** [3] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger. The R*tree: an
** efficient and robust access method for points and rectangles.
** Proceedings of the ACM SIGMOD Conference. June 1990.
+** [4] A. Korotkov, "A new double sorting-based node splitting algorithm for R-tree",
+** http://syrcose.ispras.ru/2011/files/SYRCoSE2011_Proceedings.pdf#page=36
*/
#include "postgres.h"
*/
#define LIMIT_RATIO 0.1
+/*
+** 0 == don't use it
+** 1 == use it
+*/
+#define KOROTKOV_SPLIT 0
+
/*
** For debugging
*/
return;
}
-
-
+#if KOROTKOV_SPLIT < 1
static bool box2df_intersection(const BOX2DF *a, const BOX2DF *b, BOX2DF *n)
{
POSTGIS_DEBUGF(5, "calculating intersection of %s with %s", box2df_to_string(a), box2df_to_string(b));
return TRUE;
}
+#endif
static float box2df_size(const BOX2DF *a)
{
PG_RETURN_POINTER(result);
}
+#if KOROTKOV_SPLIT > 0
+/*
+ * Adjust BOX2DF b boundaries with insertion of addon.
+ */
+static void
+adjustBox(BOX2DF *b, BOX2DF *addon)
+{
+ if (b->xmax < addon->xmax)
+ b->xmax = addon->xmax;
+ if (b->xmin > addon->xmin)
+ b->xmin = addon->xmin;
+ if (b->ymax < addon->ymax)
+ b->ymax = addon->ymax;
+ if (b->ymin > addon->ymin)
+ b->ymin = addon->ymin;
+}
+
+/*
+ * Trivial split: half of entries will be placed on one page
+ * and another half - to another
+ */
+static void
+fallbackSplit(GistEntryVector *entryvec, GIST_SPLITVEC *v)
+{
+ OffsetNumber i,
+ maxoff;
+ BOX2DF *unionL = NULL,
+ *unionR = NULL;
+ int nbytes;
+
+ maxoff = entryvec->n - 1;
+
+ nbytes = (maxoff + 2) * sizeof(OffsetNumber);
+ v->spl_left = (OffsetNumber *) palloc(nbytes);
+ v->spl_right = (OffsetNumber *) palloc(nbytes);
+ v->spl_nleft = v->spl_nright = 0;
+
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
+ {
+ BOX2DF *cur = (BOX2DF *) DatumGetPointer(entryvec->vector[i].key);
+
+ if (i <= (maxoff - FirstOffsetNumber + 1) / 2)
+ {
+ v->spl_left[v->spl_nleft] = i;
+ if (unionL == NULL)
+ {
+ unionL = (BOX2DF *) palloc(sizeof(BOX2DF));
+ *unionL = *cur;
+ }
+ else
+ adjustBox(unionL, cur);
+
+ v->spl_nleft++;
+ }
+ else
+ {
+ v->spl_right[v->spl_nright] = i;
+ if (unionR == NULL)
+ {
+ unionR = (BOX2DF *) palloc(sizeof(BOX2DF));
+ *unionR = *cur;
+ }
+ else
+ adjustBox(unionR, cur);
+
+ v->spl_nright++;
+ }
+ }
+
+ if (v->spl_ldatum_exists)
+ adjustBox(unionL, (BOX2DF *) DatumGetPointer(v->spl_ldatum));
+ v->spl_ldatum = BoxPGetDatum(unionL);
+
+ if (v->spl_rdatum_exists)
+ adjustBox(unionR, (BOX2DF *) DatumGetPointer(v->spl_rdatum));
+ v->spl_rdatum = BoxPGetDatum(unionR);
+
+ v->spl_ldatum_exists = v->spl_rdatum_exists = false;
+}
+
+/*
+ * Represents information about an entry that can be placed to either group
+ * without affecting overlap over selected axis ("common entry").
+ */
+typedef struct
+{
+ /* Index of entry in the initial array */
+ int index;
+ /* Delta between penalties of entry insertion into different groups */
+ float delta;
+} CommonEntry;
+
+/*
+ * Context for g_box_consider_split. Contains information about currently
+ * selected split and some general information.
+ */
+typedef struct
+{
+ int entriesCount; /* total number of entries being split */
+ BOX2DF boundingBox; /* minimum bounding box across all entries */
+
+ /* Information about currently selected split follows */
+
+ bool first; /* true if no split was selected yet */
+
+ float leftUpper; /* upper bound of left interval */
+ float rightLower; /* lower bound of right interval */
+
+ float4 ratio;
+ float4 overlap;
+ int dim; /* axis of this split */
+ float range; /* width of general MBR projection to the
+ * selected axis */
+} ConsiderSplitContext;
+
+/*
+ * Interval represents projection of box to axis.
+ */
+typedef struct
+{
+ float lower,
+ upper;
+} SplitInterval;
+
+/*
+ * Interval comparison function by lower bound of the interval;
+ */
+static int
+interval_cmp_lower(const void *i1, const void *i2)
+{
+ float lower1 = ((const SplitInterval *) i1)->lower,
+ lower2 = ((const SplitInterval *) i2)->lower;
+
+ if (lower1 < lower2)
+ return -1;
+ else if (lower1 > lower2)
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * Interval comparison function by upper bound of the interval;
+ */
+static int
+interval_cmp_upper(const void *i1, const void *i2)
+{
+ float upper1 = ((const SplitInterval *) i1)->upper,
+ upper2 = ((const SplitInterval *) i2)->upper;
+
+ if (upper1 < upper2)
+ return -1;
+ else if (upper1 > upper2)
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * Replace negative value with zero.
+ */
+static inline float
+non_negative(float val)
+{
+ if (val >= 0.0f)
+ return val;
+ else
+ return 0.0f;
+}
+
+/*
+ * Consider replacement of currently selected split with the better one.
+ */
+static inline void
+g_box_consider_split(ConsiderSplitContext *context, int dimNum,
+ float rightLower, int minLeftCount,
+ float leftUpper, int maxLeftCount)
+{
+ int leftCount,
+ rightCount;
+ float4 ratio,
+ overlap;
+ float range;
+
+ POSTGIS_DEBUGF(5, "consider split: dimNum = %d, rightLower = %f, "
+ "minLeftCount = %d, leftUpper = %f, maxLeftCount = %d ",
+ dimNum, rightLower, minLeftCount, leftUpper, maxLeftCount);
+
+ /*
+ * Calculate entries distribution ratio assuming most uniform distribution
+ * of common entries.
+ */
+ if (minLeftCount >= (context->entriesCount + 1) / 2)
+ {
+ leftCount = minLeftCount;
+ }
+ else
+ {
+ if (maxLeftCount <= context->entriesCount / 2)
+ leftCount = maxLeftCount;
+ else
+ leftCount = context->entriesCount / 2;
+ }
+ rightCount = context->entriesCount - leftCount;
+
+ /*
+ * Ratio of split - quotient between size of lesser group and total
+ * entries count.
+ */
+ ratio = ((float4) Min(leftCount, rightCount)) /
+ ((float4) context->entriesCount);
+
+ if (ratio > LIMIT_RATIO)
+ {
+ bool selectthis = false;
+
+ /*
+ * The ratio is acceptable, so compare current split with previously
+ * selected one. Between splits of one dimension we search for minimal
+ * overlap (allowing negative values) and minimal ration (between same
+ * overlaps. We switch dimension if find less overlap (non-negative)
+ * or less range with same overlap.
+ */
+ if (dimNum == 0)
+ range = context->boundingBox.xmax - context->boundingBox.xmin;
+ else
+ range = context->boundingBox.ymax - context->boundingBox.ymin;
+
+ overlap = (leftUpper - rightLower) / range;
+
+ /* If there is no previous selection, select this */
+ if (context->first)
+ selectthis = true;
+ else if (context->dim == dimNum)
+ {
+ /*
+ * Within the same dimension, choose the new split if it has a
+ * smaller overlap, or same overlap but better ratio.
+ */
+ if (overlap < context->overlap ||
+ (overlap == context->overlap && ratio > context->ratio))
+ selectthis = true;
+ }
+ else
+ {
+ /*
+ * Across dimensions, choose the new split if it has a smaller
+ * *non-negative* overlap, or same *non-negative* overlap but
+ * bigger range. This condition differs from the one described in
+ * the article. On the datasets where leaf MBRs don't overlap
+ * themselves, non-overlapping splits (i.e. splits which have zero
+ * *non-negative* overlap) are frequently possible. In this case
+ * splits tends to be along one dimension, because most distant
+ * non-overlapping splits (i.e. having lowest negative overlap)
+ * appears to be in the same dimension as in the previous split.
+ * Therefore MBRs appear to be very prolonged along another
+ * dimension, which leads to bad search performance. Using range
+ * as the second split criteria makes MBRs more quadratic. Using
+ * *non-negative* overlap instead of overlap as the first split
+ * criteria gives to range criteria a chance to matter, because
+ * non-overlapping splits are equivalent in this criteria.
+ */
+ if (non_negative(overlap) < non_negative(context->overlap) ||
+ (range > context->range &&
+ non_negative(overlap) <= non_negative(context->overlap)))
+ selectthis = true;
+ }
+
+ if (selectthis)
+ {
+ /* save information about selected split */
+ context->first = false;
+ context->ratio = ratio;
+ context->range = range;
+ context->overlap = overlap;
+ context->rightLower = rightLower;
+ context->leftUpper = leftUpper;
+ context->dim = dimNum;
+ POSTGIS_DEBUG(5, "split selected");
+ }
+ }
+}
+
+/*
+ * Return increase of original BOX2DF area by new BOX2DF area insertion.
+ */
+static float
+box_penalty(BOX2DF *original, BOX2DF *new)
+{
+ float union_width,
+ union_height;
+
+ union_width = Max(original->xmax, new->xmax) -
+ Min(original->xmin, new->xmin);
+ union_height = Max(original->ymax, new->ymax) -
+ Min(original->ymin, new->ymin);
+ return union_width * union_height - (original->xmax - original->xmin) *
+ (original->ymax - original->ymin);
+}
+
+/*
+ * Compare common entries by their deltas.
+ */
+static int
+common_entry_cmp(const void *i1, const void *i2)
+{
+ float delta1 = ((const CommonEntry *) i1)->delta,
+ delta2 = ((const CommonEntry *) i2)->delta;
+
+ if (delta1 < delta2)
+ return -1;
+ else if (delta1 > delta2)
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * --------------------------------------------------------------------------
+ * Double sorting split algorithm. This is used for both boxes and points.
+ *
+ * The algorithm finds split of boxes by considering splits along each axis.
+ * Each entry is first projected as an interval on the X-axis, and different
+ * ways to split the intervals into two groups are considered, trying to
+ * minimize the overlap of the groups. Then the same is repeated for the
+ * Y-axis, and the overall best split is chosen. The quality of a split is
+ * determined by overlap along that axis and some other criteria (see
+ * g_box_consider_split).
+ *
+ * After that, all the entries are divided into three groups:
+ *
+ * 1) Entries which should be placed to the left group
+ * 2) Entries which should be placed to the right group
+ * 3) "Common entries" which can be placed to any of groups without affecting
+ * of overlap along selected axis.
+ *
+ * The common entries are distributed by minimizing penalty.
+ *
+ * For details see:
+ * "A new double sorting-based node splitting algorithm for R-tree", A. Korotkov
+ * http://syrcose.ispras.ru/2011/files/SYRCoSE2011_Proceedings.pdf#page=36
+ * --------------------------------------------------------------------------
+ */
+PG_FUNCTION_INFO_V1(gserialized_gist_picksplit_2d);
+Datum gserialized_gist_picksplit_2d(PG_FUNCTION_ARGS)
+{
+ GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
+ GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
+ OffsetNumber i,
+ maxoff;
+ ConsiderSplitContext context;
+ BOX2DF *box,
+ *leftBox,
+ *rightBox;
+ int dim,
+ commonEntriesCount;
+ SplitInterval *intervalsLower,
+ *intervalsUpper;
+ CommonEntry *commonEntries;
+ int nentries;
+
+ POSTGIS_DEBUG(3, "[GIST] 'picksplit' entered");
+
+ memset(&context, 0, sizeof(ConsiderSplitContext));
+
+ maxoff = entryvec->n - 1;
+ nentries = context.entriesCount = maxoff - FirstOffsetNumber + 1;
+
+ /* Allocate arrays for intervals along axes */
+ intervalsLower = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
+ intervalsUpper = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
+
+ /*
+ * Calculate the overall minimum bounding box over all the entries.
+ */
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
+ {
+ box = (BOX2DF *) DatumGetPointer(entryvec->vector[i].key);
+ if (i == FirstOffsetNumber)
+ context.boundingBox = *box;
+ else
+ adjustBox(&context.boundingBox, box);
+ }
+
+ POSTGIS_DEBUGF(4, "boundingBox is %s", box2df_to_string(
+ &context.boundingBox));
+
+ /*
+ * Iterate over axes for optimal split searching.
+ */
+ context.first = true; /* nothing selected yet */
+ for (dim = 0; dim < 2; dim++)
+ {
+ float leftUpper,
+ rightLower;
+ int i1,
+ i2;
+
+ /* Project each entry as an interval on the selected axis. */
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
+ {
+ box = (BOX2DF *) DatumGetPointer(entryvec->vector[i].key);
+ if (dim == 0)
+ {
+ intervalsLower[i - FirstOffsetNumber].lower = box->xmin;
+ intervalsLower[i - FirstOffsetNumber].upper = box->xmax;
+ }
+ else
+ {
+ intervalsLower[i - FirstOffsetNumber].lower = box->ymin;
+ intervalsLower[i - FirstOffsetNumber].upper = box->ymax;
+ }
+ }
+
+ /*
+ * Make two arrays of intervals: one sorted by lower bound and another
+ * sorted by upper bound.
+ */
+ memcpy(intervalsUpper, intervalsLower,
+ sizeof(SplitInterval) * nentries);
+ qsort(intervalsLower, nentries, sizeof(SplitInterval),
+ interval_cmp_lower);
+ qsort(intervalsUpper, nentries, sizeof(SplitInterval),
+ interval_cmp_upper);
+
+ /*----
+ * The goal is to form a left and right interval, so that every entry
+ * interval is contained by either left or right interval (or both).
+ *
+ * For example, with the intervals (0,1), (1,3), (2,3), (2,4):
+ *
+ * 0 1 2 3 4
+ * +-+
+ * +---+
+ * +-+
+ * +---+
+ *
+ * The left and right intervals are of the form (0,a) and (b,4).
+ * We first consider splits where b is the lower bound of an entry.
+ * We iterate through all entries, and for each b, calculate the
+ * smallest possible a. Then we consider splits where a is the
+ * uppper bound of an entry, and for each a, calculate the greatest
+ * possible b.
+ *
+ * In the above example, the first loop would consider splits:
+ * b=0: (0,1)-(0,4)
+ * b=1: (0,1)-(1,4)
+ * b=2: (0,3)-(2,4)
+ *
+ * And the second loop:
+ * a=1: (0,1)-(1,4)
+ * a=3: (0,3)-(2,4)
+ * a=4: (0,4)-(2,4)
+ */
+
+ /*
+ * Iterate over lower bound of right group, finding smallest possible
+ * upper bound of left group.
+ */
+ i1 = 0;
+ i2 = 0;
+ rightLower = intervalsLower[i1].lower;
+ leftUpper = intervalsUpper[i2].lower;
+ while (true)
+ {
+ /*
+ * Find next lower bound of right group.
+ */
+ while (i1 < nentries && rightLower == intervalsLower[i1].lower)
+ {
+ leftUpper = Max(leftUpper, intervalsLower[i1].upper);
+ i1++;
+ }
+ if (i1 >= nentries)
+ break;
+ rightLower = intervalsLower[i1].lower;
+
+ /*
+ * Find count of intervals which anyway should be placed to the
+ * left group.
+ */
+ while (i2 < nentries && intervalsUpper[i2].upper <= leftUpper)
+ i2++;
+
+ /*
+ * Consider found split.
+ */
+ g_box_consider_split(&context, dim, rightLower, i1, leftUpper, i2);
+ }
+
+ /*
+ * Iterate over upper bound of left group finding greates possible
+ * lower bound of right group.
+ */
+ i1 = nentries - 1;
+ i2 = nentries - 1;
+ rightLower = intervalsLower[i1].upper;
+ leftUpper = intervalsUpper[i2].upper;
+ while (true)
+ {
+ /*
+ * Find next upper bound of left group.
+ */
+ while (i2 >= 0 && leftUpper == intervalsUpper[i2].upper)
+ {
+ rightLower = Min(rightLower, intervalsUpper[i2].lower);
+ i2--;
+ }
+ if (i2 < 0)
+ break;
+ leftUpper = intervalsUpper[i2].upper;
+
+ /*
+ * Find count of intervals which anyway should be placed to the
+ * right group.
+ */
+ while (i1 >= 0 && intervalsLower[i1].lower >= rightLower)
+ i1--;
+
+ /*
+ * Consider found split.
+ */
+ g_box_consider_split(&context, dim,
+ rightLower, i1 + 1, leftUpper, i2 + 1);
+ }
+ }
+
+ /*
+ * If we failed to find any acceptable splits, use trivial split.
+ */
+ if (context.first)
+ {
+ POSTGIS_DEBUG(4, "no acceptable splits, trivial split");
+ fallbackSplit(entryvec, v);
+ PG_RETURN_POINTER(v);
+ }
+
+ /*
+ * Ok, we have now selected the split across one axis.
+ *
+ * While considering the splits, we already determined that there will be
+ * enough entries in both groups to reach the desired ratio, but we did
+ * not memorize which entries go to which group. So determine that now.
+ */
+
+ POSTGIS_DEBUGF(4, "split direction: %d", context.dim);
+
+ /* Allocate vectors for results */
+ v->spl_left = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
+ v->spl_right = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
+ v->spl_nleft = 0;
+ v->spl_nright = 0;
+
+ /* Allocate bounding boxes of left and right groups */
+ leftBox = palloc0(sizeof(BOX2DF));
+ rightBox = palloc0(sizeof(BOX2DF));
+
+ /*
+ * Allocate an array for "common entries" - entries which can be placed to
+ * either group without affecting overlap along selected axis.
+ */
+ commonEntriesCount = 0;
+ commonEntries = (CommonEntry *) palloc(nentries * sizeof(CommonEntry));
+
+ /* Helper macros to place an entry in the left or right group */
+#define PLACE_LEFT(box, off) \
+ do { \
+ if (v->spl_nleft > 0) \
+ adjustBox(leftBox, box); \
+ else \
+ *leftBox = *(box); \
+ v->spl_left[v->spl_nleft++] = off; \
+ } while(0)
+
+#define PLACE_RIGHT(box, off) \
+ do { \
+ if (v->spl_nright > 0) \
+ adjustBox(rightBox, box); \
+ else \
+ *rightBox = *(box); \
+ v->spl_right[v->spl_nright++] = off; \
+ } while(0)
+
+ /*
+ * Distribute entries which can be distributed unambiguously, and collect
+ * common entries.
+ */
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
+ {
+ float lower,
+ upper;
+
+ /*
+ * Get upper and lower bounds along selected axis.
+ */
+ box = (BOX2DF *) DatumGetPointer(entryvec->vector[i].key);
+ if (context.dim == 0)
+ {
+ lower = box->xmin;
+ upper = box->xmax;
+ }
+ else
+ {
+ lower = box->ymin;
+ upper = box->ymax;
+ }
+
+ if (upper <= context.leftUpper)
+ {
+ /* Fits to the left group */
+ if (lower >= context.rightLower)
+ {
+ /* Fits also to the right group, so "common entry" */
+ commonEntries[commonEntriesCount++].index = i;
+ }
+ else
+ {
+ /* Doesn't fit to the right group, so join to the left group */
+ PLACE_LEFT(box, i);
+ }
+ }
+ else
+ {
+ /*
+ * Each entry should fit on either left or right group. Since this
+ * entry didn't fit on the left group, it better fit in the right
+ * group.
+ */
+ Assert(lower >= context.rightLower);
+
+ /* Doesn't fit to the left group, so join to the right group */
+ PLACE_RIGHT(box, i);
+ }
+ }
+
+ POSTGIS_DEBUGF(4, "leftBox is %s", box2df_to_string(leftBox));
+ POSTGIS_DEBUGF(4, "rightBox is %s", box2df_to_string(rightBox));
+
+ /*
+ * Distribute "common entries", if any.
+ */
+ if (commonEntriesCount > 0)
+ {
+ /*
+ * Calculate minimum number of entries that must be placed in both
+ * groups, to reach LIMIT_RATIO.
+ */
+ int m = ceil(LIMIT_RATIO * (double) nentries);
+
+ /*
+ * Calculate delta between penalties of join "common entries" to
+ * different groups.
+ */
+ for (i = 0; i < commonEntriesCount; i++)
+ {
+ box = (BOX2DF *) DatumGetPointer(entryvec->vector[
+ commonEntries[i].index].key);
+ commonEntries[i].delta = Abs(box_penalty(leftBox, box) -
+ box_penalty(rightBox, box));
+ }
+
+ /*
+ * Sort "common entries" by calculated deltas in order to distribute
+ * the most ambiguous entries first.
+ */
+ qsort(commonEntries, commonEntriesCount, sizeof(CommonEntry), common_entry_cmp);
+
+ /*
+ * Distribute "common entries" between groups.
+ */
+ for (i = 0; i < commonEntriesCount; i++)
+ {
+ box = (BOX2DF *) DatumGetPointer(entryvec->vector[
+ commonEntries[i].index].key);
+
+ /*
+ * Check if we have to place this entry in either group to achieve
+ * LIMIT_RATIO.
+ */
+ if (v->spl_nleft + (commonEntriesCount - i) <= m)
+ PLACE_LEFT(box, commonEntries[i].index);
+ else if (v->spl_nright + (commonEntriesCount - i) <= m)
+ PLACE_RIGHT(box, commonEntries[i].index);
+ else
+ {
+ /* Otherwise select the group by minimal penalty */
+ if (box_penalty(leftBox, box) < box_penalty(rightBox, box))
+ PLACE_LEFT(box, commonEntries[i].index);
+ else
+ PLACE_RIGHT(box, commonEntries[i].index);
+ }
+ }
+ }
+ v->spl_ldatum = PointerGetDatum(leftBox);
+ v->spl_rdatum = PointerGetDatum(rightBox);
+
+ POSTGIS_DEBUG(4, "[GIST] 'picksplit' completed");
+
+ PG_RETURN_POINTER(v);
+}
+
+#else /* !KOROTOV_SPLIT */
+
typedef struct
{
BOX2DF *key;
PG_RETURN_POINTER(v);
}
+#endif
+
/*
** The BOX32DF key must be defined as a PostgreSQL type, even though it is only