\begin{document}
+
\begin{tikzpicture}[>=stealth, auto, sibling distance = 0.2in, inner sep = 1pt, outer sep = 0pt]
%\begin{tikzpicture}[>=stealth]
\tikzstyle{styleB}=[->, rounded corners=3, dash pattern = on 1pt off 2.5pt]
\newcommand\w{\hspace{2em}}
-{
+
+\small{
\begin{scope}[xshift=0in, yshift=0in]
\tikzstyle{every node}=[styleA, sibling distance = 0.4in]
\begin{scope}[xshift=0in, yshift=0in]
\node[xshift=0in, yshift=-1.25in, draw=none] {$s = T^1 (T^2 (\varnothing^0, T^0 (a^0, a^0)))$};
- \small
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
\begin{scope}[xshift=1.6in, yshift=0in]
\node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2 (a^0, \varnothing^0))$};
- \small
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
\\
&traces (\alpha, \beta) =
\left[\begin{aligned}
- \rho_0 &= -1 \\[-0.4em]
- \rho'_0 &= -1 \\[-0.4em]
+ \rho_0 &= \rho'_0 = -1 \\[-0.4em]
\rho_1 &= min (lasth(\Xl_1 \Xl_2), minh (\epsilon)) = min (2, \infty) = 2 \\[-0.4em]
\rho'_1 &= min (lasth(\Xl_1 \Xl_2), minh (\Xr_1 \Xl_2)) = min (2, 1) = 1 \\[-0.4em]
\rho_2 &= min (\rho_1, minh (\Xr_1 \Xr_0)) = min (2, 0) = 0 \\[-0.4em]
\end{scope}
\end{scope}
}
+\normalsize{
\node (x1)
[ xshift=2.7in
- , yshift=-1.6in
+ , yshift=-1.45in
, draw=none
] {(a) -- Rule 1: longest precedence, RE $(a|aa)^{0,\infty}$ and string $aa$.
Order on IPTs: $s <_1 t$ because $\|s\|^{Sub}_1 = 2 > 1 = \|t\|^{Sub}_1$
Order on PEs: $\alpha < \beta$ because
$\rho_1 > \rho'_1 \;\wedge\; \rho_2 = \rho'_2 \;\Rightarrow\; \alpha \sqsubset \beta$.
};
+}
-{
-\begin{scope}[xshift=0in, yshift=-2.2in]
+\small{
+\begin{scope}[xshift=0in, yshift=-1.9in]
\tikzstyle{every node}=[styleA]
\begin{scope}[xshift=0in, yshift=0in]
\node[xshift=0in, yshift=-0.6in, draw=none] {$s = T^1 (a^2, \varnothing^3)$};
- \small
\graph [tree layout, grow=down, fresh nodes] {
- s1/"${T}^{1}$" -- {
- s11/"${a}^{2}$",
- s12/"${\varnothing}^{3}$"
+ r1/"${T}^{1}$" -- {
+ r11/"${a}^{2}$",
+ r12/"${\varnothing}^{3}$"
}
};
- \node at (s1) {$\Xl_1 \w \Xr_0$};
- \node at (s11) {$\Xl_2 \w \Xr_1$};
- \node at (s12) {$\Xl_2 \w \Xr_1$};
+ \node at (r1) {$\Xl_1 \w \Xr_0$};
+ \node at (r11) {$\Xl_2 \w \Xr_1$};
+ \node at (r12) {$\hphantom{\Xl_2} \w \Xm_1$};
\draw [styleB]
- ($(s1.west)$)
- -- ($(s11.west)$);
+ ($(r1.west)$)
+ -- ($(r11.west)$);
\draw [styleB]
- ($(s11.east)$)
- -- ($(s1.south)$)
- -- ($(s12.west)$)
- -- ($(s12.south)$)
- -- ($(s12.east)$)
- -- ($(s1.east)$);
+ ($(r11.east)$)
+ -- ($(r1.south)$)
+ -- ($(r12.west)$)
+ -- ($(r12.south)$)
+ -- ($(r12.east)$)
+ -- ($(r1.east)$);
\end{scope}
\begin{scope}[xshift=1.6in, yshift=0in]
\node[xshift=0in, yshift=-0.6in, draw=none] {$t = T^1 (\varnothing^2, a^3)$};
- \small
\graph [tree layout, grow=down, fresh nodes] {
t1/"${T}^{1}$" -- {
t11/"${\varnothing}^{2}$",
}
};
\node at (t1) {$\Xl_1 \w \Xr_0$};
- \node at (t11) {$\Xl_2 \w \Xr_1$};
+ \node at (t11) {$\hphantom{\Xl_2} \w \Xm_1$};
\node at (t12) {$\Xl_2 \w \Xr_1$};
\draw [styleB]
($(t1.west)$)
\end{scope}
}
+\normalsize{
\node (y1)
[ xshift=2.7in
- , yshift=-3.4in
+ , yshift=-3.0in
, draw=none
] {(b) -- Rule 2: leftmost precedence, RE $(a)|(a)$ and string $a$.
Order on IPTs: $s <_1 t$ because
\;\Rightarrow\;
\alpha \subset \beta$.
};
+}
-{
-\begin{scope}[xshift=0in, yshift=-3.9in]
+\small{
+\begin{scope}[xshift=0in, yshift=-3.4in]
\tikzstyle{every node}=[styleA, sibling distance = 0.4in]
- \node[yshift=-0.95in, draw=none] {$s = T^1(T^2(a^0, \varnothing^0))$};
+ \node[yshift=-0.9in, draw=none] {$s = T^1(T^2(a^0, \varnothing^0))$};
\begin{scope}[xshift=0in, yshift=0in]
- \small
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
\end{scope}
\begin{scope}[xshift=1.6in, yshift=0in]
- \node[xshift=0in, yshift=-0.95in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2(\varnothing^0, \epsilon^0))$};
- \small
+ \node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2(\varnothing^0, \epsilon^0))$};
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
\\
&traces (\alpha, \beta) =
\left[\begin{aligned}
- \rho_0 &= -1 \\[-0.4em]
- \rho'_0 &= -1 \\[-0.4em]
+ \rho_0 &= \rho'_0 = -1 \\[-0.4em]
\rho_1 &= min (lasth (\Xr_1), minh (\Xr_0)) = min (1, 0) = 0 \\[-0.4em]
\rho'_1 &= min (lasth (\Xr_1), minh (\Xl_2 \Xr_1 \Xr_0)) = min (1, 0) = 0
\end{aligned}\right.
\end{scope}
}
+\normalsize{
\node (z1)
[ xshift=2.7in
- , yshift=-5.15in
+ , yshift=-4.5in
, draw=none
- ] {(c) -- Rule 3: absence of optional empty repetitions,
+ ] {(c) -- Rule 3: no optional empty repetitions,
RE $(a|\epsilon)^{0,\infty}$ and string $a$.
- Order on IPTs: $s <_1 t$ because
+ Order on IPTs: $s <_2 t$ because
$\|s\|^{Sub}_2 = \infty > 0 = \|t\|^{Sub}_2$
};
\node (z2)
\;\Rightarrow\;
\alpha \subset \beta$.
};
+}
+\small{
+\begin{scope}[xshift=0in, yshift=-4.9in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
-\tikzstyle{every node}=[draw, shape = circle]
+ \node[yshift=-0.6in, draw=none] {$s = T^1(\varnothing^2)$};
+ \begin{scope}[xshift=0in, yshift=0in]
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${\varnothing}^{2}$"
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\hphantom{\Xl_2} \w \Xm_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s11.south)$)
+ -- ($(s11.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=1.6in, yshift=0in]
+ \node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1(T^2(\epsilon^0))$};
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${T}^{2}$" -- {
+ s111/"${\varnothing}^{0}$",
+ s112/"${\epsilon}^{0}$"
+ }
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s111.west)$)
+ -- ($(s111.south)$)
+ -- ($(s111.east)$)
+ -- ($(s11.south)$)
+ -- ($(s112.west)$)
+ -- ($(s112.south)$)
+ -- ($(s112.east)$)
+ -- ($(s11.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=4.5in, yshift=-0.45in]
+ \node (a) {{
+ $\begin{aligned}
+ &\begin{aligned}
+ \alpha = \Phi_0(s) &=
+ \overbracket {\Xl_1 \Xm_1 \Xr_0 }
+ \\[-0.4em]
+ \beta = \Phi_0(t) &=
+ \overbracket {\Xl_1 \Xl_2 \Xr_1 \Xr_0 }
+ \end{aligned}
+ \\
+ &traces (\alpha, \beta) =
+ \left[\begin{aligned}
+ \rho_0 &= min (lasth (\Xl_1), minh (\Xm_1 \Xr_0)) = min (1, 0) = 0 \\[-0.4em]
+ \rho'_0 &= min (lasth (\Xl_1), minh (\Xl_2 \Xr_1 \Xr_0)) = min (1, 0) = 0
+ \end{aligned}\right.
+ \end{aligned}$
+ }};
+ \end{scope}
+
+\end{scope}
+}
+\normalsize{
+\node (z1)
+ [ xshift=2.7in
+ , yshift=-6.0in
+ , draw=none
+ ] {(d) -- Rule 4: empty match is better than no match,
+ RE $(a|\epsilon)^{0,\infty}$ and string $\epsilon$.
+ Order on IPTs: $t <_2 s$ because
+ $\|s\|^{Sub}_2 = 0 > -1 = \|s\|^{Sub}_2$
+ };
+\node (z2)
+ [ below of = z1
+ , yshift=0.225in
+ , draw=none
+ ] {
+ and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2$.
+ Order on PEs: $\beta < \alpha$ because
+ $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
+ and
+ $first(\alpha \backslash \beta) = \Xm > \Xl = first(\beta \backslash \alpha)
+ \;\Rightarrow\;
+ \beta \subset \alpha$.
+ };
+}
-\begin{scope}[xshift=-0.5in, yshift=-5.7in]
+
+\tikzstyle{every node}=[draw, shape = circle]
\small{
+\begin{scope}[xshift=-0.5in, yshift=-6.4in]
+
\begin{scope}[xshift=0in, yshift=-0in]
\tikzstyle{every node}=[draw, shape = circle]
- \graph [tree layout, grow=down, fresh nodes, level distance = 0.2in] {
+ \graph [tree layout, grow=down, fresh nodes, level distance = 0.1in] {
"$t_1$" -- {
"" -- {
"" -- { "$a$", "$a$", "$a$" }
};
\end{scope}
+
\tikzstyle{styleA}=[draw=none
, shape=circle
, minimum size = 0.2in
, dash pattern = on 1pt off 2.5pt
]
-\begin{scope}[xshift=0in, yshift=-2.5in]
+
+\begin{scope}[xshift=0in, yshift=-2.0in]
\tikzstyle{every node}=[draw = none, shape = circle, inner sep = 0]
\node[xshift=-0.4in, draw=none] {$t_3:$};
- \graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.35in] {
+ \graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.3in] {
t31/"$T^1$" -- {
t311/"$T^2$" -- {
t3111/"$T^3$" -- { t31111/"$a^4$" },
-- ($(tt31.east)$);
\end{scope}
-\begin{scope}[xshift=1.6in, yshift=-2.5in]
+
+\begin{scope}[xshift=1.6in, yshift=-2in]
\tikzstyle{every node}=[draw = none, shape = circle, inner sep = 0]
\node[xshift=-0.4in, draw=none] {$t_5:$};
- \graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.35in] {
+ \graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.3in] {
t51/"$T^1$" -- {
t511/"$T^2$" -- {
t5111/"$T^3$" -- { t51111/"$a^4$", t51112/"$a^5$" }
\end{scope}
-\begin{scope}[xshift=5.7in, yshift=-2.3in]
+\begin{scope}[xshift=5.6in, yshift=-1.85in]
\node [shape=rectangle, draw = none] (a) {
$\begin{aligned}
&\begin{aligned}
- &\Phi_0(t_1) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_2) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_3) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_4) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_5) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_6) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_7) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
- &\Phi_0(t_8) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\
+ &\Phi_0(t_1) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_2) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_3) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_4) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_5) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_6) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_7) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
+ &\Phi_0(t_8) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0} \\[-0.4em]
&\Phi_0(t_9) = \overbracket {\Xl_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xl_2 \Xl_3 \Xl_4} a \overbracket {\Xr_3 \Xr_2 \Xr_1 \Xr_0}
\end{aligned}
- \\[1em]
+ \\
& \quad\quad t_1 < t_2 < t_3 < t_4 < t_5 < t_7 < t_6 < t_8 < t_9
\end{aligned}$
};
\end{scope}
-\begin{scope}[xshift=2.1in, yshift=-2.2in]
+
+\begin{scope}[xshift=2.0in, yshift=-1.8in]
\node [shape=rectangle, draw = none] (a) {
\setlength\tabcolsep{1.5pt}
- \renewcommand{\arraystretch}{1.1}
+ \renewcommand{\arraystretch}{0.5}
$\begin{aligned}
- &\begin{tabular}{c ccccccccc}
+ &\begin{tabular}{cccccccc|c}
$t_2$ & $t_3$ & $t_4$ & $t_5$ & $t_6$ & $t_7$ & $t_8$ & $t_9$ \\
+ \hline
+ &&&&&&& \\[-0.2em]
%
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 2 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 2 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 2 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 3 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_1$
+ & $\;t_1$
\\[1em]
%
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 2 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 2 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 2 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 2 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_2$
+ & $\;t_2$
\\[1em]
%
& &
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 2 & 0 \\
- \hline
\end{tabular}
- &
- \bf{
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ &\bf{
+ \begin{tabular}{cccc}
+% \begin{tabular}{|cccc|}
+% \hline
+ -1 & 2 & 2 & 0 \\
-1 & 3 & 1 & 0 \\
- \hline
+% \hline
\end{tabular}
- }
- &
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ }&
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_3$
+ & $\;t_3$
\\[1em]
%
& & &
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 3 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 2 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 2 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_4$
+ & $\;t_4$
\\[1em]
%
& & & &
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 1 & 0 \\
-1 & 2 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 3 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 3 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_5$
+ & $\;t_5$
\\[1em]
%
& & & & &
- \begin{tabular}{|cccc|}
- \hline
- -1 & 1 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 1 & 1 & 0 \\
-1 & 2 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 2 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 3 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 3 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_6$
+ & $\;t_6$
\\[1em]
%
& & & & & &
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
&
- \begin{tabular}{|cccc|}
- \hline
- -1 & 2 & 1 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & 2 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_7$
+ & $\;t_7$
\\[1em]
%
& & & & & & &
- \begin{tabular}{|cccc|}
- \hline
- -1 & \!-1 & 2 & 0 \\[-3pt]
+ \begin{tabular}{cccc}
+ -1 & \!-1 & 2 & 0 \\
-1 & \!-1 & 1 & 0 \\
- \hline
\end{tabular}
- & $t_8$
+ & $\;t_8$
\end{tabular}
\end{aligned}$
};
\end{scope}
-}
\normalsize{
\node (w1)
[ xshift=3.3in
- , yshift=-3.9in
+ , yshift=-3.2in
, draw=none
, shape=rectangle
- ] {(d) --
+ ] {(e) --
All possible IPTs for RE $(((a)^{1,3})^{1,3})^{1,3}$ and string $aaa$, the corresponding PEs,
and the table of $traces(\Phi_0(t_i), \Phi_0(t_j))$
};
, draw=none
, shape=rectangle
] {
- for each pair of PEs $t_i$, $t_j$.
- IPTs $t_3$ and $t_5$ are shown in more detail
- (their table entry is highlighted in bold).
+ for each pair of PEs at row $t_i$, column $t_j$.
+ IPTs $t_3$ and $t_5$ are shown in more detail (their table entry is in bold).
};
}
\end{scope}
-
+}
\end{tikzpicture}