_ITEM(heap, pos));
+               PyList_SET_ITEM(heap, pos, tmp);
+               pos = childpos;
+               childpos = 2*pos + 1;
+       }
+
+       /* The leaf at pos is empty now.  Put newitem there, and and bubble
+          it up to its final resting place (by sifting its parents down). */
+       Py_DECREF(PyList_GET_ITEM(heap, pos));
+       PyList_SET_ITEM(heap, pos, newitem);
+       return _siftdown(heap, startpos, pos);
+}
+
+PyObject *
+heappush(PyObject *self, PyObject *args)
+{
+       PyObject *heap, *item;
+
+       if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
+               return NULL;
+
+       if (!PyList_Check(heap)) {
+               PyErr_SetString(PyExc_ValueError, "heap argument must be a list");
+               return NULL;
+       }
+
+       if (PyList_Append(heap, item) == -1)
+               return NULL;
+
+       if (_siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1) == -1)
+               return NULL;
+       Py_INCREF(Py_None);
+       return Py_None;
+}
+
+PyDoc_STRVAR(heappush_doc,
+"Push item onto heap, maintaining the heap invariant.");
+
+PyObject *
+heappop(PyObject *self, PyObject *heap)
+{
+       PyObject *lastelt, *returnitem;
+       int n;
+
+       /* # raises appropriate IndexError if heap is empty */
+       n = PyList_GET_SIZE(heap);
+       if (n == 0) {
+               PyErr_SetString(PyExc_IndexError, "index out of range");
+               return NULL;
+       }
+
+       lastelt = PyList_GET_ITEM(heap, n-1) ;
+       Py_INCREF(lastelt);
+       PyList_SetSlice(heap, n-1, n, NULL);
+       n--;
+
+       if (!n) 
+               return lastelt;
+       returnitem = PyList_GET_ITEM(heap, 0);
+       PyList_SET_ITEM(heap, 0, lastelt);
+       if (_siftup((PyListObject *)heap, 0) == -1) {
+               Py_DECREF(returnitem);
+               return NULL;
+       }
+       return returnitem;
+}
+
+PyDoc_STRVAR(heappop_doc,
+"Pop the smallest item off the heap, maintaining the heap invariant.");
+
+PyObject *
+heapreplace(PyObject *self, PyObject *args)
+{
+       PyObject *heap, *item, *returnitem;
+
+       if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
+               return NULL;
+
+       if (!PyList_Check(heap)) {
+               PyErr_SetString(PyExc_ValueError, "heap argument must be a list");
+               return NULL;
+       }
+
+       if (PyList_GET_SIZE(heap) < 1) {
+               PyErr_SetString(PyExc_IndexError, "index out of range");
+               return NULL;
+       }
+
+       returnitem = PyList_GET_ITEM(heap, 0);
+       Py_INCREF(item);
+       PyList_SET_ITEM(heap, 0, item);
+       if (_siftup((PyListObject *)heap, 0) == -1) {
+               Py_DECREF(returnitem);
+               return NULL;
+       }
+       return returnitem;
+}
+
+PyDoc_STRVAR(heapreplace_doc,
+"Pop and return the current smallest value, and add the new item.\n\
+\n\
+This is more efficient than heappop() followed by heappush(), and can be\n\
+more appropriate when using a fixed-size heap.  Note that the value\n\
+returned may be larger than item!  That constrains reasonable uses of\n\
+this routine.\n");
+
+PyObject *
+heapify(PyObject *self, PyObject *heap)
+{
+       int i, n;
+
+       if (!PyList_Check(heap)) {
+               PyErr_SetString(PyExc_ValueError, "heap argument must be a list");
+               return NULL;
+       }
+
+       n = PyList_GET_SIZE(heap);
+       /* Transform bottom-up.  The largest index there's any point to
+          looking at is the largest with a child index in-range, so must
+          have 2*i + 1 < n, or i < (n-1)/2.  If n is even = 2*j, this is
+          (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1.  If
+          n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
+          and that's again n//2-1.
+       */
+       for (i=n/2-1 ; i>=0 ; i--)
+               if(_siftup((PyListObject *)heap, i) == -1)
+                       return NULL;
+       Py_INCREF(Py_None);
+       return Py_None;
+}
+
+PyDoc_STRVAR(heapify_doc,
+"Transform list into a heap, in-place, in O(len(heap)) time.");
+
+static PyMethodDef heapq_methods[] = {
+       {"heappush",    (PyCFunction)heappush,          
+               METH_VARARGS,   heappush_doc},
+       {"heappop",     (PyCFunction)heappop,
+               METH_O,         heappop_doc},
+       {"heapreplace", (PyCFunction)heapreplace,
+               METH_VARARGS,   heapreplace_doc},
+       {"heapify",     (PyCFunction)heapify,
+               METH_O,         heapify_doc},
+       {NULL,          NULL}           /* sentinel */
+};
+
+PyDoc_STRVAR(module_doc,
+"Heap queue algorithm (a.k.a. priority queue).\n\
+\n\
+Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
+all k, counting elements from 0.  For the sake of comparison,\n\
+non-existing elements are considered to be infinite.  The interesting\n\
+property of a heap is that a[0] is always its smallest element.\n\
+\n\
+Usage:\n\
+\n\
+heap = []            # creates an empty heap\n\
+heappush(heap, item) # pushes a new item on the heap\n\
+item = heappop(heap) # pops the smallest item from the heap\n\
+item = heap[0]       # smallest item on the heap without popping it\n\
+heapify(x)           # transforms list into a heap, in-place, in linear time\n\
+item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
+                               # new item; the heap size is unchanged\n\
+\n\
+Our API differs from textbook heap algorithms as follows:\n\
+\n\
+- We use 0-based indexing.  This makes the relationship between the\n\
+  index for a node and the indexes for its children slightly less\n\
+  obvious, but is more suitable since Python uses 0-based indexing.\n\
+\n\
+- Our heappop() method returns the smallest item, not the largest.\n\
+\n\
+These two make it possible to view the heap as a regular Python list\n\
+without surprises: heap[0] is the smallest item, and heap.sort()\n\
+maintains the heap invariant!\n");
+
+
+PyDoc_STRVAR(__about__,
+"Heap queues\n\
+\n\
+[explanation by François Pinard]\n\
+\n\
+Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
+all k, counting elements from 0.  For the sake of comparison,\n\
+non-existing elements are considered to be infinite.  The interesting\n\
+property of a heap is that a[0] is always its smallest element.\n"
+"\n\
+The strange invariant above is meant to be an efficient memory\n\
+representation for a tournament.  The numbers below are `k', not a[k]:\n\
+\n\
+                                   0\n\
+\n\
+                  1                                 2\n\
+\n\
+          3               4                5               6\n\
+\n\
+      7       8       9       10      11      12      13      14\n\
+\n\
+    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30\n\
+\n\
+\n\
+In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In\n\
+an usual binary tournament we see in sports, each cell is the winner\n\
+over the two cells it tops, and we can trace the winner down the tree\n\
+to see all opponents s/he had.  However, in many computer applications\n\
+of such tournaments, we do not need to trace the history of a winner.\n\
+To be more memory efficient, when a winner is promoted, we try to\n\
+replace it by something else at a lower level, and the rule becomes\n\
+that a cell and the two cells it tops contain three different items,\n\
+but the top cell \"wins\" over the two topped cells.\n"
+"\n\
+If this heap invariant is protected at all time, index 0 is clearly\n\
+the overall winner.  The simplest algorithmic way to remove it and\n\
+find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
+diagram above) into the 0 position, and then percolate this new 0 down\n\
+the tree, exchanging values, until the invariant is re-established.\n\
+This is clearly logarithmic on the total number of items in the tree.\n\
+By iterating over all items, you get an O(n ln n) sort.\n"
+"\n\
+A nice feature of this sort is that you can efficiently insert new\n\
+items while the sort is going on, provided that the inserted items are\n\
+not \"better\" than the last 0'th element you extracted.  This is\n\
+especially useful in simulation contexts, where the tree holds all\n\
+incoming events, and the \"win\" condition means the smallest scheduled\n\
+time.  When an event schedule other events for execution, they are\n\
+scheduled into the future, so they can easily go into the heap.  So, a\n\
+heap is a good structure for implementing schedulers (this is what I\n\
+used for my MIDI sequencer :-).\n"
+"\n\
+Various structures for implementing schedulers have been extensively\n\
+studied, and heaps are good for this, as they are reasonably speedy,\n\
+the speed is almost constant, and the worst case is not much different\n\
+than the average case.  However, there are other representations which\n\
+are more efficient overall, yet the worst cases might be terrible.\n"
+"\n\
+Heaps are also very useful in big disk sorts.  You most probably all\n\
+know that a big sort implies producing \"runs\" (which are pre-sorted\n\
+sequences, which size is usually related to the amount of CPU memory),\n\
+followed by a merging passes for these runs, which merging is often\n\
+very cleverly organised[1].  It is very important that the initial\n\
+sort produces the longest runs possible.  Tournaments are a good way\n\
+to that.  If, using all the memory available to hold a tournament, you\n\
+replace and percolate items that happen to fit the current run, you'll\n\
+produce runs which are twice the size of the memory for random input,\n\
+and much better for input fuzzily ordered.\n"
+"\n\
+Moreover, if you output the 0'th item on disk and get an input which\n\
+may not fit in the current tournament (because the value \"wins\" over\n\
+the last output value), it cannot fit in the heap, so the size of the\n\
+heap decreases.  The freed memory could be cleverly reused immediately\n\
+for progressively building a second heap, which grows at exactly the\n\
+same rate the first heap is melting.  When the first heap completely\n\
+vanishes, you switch heaps and start a new run.  Clever and quite\n\
+effective!\n\
+\n\
+In a word, heaps are useful memory structures to know.  I use them in\n\
+a few applications, and I think it is good to keep a `heap' module\n\
+around. :-)\n"
+"\n\
+--------------------\n\
+[1] The disk balancing algorithms which are current, nowadays, are\n\
+more annoying than clever, and this is a consequence of the seeking\n\
+capabilities of the disks.  On devices which cannot seek, like big\n\
+tape drives, the story was quite different, and one had to be very\n\
+clever to ensure (far in advance) that each tape movement will be the\n\
+most effective possible (that is, will best participate at\n\
+\"progressing\" the merge).  Some tapes were even able to read\n\
+backwards, and this was also used to avoid the rewinding time.\n\
+Believe me, real good tape sorts were quite spectacular to watch!\n\
+From all times, sorting has always been a Great Art! :-)\n");
+
+PyMODINIT_FUNC
+initheapq(void)
+{
+       PyObject *m;
+
+       m = Py_InitModule3("heapq", heapq_methods, module_doc);
+       PyModule_AddObject(m, "__about__", PyString_FromString(__about__));
+}
+
index ea65e912210a5bd08c072154ffa48e3e6c16b479..d163b797a4e225e5010447412a8e6865a579a824 100644 (file)
@@ -46,6 +46,7 @@ extern void initxxsubtype(void);
 extern void initzipimport(void);
 extern void init_random(void);
 extern void inititertools(void);
+extern void initheapq(void);
 
 /* tools/freeze/makeconfig.py marker for additional "extern" */
 /* -- ADDMODULE MARKER 1 -- */
@@ -98,6 +99,7 @@ struct _inittab _PyImport_Inittab[] = {
        {"_weakref", init_weakref},
        {"_hotshot", init_hotshot},
        {"_random", init_random},
+        {"heapq", initheapq},
        {"itertools", inititertools},
 
        {"xxsubtype", initxxsubtype},
index c59c5aa4ab82b1d4251bb2d8fc098c29b33201cf..1ccc83aee16e3571e3e44410b45aa808b3886790 100644 (file)
@@ -298,6 +298,10 @@ SOURCE=..\Parser\grammar1.c
 # End Source File\r
 # Begin Source File\r
 \r
+SOURCE=..\Modules\heapqmodule.c\r
+# End Source File\r
+# Begin Source File\r
+\r
 SOURCE=..\Modules\imageop.c\r
 # End Source File\r
 # Begin Source File\r
index c444a617bb1d828cebf2469f2057ef7ef22704bf..aef22ec7fefc807254829f3943e4dead153263ac 100644 (file)
--- a/setup.py
+++ b/setup.py
@@ -322,6 +322,8 @@ class PyBuildExt(build_ext):
         exts.append( Extension("_random", ["_randommodule.c"]) )
         # fast iterator tools implemented in C
         exts.append( Extension("itertools", ["itertoolsmodule.c"]) )
+        # heapq
+        exts.append( Extension("heapq", ["heapqmodule.c"]) )
         # operator.add() and similar goodies
         exts.append( Extension('operator', ['operator.c']) )
         # Python C API test module