//
//===----------------------------------------------------------------------===//
+#include "llvm/BinaryFormat/XCOFF.h"
+#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSectionXCOFF.h"
+#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
+#include "llvm/MC/StringTableBuilder.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/MathExtras.h"
+
+#include <deque>
using namespace llvm;
+// An XCOFF object file has a limited set of predefined sections. The most
+// important ones for us (right now) are:
+// .text --> contains program code and read-only data.
+// .data --> contains initialized data, function descriptors, and the TOC.
+// .bss --> contains uninitialized data.
+// Each of these sections is composed of 'Control Sections'. A Control Section
+// is more commonly referred to as a csect. A csect is an indivisible unit of
+// code or data, and acts as a container for symbols. A csect is mapped
+// into a section based on its storage-mapping class, with the exception of
+// XMC_RW which gets mapped to either .data or .bss based on whether it's
+// explicitly initialized or not.
+//
+// We don't represent the sections in the MC layer as there is nothing
+// interesting about them at at that level: they carry information that is
+// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {
+constexpr unsigned DefaultSectionAlign = 4;
+
+// Packs the csect's alignment and type into a byte.
+uint8_t getEncodedType(const MCSectionXCOFF *);
+
+// Wrapper around an MCSymbolXCOFF.
+struct Symbol {
+ const MCSymbolXCOFF *const MCSym;
+ uint32_t SymbolTableIndex;
+
+ XCOFF::StorageClass getStorageClass() const {
+ return MCSym->getStorageClass();
+ }
+ StringRef getName() const { return MCSym->getName(); }
+ bool nameInStringTable() const {
+ return MCSym->getName().size() > XCOFF::NameSize;
+ }
+
+ Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
+};
+
+// Wrapper for an MCSectionXCOFF.
+struct ControlSection {
+ const MCSectionXCOFF *const MCCsect;
+ uint32_t SymbolTableIndex;
+ uint32_t Address;
+ uint32_t Size;
+
+ SmallVector<Symbol, 1> Syms;
+
+ ControlSection(const MCSectionXCOFF *MCSec)
+ : MCCsect(MCSec), SymbolTableIndex(-1), Address(-1) {}
+};
+
+// Represents the data related to a section excluding the csects that make up
+// the raw data of the section. The csects are stored separately as not all
+// sections contain csects, and some sections contain csects which are better
+// stored separately, e.g. the .data section containing read-write, descriptor,
+// TOCBase and TOC-entry csects.
+struct Section {
+ char Name[XCOFF::NameSize];
+ // The physical/virtual address of the section. For an object file
+ // these values are equivalent.
+ uint32_t Address;
+ uint32_t Size;
+ uint32_t FileOffsetToData;
+ uint32_t FileOffsetToRelocations;
+ uint32_t RelocationCount;
+ int32_t Flags;
+
+ uint16_t Index;
+
+ // Virtual sections do not need storage allocated in the object file.
+ const bool IsVirtual;
+
+ void reset() {
+ Address = 0;
+ Size = 0;
+ FileOffsetToData = 0;
+ FileOffsetToRelocations = 0;
+ RelocationCount = 0;
+ Index = -1;
+ }
+
+ Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual)
+ : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
+ RelocationCount(0), Flags(Flags), Index(-1), IsVirtual(IsVirtual) {
+ strncpy(Name, N, XCOFF::NameSize);
+ }
+};
+
class XCOFFObjectWriter : public MCObjectWriter {
+ // Type to be used for a container representing a set of csects with
+ // (approximately) the same storage mapping class. For example all the csects
+ // with a storage mapping class of `xmc_pr` will get placed into the same
+ // container.
+ using ControlSections = std::deque<ControlSection>;
+
support::endian::Writer W;
std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
+ StringTableBuilder Strings;
+
+ // The non-empty sections, in the order they will appear in the section header
+ // table.
+ std::vector<Section *> Sections;
+
+ // The Predefined sections.
+ Section Text;
+ Section BSS;
+
+ // ControlSections. These store the csects which make up different parts of
+ // the sections. Should have one for each set of csects that get mapped into
+ // the same section and get handled in a 'similar' way.
+ ControlSections ProgramCodeCsects;
+ ControlSections BSSCsects;
+
+ uint32_t SymbolTableEntryCount = 0;
+ uint32_t SymbolTableOffset = 0;
+
+ virtual void reset() override;
void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
+ void writeFileHeader();
+ void writeSectionHeaderTable();
+ void writeSymbolTable();
+
+ // Called after all the csects and symbols have been processed by
+ // `executePostLayoutBinding`, this function handles building up the majority
+ // of the structures in the object file representation. Namely:
+ // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
+ // sizes.
+ // *) Assigns symbol table indices.
+ // *) Builds up the section header table by adding any non-empty sections to
+ // `Sections`.
+ void assignAddressesAndIndices(const llvm::MCAsmLayout &);
+
+ bool
+ needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
+ return false;
+ }
+
+ // Returns the size of the auxiliary header to be written to the object file.
+ size_t auxiliaryHeaderSize() const {
+ assert(!needsAuxiliaryHeader() &&
+ "Auxiliary header support not implemented.");
+ return 0;
+ }
+
public:
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS);
XCOFFObjectWriter::XCOFFObjectWriter(
std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
- : W(OS, support::big), TargetObjectWriter(std::move(MOTW)) {}
+ : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
+ Strings(StringTableBuilder::XCOFF),
+ Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false),
+ BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true) {}
+
+void XCOFFObjectWriter::reset() {
+ // Reset any sections we have written to, and empty the section header table.
+ for (auto *Sec : Sections)
+ Sec->reset();
+ Sections.clear();
+
+ // Clear any csects we have stored.
+ ProgramCodeCsects.clear();
+ BSSCsects.clear();
+
+ // Reset the symbol table and string table.
+ SymbolTableEntryCount = 0;
+ SymbolTableOffset = 0;
+ Strings.clear();
+
+ MCObjectWriter::reset();
+}
+
+void XCOFFObjectWriter::executePostLayoutBinding(
+ llvm::MCAssembler &Asm, const llvm::MCAsmLayout &Layout) {
+ if (TargetObjectWriter->is64Bit())
+ report_fatal_error("64-bit XCOFF object files are not supported yet.");
+
+ // Maps the MC Section representation to its corresponding ControlSection
+ // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
+ // from its containing MCSectionXCOFF.
+ DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;
-void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &,
- const MCAsmLayout &) {
- // TODO Implement once we have sections and symbols to handle.
+ for (const auto &S : Asm) {
+ const MCSectionXCOFF *MCSec = dyn_cast<const MCSectionXCOFF>(&S);
+ assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
+ "Cannot add a csect twice.");
+
+ switch (MCSec->getMappingClass()) {
+ case XCOFF::XMC_PR:
+ assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
+ "Only an initialized csect can contain program code.");
+ // TODO FIXME Handle .text section csects.
+ break;
+ case XCOFF::XMC_RW:
+ if (XCOFF::XTY_CM == MCSec->getCSectType()) {
+ BSSCsects.emplace_back(MCSec);
+ WrapperMap[MCSec] = &BSSCsects.back();
+ break;
+ }
+ report_fatal_error("Unhandled mapping of read-write csect to section.");
+ default:
+ report_fatal_error("Unhandled mapping of csect to section.");
+ }
+ }
+
+ for (const MCSymbol &S : Asm.symbols()) {
+ // Nothing to do for temporary symbols.
+ if (S.isTemporary())
+ continue;
+ const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
+
+ // Map the symbol into its containing csect.
+ MCSectionXCOFF *ContainingCsect =
+ dyn_cast<MCSectionXCOFF>(XSym->getFragment(false)->getParent());
+ assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
+ "Expected containing csect to exist in map");
+
+ // Lookup the containing csect and add the symbol to it.
+ WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);
+
+ // If the name does not fit in the storage provided in the symbol table
+ // entry, add it to the string table.
+ const Symbol &WrapperSym = WrapperMap[ContainingCsect]->Syms.back();
+ if (WrapperSym.nameInStringTable()) {
+ Strings.add(WrapperSym.getName());
+ }
+ }
+
+ Strings.finalize();
+ assignAddressesAndIndices(Layout);
}
void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
uint64_t StartOffset = W.OS.tell();
- // TODO FIXME Assign section numbers/finalize sections.
+ writeFileHeader();
+ writeSectionHeaderTable();
+ // TODO writeSections();
+ // TODO writeRelocations();
// TODO FIXME Finalize symbols.
+ writeSymbolTable();
+ // Write the string table.
+ Strings.write(W.OS);
+ return W.OS.tell() - StartOffset;
+}
+
+void XCOFFObjectWriter::writeFileHeader() {
// Magic.
W.write<uint16_t>(0x01df);
// Number of sections.
- W.write<uint16_t>(0);
+ W.write<uint16_t>(Sections.size());
// Timestamp field. For reproducible output we write a 0, which represents no
// timestamp.
W.write<int32_t>(0);
// Byte Offset to the start of the symbol table.
- W.write<uint32_t>(0);
+ W.write<uint32_t>(SymbolTableOffset);
// Number of entries in the symbol table.
- W.write<int32_t>(0);
+ W.write<int32_t>(SymbolTableEntryCount);
// Size of the optional header.
W.write<uint16_t>(0);
// Flags.
W.write<uint16_t>(0);
+}
- return W.OS.tell() - StartOffset;
+void XCOFFObjectWriter::writeSectionHeaderTable() {
+ for (const auto *Sec : Sections) {
+ // Write Name.
+ ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
+ W.write(NameRef);
+
+ // Write the Physical Address and Virtual Address. In an object file these
+ // are the same.
+ W.write<uint32_t>(Sec->Address);
+ W.write<uint32_t>(Sec->Address);
+
+ W.write<uint32_t>(Sec->Size);
+ W.write<uint32_t>(Sec->FileOffsetToData);
+
+ // Relocation pointer and Lineno pointer. Not supported yet.
+ W.write<uint32_t>(0);
+ W.write<uint32_t>(0);
+
+ // Relocation and line-number counts. Not supported yet.
+ W.write<uint16_t>(0);
+ W.write<uint16_t>(0);
+
+ W.write<int32_t>(Sec->Flags);
+ }
+}
+
+void XCOFFObjectWriter::writeSymbolTable() {
+ assert((ProgramCodeCsects.size() == 1 &&
+ ProgramCodeCsects.back().Syms.size() == 0) &&
+ ".text csects not handled yet.");
+
+ // The BSS Section is special in that the csects must contain a single symbol,
+ // and the contained symbol cannot be represented in the symbol table as a
+ // label definition.
+ for (auto &Sec : BSSCsects) {
+ assert(Sec.Syms.size() == 1 &&
+ "Uninitialized csect cannot contain more then 1 symbol.");
+ Symbol &Sym = Sec.Syms.back();
+
+ // Write the symbol's name.
+ if (Sym.nameInStringTable()) {
+ W.write<int32_t>(0);
+ W.write<uint32_t>(Strings.getOffset(Sym.getName()));
+ } else {
+ char Name[XCOFF::NameSize];
+ std::strncpy(Name, Sym.getName().data(), XCOFF::NameSize);
+ ArrayRef<char> NameRef(Name, XCOFF::NameSize);
+ W.write(NameRef);
+ }
+
+ W.write<uint32_t>(Sec.Address);
+ W.write<int16_t>(BSS.Index);
+ // Basic/Derived type. See the description of the n_type field for symbol
+ // table entries for a detailed description. Since we don't yet support
+ // visibility, and all other bits are either optionally set or reserved,
+ // this is always zero.
+ // TODO FIXME How to assert a symbols visibility is default?
+ W.write<uint16_t>(0);
+
+ W.write<uint8_t>(Sym.getStorageClass());
+
+ // Always 1 aux entry for now.
+ W.write<uint8_t>(1);
+
+ W.write<uint32_t>(Sec.Size);
+
+ // Parameter typecheck hash. Not supported.
+ W.write<uint32_t>(0);
+ // Typecheck section number. Not supported.
+ W.write<uint16_t>(0);
+ // Symbol type.
+ W.write<uint8_t>(getEncodedType(Sec.MCCsect));
+ // Storage mapping class.
+ W.write<uint8_t>(Sec.MCCsect->getMappingClass());
+ // Reserved (x_stab).
+ W.write<uint32_t>(0);
+ // Reserved (x_snstab).
+ W.write<uint16_t>(0);
+ }
+}
+
+void XCOFFObjectWriter::assignAddressesAndIndices(
+ const llvm::MCAsmLayout &Layout) {
+ // The address corrresponds to the address of sections and symbols in the
+ // object file. We place the shared address 0 immediately after the
+ // section header table.
+ uint32_t Address = 0;
+ // Section indices are 1-based in XCOFF.
+ uint16_t SectionIndex = 1;
+ // The first symbol table entry is for the file name. We are not emitting it
+ // yet, so start at index 0.
+ uint32_t SymbolTableIndex = 0;
+
+ // Text section comes first. TODO
+ // Data section Second. TODO
+
+ // BSS Section third.
+ if (!BSSCsects.empty()) {
+ Sections.push_back(&BSS);
+ BSS.Index = SectionIndex++;
+ assert(alignTo(Address, DefaultSectionAlign) == Address &&
+ "Improperly aligned address for section.");
+ uint32_t StartAddress = Address;
+ for (auto &Csect : BSSCsects) {
+ const MCSectionXCOFF *MCSec = Csect.MCCsect;
+ Address = alignTo(Address, MCSec->getAlignment());
+ Csect.Address = Address;
+ Address += Layout.getSectionAddressSize(MCSec);
+ Csect.SymbolTableIndex = SymbolTableIndex;
+ // 1 main and 1 auxiliary symbol table entry for the csect.
+ SymbolTableIndex += 2;
+ Csect.Size = Layout.getSectionAddressSize(MCSec);
+
+ assert(Csect.Syms.size() == 1 &&
+ "csect in the BSS can only contain a single symbol.");
+ Csect.Syms[0].SymbolTableIndex = Csect.SymbolTableIndex;
+ }
+ // Pad out Address to the default alignment. This is to match how the system
+ // assembler handles the .bss section. Its size is always a multiple of 4.
+ Address = alignTo(Address, DefaultSectionAlign);
+ BSS.Size = Address - StartAddress;
+ }
+
+ SymbolTableEntryCount = SymbolTableIndex;
+
+ // Calculate the RawPointer value for each section.
+ uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
+ Sections.size() * sizeof(XCOFF::SectionHeader32);
+ for (auto *Sec : Sections) {
+ if (!Sec->IsVirtual) {
+ Sec->FileOffsetToData = RawPointer;
+ RawPointer += Sec->Size;
+ }
+ }
+
+ // TODO Add in Relocation storage to the RawPointer Calculation.
+ // TODO What to align the SymbolTable to?
+ // TODO Error check that the number of symbol table entries fits in 32-bits
+ // signed ...
+ if (SymbolTableEntryCount)
+ SymbolTableOffset = RawPointer;
+}
+
+// Takes the log base 2 of the alignment and shifts the result into the 5 most
+// significant bits of a byte, then or's in the csect type into the least
+// significant 3 bits.
+uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
+ unsigned Align = Sec->getAlignment();
+ assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
+ assert((Sec->getCSectType() <= 0x07u) && "csect type exceeds 3 bits.");
+ unsigned Log2Align = Log2_32(Align);
+ // Result is a number in the range [0, 31] which fits in the 5 least
+ // significant bits. Shift this value into the 5 most significant bits, and
+ // bitwise-or in the csect type.
+ uint8_t EncodedAlign = Log2Align << 3;
+ return EncodedAlign | Sec->getCSectType();
}
} // end anonymous namespace