/// which must be a vector type, must match the number of mask elements
/// NumElts. An integer mask element equal to -1 is treated as undefined.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
- const int *MaskElts);
- SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
- ArrayRef<int> MaskElts) {
- assert(VT.getVectorNumElements() == MaskElts.size() &&
- "Must have the same number of vector elements as mask elements!");
- return getVectorShuffle(VT, dl, N1, N2, MaskElts.data());
- }
+ ArrayRef<int> Mask);
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
N0->getOperand(0), N1->getOperand(0));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
- &SVN0->getMask()[0]);
+ SVN0->getMask());
}
// Don't try to fold this node if it requires introducing a
N0->getOperand(1), N1->getOperand(1));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
- &SVN0->getMask()[0]);
+ SVN0->getMask());
}
}
}
}
if (LegalMask)
- return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS,
- NewRHS, &Mask[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
}
}
}
SDValue Ops[2];
Ops[0] = VecIn1;
Ops[1] = VecIn2;
- return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
+ return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], Mask);
}
return SDValue();
if (Idx >= (int)NumElts) Idx -= NumElts;
NewMask.push_back(Idx);
}
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
- &NewMask[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
NewMask.push_back(Idx);
}
if (Changed)
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
}
// If it is a splat, check if the argument vector is another splat or a
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
- return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
}
return SDValue();
SDValue Zero = DAG.getConstant(0, dl, ClearVT);
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl,
DAG.getBitcast(ClearVT, LHS),
- Zero, &Indices[0]));
+ Zero, Indices));
};
// Determine maximum split level (byte level masking).
N->getFlags());
AddUsersToWorklist(N);
return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
- &SVN0->getMask()[0]);
+ SVN0->getMask());
}
}
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
if (NumEltsGrowth == 1)
- return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
+ return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumMaskElts; ++i) {
}
assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
- return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
+ return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
}
/// Expands the ConstantFP node to an integer constant or
for (unsigned i = 0; i != NumElts; ++i)
ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
- return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
- &ShufOps[0]);
+ return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
}
}
return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
if (Phase)
Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
IntermedVals[i+1].first,
- ShuffleVec.data());
+ ShuffleVec);
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
NewIntermedVals.push_back(
ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
if (Phase)
- Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
+ Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
}
Vec2 = DAG.getUNDEF(VT);
// Return shuffle(LowValVec, undef, <0,0,0,0>)
- return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
+ return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
}
} else {
SDValue Res;
SDLoc DL(Op);
Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
- ShuffleMask.data());
+ Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
SDLoc DL(Op);
Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
- BSWAPMask.data());
+ BSWAPMask);
Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
SDValue Op1 = InputUsed[1] == -1U ?
DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
// At least one input vector was used. Create a new shuffle vector.
- Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
+ Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, Ops);
}
Ops.clear();
return DAG.getVectorShuffle(WidenVT, dl,
GetWidenedVector(N->getOperand(0)),
GetWidenedVector(N->getOperand(1)),
- &MaskOps[0]);
+ MaskOps);
}
}
}
}
for (unsigned i = NumElts; i != WidenNumElts; ++i)
NewMask.push_back(-1);
- return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
+ return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, NewMask);
}
SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
}
SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
- SDValue N2, const int *Mask) {
+ SDValue N2, ArrayRef<int> Mask) {
+ assert(VT.getVectorNumElements() == Mask.size() &&
+ "Must have the same number of vector elements as mask elements!");
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
"Invalid VECTOR_SHUFFLE");
SDValue Op0 = SV.getOperand(0);
SDValue Op1 = SV.getOperand(1);
- return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]);
+ return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
}
SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val,
unsigned SrcNumElts = SrcVT.getVectorNumElements();
if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &Mask[0]));
+ setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask));
return;
}
}
setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
+ MappedOps));
return;
}
}
setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
+ MappedOps));
return;
}
}
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
- ShuffleOps[1], &Mask[0]);
+ ShuffleOps[1], Mask);
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
// Now duplicate the comparison mask we want across all other lanes.
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
- SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
+ SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
Mask = DAG.getNode(ISD::BITCAST, DL,
ResVT.changeVectorElementTypeToInteger(), Mask);
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
- ShuffleOps[1], &Mask[0]);
+ ShuffleOps[1], Mask);
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
NewMask.push_back(NewElt);
}
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
- DAG.getUNDEF(VT), NewMask.data());
+ DAG.getUNDEF(VT), NewMask);
}
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
DAG.getUNDEF(WideVec.getValueType()),
- ShuffleVec.data());
+ ShuffleVec);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
- return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
SDValue
Mask[i * 2] = i;
Mask[i * 2 + 1] = i + NumElems;
}
- return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Returns a vector_shuffle node for an unpackh operation.
Mask[i * 2] = i + Half;
Mask[i * 2 + 1] = i + NumElems + Half;
}
- return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Return a vector_shuffle of the specified vector of zero or undef vector.
for (int i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec[i] = (i == Idx) ? NumElems : i;
- return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
}
static SDValue peekThroughBitcasts(SDValue V) {
SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
if (V1.getSimpleValueType() != VT)
V1 = DAG.getBitcast(VT, V1);
- return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask);
}
// See if we can lower this build_vector to a INSERTPS.
SmallVector<int, 8> Mask(NumElems, EltNo);
- return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
+ return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
}
return SDValue();
return SDValue();
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
- SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
+ SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
unsigned Idx = InsertIndices[i];
NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
};
- return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &MaskVec[0]);
+ return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
}
if (Values.size() > 1 && VT.is128BitVector()) {
static const int ShufMask[] = {0, 2, -1, -1};
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
- &ShufMask[0]);
+ ShufMask);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
return DAG.getBitcast(VT, In);
for (unsigned i = 0; i != NumElems; ++i)
MaskVec[i] = i * 2;
SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
- DAG.getUNDEF(NVT), &MaskVec[0]);
+ DAG.getUNDEF(NVT), MaskVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
DAG.getIntPtrConstant(0, DL));
}
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask1[i] = i;
- SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
+ SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1);
SmallVector<int,8> ShufMask2(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask2[i] = i + NumElems/2;
- SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
+ SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2);
MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements()/2);
ShuffleVec[i * SizeRatio] = i;
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
- DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+ DAG.getUNDEF(WideVecVT), ShuffleVec);
// Bitcast to the requested type.
Shuff = DAG.getBitcast(RegVT, Shuff);
// step to the left):
const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
// <a|b|c|d> => <b|undef|d|undef>
- SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
+ SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0,
+ makeArrayRef(&Mask[0], VT.getVectorNumElements()));
// <e|f|g|h> => <f|undef|h|undef>
- SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
+ SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1,
+ makeArrayRef(&Mask[0], VT.getVectorNumElements()));
// Emit two multiplies, one for the lower 2 ints and one for the higher 2
// ints.
SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
- return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
+ return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask());
}
}
}
// Create shuffle node taking into account the case that its a unary shuffle
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1];
- Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
- ShuffleOps[0], Shuffle,
- &ShuffleMask[0]);
+ Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle,
+ ShuffleMask);
Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
ShuffleMask[2 * i + 1] = i + VT.getVectorNumElements();
}
SDValue ResLo =
- DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, &ShuffleMask[0]);
+ DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResLo = DAG.getNode(ISD::BITCAST, DL, ResVT, ResLo);
// Generate shuffle functioning as punpckhwd.
for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++) {
ShuffleMask[2 * i + 1] = i + VT.getVectorNumElements() * 3 / 2;
}
SDValue ResHi =
- DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, &ShuffleMask[0]);
+ DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResHi = DAG.getNode(ISD::BITCAST, DL, ResVT, ResHi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
}
assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
"WideVecVT should be legal");
WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
- DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+ DAG.getUNDEF(WideVecVT), ShuffleVec);
}
// Prepare the new mask.
SDValue NewMask;
ShuffleVec[i] = NumElems * SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
- &ShuffleVec[0]);
+ ShuffleVec);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
- &ShuffleVec[0]);
+ ShuffleVec);
SDValue NewMask;
SDValue Mask = Mst->getMask();
ShuffleVec[i] = NumElems*SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
- &ShuffleVec[0]);
+ ShuffleVec);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
- &ShuffleVec[0]);
+ ShuffleVec);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.