<para>In mathematical terms, this is expressed as:</para>
- <para>
- <equation>a.Crosses(b) ⇔ (dim(I(a) ∩ I(b)) < max(dim(I(a)),dim(I(b)))
- ∧ (a ∪ b ≠ a) ∧ (a ∪ b ≠ b)</equation>
- </para>
+ <remark>TODO: Insert appropriate MathML markup here or use a gif.
+ Simple HTML markup does not work well in both IE and Firefox.</remark>
+
+ <informalfigure>\r
+ <mediaobject>\r
+ <imageobject>\r
+ <imagedata fileref="images/st_crosses-math.gif" />\r
+ </imageobject>\r
+ </mediaobject>\r
+ </informalfigure>
<para>The DE-9IM Intersection Matrix for the two geometries is:</para>
<para>In mathematical terms, this predicate is expressed as:</para>
- <para>
- <equation>a.Touches(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ (a ∩ b ≠ ∅)</equation>
- </para>
+ <remark>TODO: Insert appropriate MathML markup here or use a gif.
+ Simple HTML markup does not work well in both IE and Firefox.</remark>
+
+ <informalfigure>\r
+ <mediaobject>\r
+ <imageobject>\r
+ <imagedata fileref="images/st_touches-math.gif" />\r
+ </imageobject>\r
+ </mediaobject>\r
+ </informalfigure>
<para>The allowable DE-9IM Intersection Matrices for the two geometries are:</para>