config ESP32_ENABLE_COREDUMP_TO_FLASH
bool "Flash"
+ select ESP32_ENABLE_COREDUMP
config ESP32_ENABLE_COREDUMP_TO_UART
bool "UART"
+ select ESP32_ENABLE_COREDUMP
config ESP32_ENABLE_COREDUMP_TO_NONE
bool "None"
endchoice
+config ESP32_ENABLE_COREDUMP
+ bool
+ default F
+ help
+ Enables/disable core dump module.
+
+config ESP32_CORE_DUMP_UART_DELAY
+ int "Core dump print to UART delay"
+ depends on ESP32_ENABLE_COREDUMP_TO_UART
+ default 0
+ help
+ Config delay (in ms) before printing core dump to UART.
+ Delay can be interrupted by pressing Enter key.
+
+config ESP32_CORE_DUMP_LOG_LEVEL
+ int "Core dump module logging level"
+ depends on ESP32_ENABLE_COREDUMP
+ default 1
+ help
+ Config core dump module logging level (0-5).
+
# Not implemented and/or needs new silicon rev to work
config MEMMAP_SPISRAM
bool "Use external SPI SRAM chip as main memory"
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
+#include "soc/uart_reg.h"
+#include "soc/io_mux_reg.h"
+#include "soc/timer_group_struct.h"
+#include "soc/timer_group_reg.h"
+#include "driver/gpio.h"
#include "esp_panic.h"
#include "esp_partition.h"
-#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH || CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
+#if CONFIG_ESP32_ENABLE_COREDUMP
+#define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
#include "esp_log.h"
const static char *TAG = "esp_core_dump";
+#define ESP_COREDUMP_LOGE( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) { ets_printf(LOG_FORMAT(E, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+#define ESP_COREDUMP_LOGW( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) { ets_printf(LOG_FORMAT(W, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+#define ESP_COREDUMP_LOGI( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) { ets_printf(LOG_FORMAT(I, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+#define ESP_COREDUMP_LOGD( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+#define ESP_COREDUMP_LOGV( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_VERBOSE) { ets_printf(LOG_FORMAT(V, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+
+#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
+#define ESP_COREDUMP_LOG_PROCESS( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
+#else
+#define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
+#endif
+
+
// TODO: allow user to set this in menuconfig or get tasks iteratively
#define COREDUMP_MAX_TASKS_NUM 32
-typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len, int verb);
-typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv, int verb);
-typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv, int verb);
-typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len, int verb);
+typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
+typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
+typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
+typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
typedef struct _core_dump_write_config_t
{
} core_dump_write_config_t;
-static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg, int verb)
+static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
{
union
{
uint8_t data8[12];
uint32_t data32[3];
} rom_data;
- //const esp_partition_t *core_part;
esp_err_t err;
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
UBaseType_t tcb_sz, task_num;
uint32_t data_len = 0, i, len;
- //size_t off;
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
// take TCB padding into account, actual TCB size will be stored in header
// header + tasknum*(tcb + stack start/end + tcb addr)
data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
for (i = 0; i < task_num; i++) {
- if (tasks[i].pxTCB == xTaskGetCurrentTaskHandle()) {
+ if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
// set correct stack top for current task
tasks[i].pxTopOfStack = (StackType_t *)frame;
- if (verb)
- ets_printf("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
+ ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
}
else {
- if (verb) {
- XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
- if (task_frame->exit == 0) {
- ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
- }
- else {
- XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
- ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
- }
+ XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
+ if (task_frame->exit == 0) {
+ ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
+ }
+ else {
+#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
+ XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
+#endif
+ ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
}
}
#if( portSTACK_GROWTH < 0 )
#else
len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
#endif
- if (verb) {
- ets_printf("Stack len = %lu (%x %x)\r\n", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
- }
+ ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
// take stack padding into account
if (len % sizeof(uint32_t))
len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
// prepare write
if (write_cfg->prepare) {
- err = write_cfg->prepare(write_cfg->priv, &data_len, verb);
+ err = write_cfg->prepare(write_cfg->priv, &data_len);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to prepare core dump (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
return;
}
}
- if (verb) {
- ets_printf("Core dump len = %lu\r\n", data_len);
- }
+ ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu", data_len);
// write start
if (write_cfg->start) {
- err = write_cfg->start(write_cfg->priv, verb);
+ err = write_cfg->start(write_cfg->priv);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to start core dump (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
return;
}
}
rom_data.data32[0] = data_len;
rom_data.data32[1] = task_num;
rom_data.data32[2] = tcb_sz;
- err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb);
+ err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write core dump header (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
return;
}
// write tasks
for (i = 0; i < task_num; i++) {
- if (verb) {
- ets_printf("Dump task %x\r\n", tasks[i].pxTCB);
- }
+ ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
// save TCB address, stack base and stack top addr
rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
- err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb);
+ err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write task header (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
return;
}
// save TCB
- err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz, verb);
+ err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write TCB (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
return;
}
// save task stack
tasks[i].pxEndOfStack,
(uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
#endif
- , verb);
+ );
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write task stack (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
return;
}
}
// write end
if (write_cfg->end) {
- err = write_cfg->end(write_cfg->priv, verb);
+ err = write_cfg->end(write_cfg->priv);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to end core dump (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
return;
}
}
data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
err = spi_flash_write(off, data, data_len);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write data to flash (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
return 0;
}
rom_data.data8[k] = *(data + data_len + k);
err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to finish write data to flash (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
return 0;
}
data_len += sizeof(uint32_t);
return data_len;
}
-static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len, int verb)
+static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
{
esp_err_t err;
uint32_t sec_num;
// add space for 2 magics. TODO: change to CRC
if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) {
- ets_printf("ERROR: Not enough space to save core dump!\r\n");
+ ESP_COREDUMP_LOGE("Not enough space to save core dump!");
return ESP_ERR_NO_MEM;
}
*data_len += 2*sizeof(uint32_t);
sec_num++;
err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to erase flash (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
return err;
}
err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
if (err != ESP_OK) {
- ets_printf("ERROR: Failed to write to flash (%d)!\r\n", err);
+ ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
return err;
}
wr_data->off += sizeof(uint32_t);
return err;
}
-static esp_err_t esp_core_dump_flash_write_start(void *priv, int verb)
+static esp_err_t esp_core_dump_flash_write_start(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// save magic 1
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
}
-static esp_err_t esp_core_dump_flash_write_end(void *priv, int verb)
+static esp_err_t esp_core_dump_flash_write_end(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
+#if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
uint32_t i;
union
{
uint32_t data32[4];
} rom_data;
- if (verb) {
- // TEST READ START
- esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
- if (err != ESP_OK) {
- ets_printf("ERROR: Failed to read flash (%d)!\r\n", err);
- return err;
- }
- else {
- ets_printf("Data from flash:\r\n");
- for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
- ets_printf("%x\r\n", rom_data.data32[i]);
- }
+ esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
+ if (err != ESP_OK) {
+ ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
+ return err;
+ }
+ else {
+ ESP_COREDUMP_LOG_PROCESS("Data from flash:");
+ for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
+ ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
}
- // TEST READ END
}
+#endif
// save magic 2
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
}
-static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len, int verb)
+static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
wr_cfg.write = esp_core_dump_flash_write_data;
wr_cfg.priv = &wr_data;
- ets_printf("Save core dump to flash...\r\n");
- esp_core_dump_write(frame, &wr_cfg, 0);
- ets_printf("Core dump has been saved to flash.\r\n");
+ ESP_COREDUMP_LOGI("Save core dump to flash...");
+ esp_core_dump_write(frame, &wr_cfg);
+ ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
}
#endif
dst[j++] = '\0';
}
-static esp_err_t esp_core_dump_uart_write_start(void *priv, int verb)
+static esp_err_t esp_core_dump_uart_write_start(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP START =================\r\n");
return err;
}
-static esp_err_t esp_core_dump_uart_write_end(void *priv, int verb)
+static esp_err_t esp_core_dump_uart_write_end(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP END =================\r\n");
return err;
}
-static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len, int verb)
+static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
char buf[64 + 4], *addr = data;
char *end = addr + data_len;
-
while (addr < end) {
size_t len = end - addr;
if (len > 48) len = 48;
return err;
}
+static int esp_core_dump_uart_get_char() {
+ int i;
+ uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
+ if (reg)
+ i = READ_PERI_REG(UART_FIFO_REG(0));
+ else
+ i = -1;
+ return i;
+}
+
void esp_core_dump_to_uart(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
+ uint32_t tm_end, tm_cur;
+ int ch;
wr_cfg.prepare = NULL;
wr_cfg.start = esp_core_dump_uart_write_start;
wr_cfg.write = esp_core_dump_uart_write_data;
wr_cfg.priv = NULL;
- ets_printf("Print core dump to uart...\r\n");
- esp_core_dump_write(frame, &wr_cfg, 0);
- ets_printf("Core dump has been written to uart.\r\n");
+ //Make sure txd/rxd are enabled
+ gpio_pullup_dis(1);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
+
+ ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
+ tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
+ ch = esp_core_dump_uart_get_char();
+ while (!(ch == '\n' || ch == '\r')) {
+ tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
+ if (tm_cur >= tm_end)
+ break;
+ /* Feed the Cerberus. */
+ TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
+ TIMERG0.wdt_feed = 1;
+ TIMERG0.wdt_wprotect = 0;
+ ch = esp_core_dump_uart_get_char();
+ }
+ ESP_COREDUMP_LOGI("Print core dump to uart...");
+ esp_core_dump_write(frame, &wr_cfg);
+ ESP_COREDUMP_LOGI("Core dump has been written to uart.");
}
#endif
}
#endif
-#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH || CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
+#if CONFIG_ESP32_ENABLE_COREDUMP
esp_core_dump_init();
#endif
reason = reasons[regs[20]];
}
haltOtherCore();
- esp_panicPutStr("Guru Meditation Error: Core ");
- esp_panicPutDec(xPortGetCoreID());
- esp_panicPutStr(" panic'ed (");
+ panicPutStr("Guru Meditation Error: Core ");
+ panicPutDec(xPortGetCoreID());
+ panicPutStr(" panic'ed (");
if (!abort_called) {
- esp_panicPutStr(reason);
- esp_panicPutStr(")\r\n");
+ panicPutStr(reason);
+ panicPutStr(")\r\n");
if (regs[20]==PANIC_RSN_DEBUGEXCEPTION) {
int debugRsn;
asm("rsr.debugcause %0":"=r"(debugRsn));
- esp_panicPutStr("Debug exception reason: ");
- if (debugRsn&XCHAL_DEBUGCAUSE_ICOUNT_MASK) esp_panicPutStr("SingleStep ");
- if (debugRsn&XCHAL_DEBUGCAUSE_IBREAK_MASK) esp_panicPutStr("HwBreakpoint ");
+ panicPutStr("Debug exception reason: ");
+ if (debugRsn&XCHAL_DEBUGCAUSE_ICOUNT_MASK) panicPutStr("SingleStep ");
+ if (debugRsn&XCHAL_DEBUGCAUSE_IBREAK_MASK) panicPutStr("HwBreakpoint ");
if (debugRsn&XCHAL_DEBUGCAUSE_DBREAK_MASK) {
//Unlike what the ISA manual says, this core seemingly distinguishes from a DBREAK
//reason caused by watchdog 0 and one caused by watchdog 1 by setting bit 8 of the
//debugcause if the cause is watchdog 1 and clearing it if it's watchdog 0.
if (debugRsn&(1<<8)) {
#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
- esp_panicPutStr("Stack canary watchpoint triggered ");
+ panicPutStr("Stack canary watchpoint triggered ");
#else
- esp_panicPutStr("Watchpoint 1 triggered ");
+ panicPutStr("Watchpoint 1 triggered ");
#endif
} else {
- esp_panicPutStr("Watchpoint 0 triggered ");
+ panicPutStr("Watchpoint 0 triggered ");
}
}
- if (debugRsn&XCHAL_DEBUGCAUSE_BREAK_MASK) esp_panicPutStr("BREAK instr ");
- if (debugRsn&XCHAL_DEBUGCAUSE_BREAKN_MASK) esp_panicPutStr("BREAKN instr ");
- if (debugRsn&XCHAL_DEBUGCAUSE_DEBUGINT_MASK) esp_panicPutStr("DebugIntr ");
- esp_panicPutStr("\r\n");
+ if (debugRsn&XCHAL_DEBUGCAUSE_BREAK_MASK) panicPutStr("BREAK instr ");
+ if (debugRsn&XCHAL_DEBUGCAUSE_BREAKN_MASK) panicPutStr("BREAKN instr ");
+ if (debugRsn&XCHAL_DEBUGCAUSE_DEBUGINT_MASK) panicPutStr("DebugIntr ");
+ panicPutStr("\r\n");
}
} else {
- esp_panicPutStr("abort)\r\n");
+ panicPutStr("abort)\r\n");
}
if (esp_cpu_in_ocd_debug_mode()) {
--- /dev/null
+/* Application For Core Dumps Generation
+
+ This example code is in the Public Domain (or CC0 licensed, at your option.)
+
+ Unless required by applicable law or agreed to in writing, this
+ software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+ CONDITIONS OF ANY KIND, either express or implied.
+*/
+#include <stdio.h>
+#include "freertos/FreeRTOS.h"
+#include "freertos/task.h"
+#include "esp_system.h"
+#include "nvs_flash.h"
+
+
+// task crash indicators
+#define TCI_NULL_PTR 0x1
+#define TCI_UNALIGN_PTR 0x2
+#define TCI_FAIL_ASSERT 0x4
+
+volatile unsigned long crash_flags = TCI_UNALIGN_PTR;
+
+void bad_ptr_func()
+{
+ unsigned long *ptr = (unsigned long *)0;
+ volatile int cnt;
+ int i = 0;
+
+ for (i = 0; i < 1000; i++) {
+ cnt++;
+ }
+
+ if(crash_flags & TCI_NULL_PTR) {
+ printf("Write to bad address 0x%lx.\n", (unsigned long)ptr);
+ *ptr = 0xDEADBEEF;
+ }
+}
+
+void bad_ptr_task(void *pvParameter)
+{
+ printf("Task 'bad_ptr_task' start.\n");
+ while (1) {
+ vTaskDelay(1000 / portTICK_RATE_MS);
+ printf("Task 'bad_ptr_task' run.\n");
+ bad_ptr_func();
+ }
+ fflush(stdout);
+}
+
+void recur_func()
+{
+ static int rec_cnt;
+ unsigned short *ptr = (unsigned short *)0x5;
+ volatile int cnt;
+ int i = 0;
+
+ if (rec_cnt++ > 2) {
+ return;
+ }
+ for (i = 0; i < 4; i++) {
+ cnt++;
+ if(i == 2) {
+ recur_func();
+ break;
+ }
+ }
+
+ if(crash_flags & TCI_UNALIGN_PTR) {
+ printf("Write to unaligned address 0x%lx.\n", (unsigned long)ptr);
+ *ptr = 0xDEAD;
+ }
+}
+
+void unaligned_ptr_task(void *pvParameter)
+{
+ printf("Task 'unaligned_ptr_task' start.\n");
+ while (1) {
+ vTaskDelay(1000 / portTICK_RATE_MS);
+ printf("Task 'unaligned_ptr_task' run.\n");
+ recur_func();
+ }
+ fflush(stdout);
+}
+
+void failed_assert_task(void *pvParameter)
+{
+ printf("Task 'failed_assert_task' start.\n");
+ while (1) {
+ vTaskDelay(1000 / portTICK_RATE_MS);
+ printf("Task 'failed_assert_task' run.\n");
+ if(crash_flags & TCI_FAIL_ASSERT) {
+ printf("Assert.\n");
+ assert(0);
+ }
+ }
+ fflush(stdout);
+}
+
+void app_main()
+{
+ nvs_flash_init();
+ xTaskCreate(&bad_ptr_task, "bad_ptr_task", 2048, NULL, 5, NULL);
+ xTaskCreatePinnedToCore(&unaligned_ptr_task, "unaligned_ptr_task", 2048, NULL, 7, NULL, 1);
+ xTaskCreatePinnedToCore(&failed_assert_task, "failed_assert_task", 2048, NULL, 10, NULL, 0);
+}
#define configXT_BOARD 1 /* Board mode */
#define configXT_SIMULATOR 0
-#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH | CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
+#if CONFIG_ESP32_ENABLE_COREDUMP
#define configENABLE_TASK_SNAPSHOT 1
#endif
*/
uint32_t esp_log_timestamp(void);
+/**
+ * @brief Function which returns timestamp to be used in log output
+ *
+ * This function uses HW cycle counter and does not depend on OS,
+ * so it can be safely used after application crash.
+ *
+ * @return timestamp, in milliseconds
+ */
+uint32_t esp_log_early_timestamp(void);
+
/**
* @brief Write message into the log
*
"ota" : 0x00,
"phy" : 0x01,
"nvs" : 0x02,
+ "coredump" : 0x03,
"esphttpd" : 0x80,
"fat" : 0x81,
"spiffs" : 0x82,
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
-coredump, data, 3, , 64K
+coredump, data, coredump,, 64K
otadata, data, ota, 0xd000, 0x2000
phy_init, data, phy, 0xf000, 0x1000
factory, 0, 0, 0x10000, 1M
-coredump, data, 3, , 64K
+coredump, data, coredump,, 64K
ota_0, 0, ota_0, , 1M
ota_1, 0, ota_1, , 1M
void spi_flash_enable_interrupts_caches_and_other_cpu();
// Disables non-IRAM interrupt handlers on current CPU and caches on both CPUs.
-// This function is implied to be called from panic handler
-// (when non-current CPU is halted and can not execute code from flash) or when no OS is present.
+// This function is implied to be called when other CPU is not running or running code from IRAM.
void spi_flash_disable_interrupts_caches_and_other_cpu_no_os();
// Enable cache, enable interrupts on current CPU.
-// This function is implied to be called from panic handler
-// (when non-current CPU is halted and can not execute code from flash) or when no OS is present.
+// This function is implied to be called when other CPU is not running or running code from IRAM.
void spi_flash_enable_interrupts_caches_no_os();
#endif //ESP_SPI_FLASH_CACHE_UTILS_H
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
-#define FLASH_GUARD_START(_gp_) do{if((_gp_)) (_gp_)->start();}while(0)
-#define FLASH_GUARD_END(_gp_) do{if((_gp_)) (_gp_)->end();}while(0)
-
static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc);
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
return SPI_FLASH_RESULT_OK;
}
+static inline void spi_flash_guard_start()
+{
+ if (s_flash_guard_ops)
+ s_flash_guard_ops->start();
+}
+
+static inline void spi_flash_guard_end()
+{
+ if (s_flash_guard_ops)
+ s_flash_guard_ops->end();
+}
+
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
{
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
size_t end = start + size / SPI_FLASH_SEC_SIZE;
const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
COUNTER_START();
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
SpiFlashOpResult rc;
rc = spi_flash_unlock();
if (rc == SPI_FLASH_RESULT_OK) {
}
}
}
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
COUNTER_STOP(erase);
return spi_flash_translate_rc(rc);
}
if (left_size > 0) {
uint32_t t = 0xffffffff;
memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
rc = SPIWrite(left_off, &t, 4);
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
bool in_dram = true;
#endif
if (in_dram && (((uintptr_t) srcc) + mid_off) % 4 == 0) {
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, (const uint32_t *) (srcc + mid_off), mid_size);
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
uint32_t t[8];
uint32_t write_size = MIN(mid_size, sizeof(t));
memcpy(t, srcc + mid_off, write_size);
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, t, write_size);
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
if (right_size > 0) {
uint32_t t = 0xffffffff;
memcpy(&t, srcc + right_off, right_size);
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
rc = SPIWrite(dst + right_off, &t, 4);
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
SpiFlashOpResult rc = SPI_FLASH_RESULT_OK;
COUNTER_START();
- FLASH_GUARD_START(s_flash_guard_ops);
+ spi_flash_guard_start();
/* To simplify boundary checks below, we handle small reads separately. */
if (size < 16) {
uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
memcpy(dstc + pad_right_off, t, pad_right_size);
}
out:
- FLASH_GUARD_END(s_flash_guard_ops);
+ spi_flash_guard_end();
COUNTER_STOP(read);
return spi_flash_translate_rc(rc);
}
ESP32 Core Dump
-================
+===============
Overview
--------
-ESP-IDF provides support to generate core dumps on unrecoverable software errors. This useful technique allows post-mortem analisys of software state at the moment of failure.
+ESP-IDF provides support to generate core dumps on unrecoverable software errors. This useful technique allows post-mortem analysis of software state at the moment of failure.
Upon the crash system enters panic state, prints some information and halts or reboots depending configuration. User can choose to generate core dump in order to analyse
the reason of failure on PC later on. Core dump contains snapshots of all tasks in the system at the moment of failure. Snapshots include tasks control blocks (TCB) and stacks.
So it is possible to find out what task, at what instruction (line of code) and what callstack of that task lead to the crash.
When this option is selected core dumps are saved to special partition on flash. When using default partition table files which are provided with ESP-IDF it automatically
allocates necessary space on flash, But if user wants to use its own layout file together with core dump feature it should define separate partition for core dump
as it is shown below::
-
+
# Name, Type, SubType, Offset, Size
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
- coredump, data, 3, , 64K
-
+ coredump, data, coredump,, 64K
+
There are no special requrements for partition name. It can be choosen according to the user application needs, but partition type should be 'data' and
-sub-type should be 3. Also when choosing partition size note that core dump data structure introduces constant overhead of 20 bytes and per-task overhead of 12 bytes.
+sub-type should be 'coredump'. Also when choosing partition size note that core dump data structure introduces constant overhead of 20 bytes and per-task overhead of 12 bytes.
This overhead does not include size of TCB and stack for every task. So partirion size should be at least 20 + max tasks number x (12 + TCB size + max task stack size) bytes.
The example of generic command to analyze core dump from flash is: `espcoredump.py -p </path/to/serial/port> info_corefile </path/to/program/elf/file>`
Base64-encoded body of core dump will be between the following header and footer::
================= CORE DUMP START =================
- <body of base64-encoded core dump, copy it to file on disk>
+ <body of base64-encoded core dump, save it to file on disk>
================= CORE DUMP END ===================
-Command Options For 'espcoredump.py'
---------------------------------------------
-
-usage: coredumper [-h] [--chip {auto,esp32}] [--port PORT] [--baud BAUD]
- {dbg_corefile,info_corefile} ...
-
-espcoredump.py v0.1-dev - ESP32 Core Dump Utility
-
-positional arguments:
- {dbg_corefile,info_corefile}
- Run coredumper {command} -h for additional help
- dbg_corefile Starts GDB debugging session with specified corefile
- info_corefile Print core dump info from file
-
-optional arguments:
- -h, --help show this help message and exit
- --chip {auto,esp32}, -c {auto,esp32}
- Target chip type
- --port PORT, -p PORT Serial port device
- --baud BAUD, -b BAUD Serial port baud rate used when flashing/reading
-
-
-usage: coredumper info_corefile [-h] [--gdb GDB] [--core CORE]
- [--core-format CORE_FORMAT] [--off OFF]
- [--save-core SAVE_CORE] [--print-mem]
- prog
-
-positional arguments:
- prog Path to program's ELF binary
-
-optional arguments:
- -h, --help show this help message and exit
- --gdb GDB, -g GDB Path to gdb
- --core CORE, -c CORE Path to core dump file (if skipped core dump will be
- read from flash)
- --core-format CORE_FORMAT, -t CORE_FORMAT
- (elf, raw or b64). File specified with "-c" is an ELF
- ("elf"), raw (raw) or base64-encoded (b64) binary
- --off OFF, -o OFF Ofsset of coredump partition in flash (type "make
- partition_table" to see).
- --save-core SAVE_CORE, -s SAVE_CORE
- Save core to file. Othwerwise temporary core file will
- be deleted. Does not work with "-c"
- --print-mem, -m Print memory dump
-
-
-usage: coredumper dbg_corefile [-h] [--gdb GDB] [--core CORE]
- [--core-format CORE_FORMAT] [--off OFF]
- [--save-core SAVE_CORE]
- prog
-
-positional arguments:
- prog Path to program's ELF binary
-
-optional arguments:
- -h, --help show this help message and exit
- --gdb GDB, -g GDB Path to gdb
- --core CORE, -c CORE Path to core dump file (if skipped core dump will be
- read from flash)
- --core-format CORE_FORMAT, -t CORE_FORMAT
- (elf, raw or b64). File specified with "-c" is an ELF
- ("elf"), raw (raw) or base64-encoded (b64) binary
- --off OFF, -o OFF Ofsset of coredump partition in flash (type "make
- partition_table" to see).
- --save-core SAVE_CORE, -s SAVE_CORE
- Save core to file. Othwerwise temporary core file will
- be deleted. Ignored with "-c"
+Running 'espcoredump.py'
+------------------------------------
+
+Generic command syntax:
+
+`espcoredump.py [options] command [args]`
+
+:Script Options:
+ * --chip,-c {auto,esp32}. Target chip type. Supported values are `auto` and `esp32`.
+ * --port,-p PORT. Serial port device.
+ * --baud,-b BAUD. Serial port baud rate used when flashing/reading.
+:Commands:
+ * info_corefile. Retrieve core dump and print useful info.
+ * dbg_corefile. Retrieve core dump and start GDB session with it.
+:Command Arguments:
+ * --gdb,-g GDB. Path to gdb to use for data retrieval.
+ * --core,-c CORE. Path to core dump file to use (if skipped core dump will be read from flash).
+ * --core-format,-t CORE_FORMAT. Specifies that file passed with "-c" is an ELF ("elf"), dumped raw binary ("raw") or base64-encoded ("b64") format.
+ * --off,-o OFF. Ofsset of coredump partition in flash (type "make partition_table" to see it).
+ * --save-core,-s SAVE_CORE. Save core to file. Othwerwise temporary core file will be deleted. Ignored with "-c".
+ * --print-mem,-m Print memory dump. Used only with "info_corefile".
partition-tables
build_system
openocd
+ core_dump
Flash encryption <security/flash-encryption>
Secure Boot <security/secure-boot>
ULP coprocessor <api/ulp.rst>