]> granicus.if.org Git - php/commitdiff
- add new files for interpolation
authorPierre Joye <pierre.php@gmail.com>
Wed, 20 Mar 2013 07:10:54 +0000 (08:10 +0100)
committerPierre Joye <pierre.php@gmail.com>
Wed, 20 Mar 2013 07:10:54 +0000 (08:10 +0100)
ext/gd/libgd/gd_interpolation.c [new file with mode: 0644]
ext/gd/libgd/gd_matrix.c [new file with mode: 0644]

diff --git a/ext/gd/libgd/gd_interpolation.c b/ext/gd/libgd/gd_interpolation.c
new file mode 100644 (file)
index 0000000..29dbe19
--- /dev/null
@@ -0,0 +1,2590 @@
+/*
+ * Filtered Image Rescaling
+ * Based on Gems III
+ *  - Schumacher general filtered image rescaling
+ * (pp. 414-424)
+ * by Dale Schumacher
+ *
+ *     Additional changes by Ray Gardener, Daylon Graphics Ltd.
+ *     December 4, 1999
+ *
+ *     Ported to libgd by Pierre Joye. Support for multiple channels
+ *     added (argb for now).
+ *
+ *     Initial sources code is avaibable in the Gems Source Code Packages:
+ *     http://www.acm.org/pubs/tog/GraphicsGems/GGemsIII.tar.gz
+ */
+
+/*
+       Summary:
+
+               - Horizontal filter contributions are calculated on the fly,
+                 as each column is mapped from src to dst image. This lets
+                 us omit having to allocate a temporary full horizontal stretch
+                 of the src image.
+
+               - If none of the src pixels within a sampling region differ,
+                 then the output pixel is forced to equal (any of) the source pixel.
+                 This ensures that filters do not corrupt areas of constant color.
+
+               - Filter weight contribution results, after summing, are
+                 rounded to the nearest pixel color value instead of
+                 being casted to ILubyte (usually an int or char). Otherwise,
+                 artifacting occurs.
+
+*/
+
+/*
+TODO:
+ - Optimize pixel accesses and loops once we have continuous buffer
+ - Add scale support for a portion only of an image (equivalent of copyresized/resampled)
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include <gd.h>
+//#include "gd_resize.h"
+#include "gdhelpers.h"
+
+#ifdef _MSC_VER
+# pragma optimize("t", on)
+# include <emmintrin.h>
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a)<(b)?(a):(b))
+#endif
+#define MIN3(a,b,c) ((a)<(b)?(MIN(a,c)):(MIN(b,c)))
+#ifndef MAX
+#define MAX(a,b) ((a)<(b)?(b):(a))
+#endif
+#define MAX3(a,b,c) ((a)<(b)?(MAX(b,c)):(MAX(a,c)))
+
+#define CLAMP(x, low, high)  (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
+
+/* only used here, let do a generic fixed point integers later if required by other
+   part of GD */
+typedef long gdFixed;
+/* Integer to fixed point */
+#define gd_itofx(x) ((x) << 8)
+
+/* Float to fixed point */
+#define gd_ftofx(x) (long)((x) * 256)
+
+/*  Double to fixed point */
+#define gd_dtofx(x) (long)((x) * 256)
+
+/* Fixed point to integer */
+#define gd_fxtoi(x) ((x) >> 8)
+
+/* Fixed point to float */
+# define gd_fxtof(x) ((float)(x) / 256)
+
+/* Fixed point to double */
+#define gd_fxtod(x) ((double)(x) / 256)
+
+/* Multiply a fixed by a fixed */
+#define gd_mulfx(x,y) (((x) * (y)) >> 8)
+
+/* Divide a fixed by a fixed */
+#define gd_divfx(x,y) (((x) << 8) / (y))
+
+typedef struct
+{
+   double *Weights;  /* Normalized weights of neighboring pixels */
+   int Left,Right;   /* Bounds of source pixels window */
+} ContributionType;  /* Contirbution information for a single pixel */
+
+typedef struct
+{
+   ContributionType *ContribRow; /* Row (or column) of contribution weights */
+   unsigned int WindowSize,      /* Filter window size (of affecting source pixels) */
+                               LineLength;      /* Length of line (no. or rows / cols) */
+} LineContribType;
+
+/* Each core filter has its own radius */
+#define DEFAULT_FILTER_BICUBIC                         3.0
+#define DEFAULT_FILTER_BOX                                     0.5
+#define DEFAULT_FILTER_GENERALIZED_CUBIC       0.5
+#define DEFAULT_FILTER_RADIUS                          1.0
+#define DEFAULT_LANCZOS8_RADIUS                                8.0
+#define DEFAULT_LANCZOS3_RADIUS                                3.0
+#define DEFAULT_HERMITE_RADIUS                         1.0
+#define DEFAULT_BOX_RADIUS                                     0.5
+#define DEFAULT_TRIANGLE_RADIUS                                1.0
+#define DEFAULT_BELL_RADIUS                                    1.5
+#define DEFAULT_CUBICSPLINE_RADIUS                     2.0
+#define DEFAULT_MITCHELL_RADIUS                                2.0
+#define DEFAULT_COSINE_RADIUS                          1.0
+#define DEFAULT_CATMULLROM_RADIUS                      2.0
+#define DEFAULT_QUADRATIC_RADIUS                       1.5
+#define DEFAULT_QUADRATICBSPLINE_RADIUS                1.5
+#define DEFAULT_CUBICCONVOLUTION_RADIUS                3.0
+#define DEFAULT_GAUSSIAN_RADIUS                                1.0
+#define DEFAULT_HANNING_RADIUS                         1.0
+#define DEFAULT_HAMMING_RADIUS                         1.0
+#define DEFAULT_SINC_RADIUS                                    1.0
+#define DEFAULT_WELSH_RADIUS                           1.0
+
+enum GD_RESIZE_FILTER_TYPE{
+       FILTER_DEFAULT          = 0,
+       FILTER_BELL,
+       FILTER_BESSEL,
+       FILTER_BLACKMAN,
+       FILTER_BOX,
+       FILTER_BSPLINE,
+       FILTER_CATMULLROM,
+       FILTER_COSINE,
+       FILTER_CUBICCONVOLUTION,
+       FILTER_CUBICSPLINE,
+       FILTER_HERMITE,
+       FILTER_LANCZOS3,
+       FILTER_LANCZOS8,
+       FILTER_MITCHELL,
+       FILTER_QUADRATIC,
+       FILTER_QUADRATICBSPLINE,
+       FILTER_TRIANGLE,
+       FILTER_GAUSSIAN,
+       FILTER_HANNING,
+       FILTER_HAMMING,
+       FILTER_SINC,
+       FILTER_WELSH,
+
+       FILTER_CALLBACK        = 999
+};
+
+typedef enum GD_RESIZE_FILTER_TYPE gdResizeFilterType;
+
+static double KernelBessel_J1(const double x)
+{
+       double p, q;
+
+       register long i;
+
+       static const double
+       Pone[] =
+       {
+               0.581199354001606143928050809e+21,
+               -0.6672106568924916298020941484e+20,
+               0.2316433580634002297931815435e+19,
+               -0.3588817569910106050743641413e+17,
+               0.2908795263834775409737601689e+15,
+               -0.1322983480332126453125473247e+13,
+               0.3413234182301700539091292655e+10,
+               -0.4695753530642995859767162166e+7,
+               0.270112271089232341485679099e+4
+       },
+       Qone[] =
+       {
+               0.11623987080032122878585294e+22,
+               0.1185770712190320999837113348e+20,
+               0.6092061398917521746105196863e+17,
+               0.2081661221307607351240184229e+15,
+               0.5243710262167649715406728642e+12,
+               0.1013863514358673989967045588e+10,
+               0.1501793594998585505921097578e+7,
+               0.1606931573481487801970916749e+4,
+               0.1e+1
+       };
+
+       p = Pone[8];
+       q = Qone[8];
+       for (i=7; i >= 0; i--)
+       {
+               p = p*x*x+Pone[i];
+               q = q*x*x+Qone[i];
+       }
+       return (double)(p/q);
+}
+
+static double KernelBessel_P1(const double x)
+{
+       double p, q;
+
+       register long i;
+
+       static const double
+       Pone[] =
+       {
+               0.352246649133679798341724373e+5,
+               0.62758845247161281269005675e+5,
+               0.313539631109159574238669888e+5,
+               0.49854832060594338434500455e+4,
+               0.2111529182853962382105718e+3,
+               0.12571716929145341558495e+1
+       },
+       Qone[] =
+       {
+               0.352246649133679798068390431e+5,
+               0.626943469593560511888833731e+5,
+               0.312404063819041039923015703e+5,
+               0.4930396490181088979386097e+4,
+               0.2030775189134759322293574e+3,
+               0.1e+1
+       };
+
+       p = Pone[5];
+       q = Qone[5];
+       for (i=4; i >= 0; i--)
+       {
+               p = p*(8.0/x)*(8.0/x)+Pone[i];
+               q = q*(8.0/x)*(8.0/x)+Qone[i];
+       }
+       return (double)(p/q);
+}
+
+static double KernelBessel_Q1(const double x)
+{
+       double p, q;
+
+       register long i;
+
+       static const double
+       Pone[] =
+       {
+               0.3511751914303552822533318e+3,
+               0.7210391804904475039280863e+3,
+               0.4259873011654442389886993e+3,
+               0.831898957673850827325226e+2,
+               0.45681716295512267064405e+1,
+               0.3532840052740123642735e-1
+       },
+       Qone[] =
+       {
+               0.74917374171809127714519505e+4,
+               0.154141773392650970499848051e+5,
+               0.91522317015169922705904727e+4,
+               0.18111867005523513506724158e+4,
+               0.1038187585462133728776636e+3,
+               0.1e+1
+       };
+
+       p = Pone[5];
+       q = Qone[5];
+       for (i=4; i >= 0; i--)
+       {
+               p = p*(8.0/x)*(8.0/x)+Pone[i];
+               q = q*(8.0/x)*(8.0/x)+Qone[i];
+       }
+       return (double)(p/q);
+}
+
+static double KernelBessel_Order1(double x)
+{
+       double p, q;
+
+       if (x == 0.0)
+               return (0.0f);
+       p = x;
+       if (x < 0.0)
+               x=(-x);
+       if (x < 8.0)
+               return (p*KernelBessel_J1(x));
+       q = (double)sqrt(2.0f/(M_PI*x))*(double)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
+               (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
+       if (p < 0.0f)
+               q = (-q);
+       return (q);
+}
+
+static double filter_bessel(const double x)
+{
+       if (x == 0.0f)
+               return (double)(M_PI/4.0f);
+       return (KernelBessel_Order1((double)M_PI*x)/(2.0f*x));
+}
+
+
+static double filter_blackman(const double x)
+{
+       //if (fabs(x)>1) return 0.0f;
+       return (0.42f+0.5f*(double)cos(M_PI*x)+0.08f*(double)cos(2.0f*M_PI*x));
+}
+
+/**
+ * Bicubic interpolation kernel (a=-1):
+  \verbatim
+          /
+         | 1-2|t|**2+|t|**3          , if |t| < 1
+  h(t) = | 4-8|t|+5|t|**2-|t|**3     , if 1<=|t|<2
+         | 0                         , otherwise
+          \
+  \endverbatim
+ * ***bd*** 2.2004
+ */
+static double filter_bicubic(const double t)
+{
+  const double abs_t = (double)fabs(t);
+  const double abs_t_sq = abs_t * abs_t;
+  if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
+  if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
+  return 0;
+}
+
+/**
+ * Generalized cubic kernel (for a=-1 it is the same as BicubicKernel):
+  \verbatim
+          /
+         | (a+2)|t|**3 - (a+3)|t|**2 + 1     , |t| <= 1
+  h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a   , 1 < |t| <= 2
+         | 0                                 , otherwise
+          \
+  \endverbatim
+ * Often used values for a are -1 and -1/2.
+ */
+static double filter_generalized_cubic(const double t)
+{
+       const double a = -DEFAULT_FILTER_GENERALIZED_CUBIC;
+       double abs_t = (double)fabs(t);
+       double abs_t_sq = abs_t * abs_t;
+       if (abs_t < 1) return (a + 2) * abs_t_sq * abs_t - (a + 3) * abs_t_sq + 1;
+       if (abs_t < 2) return a * abs_t_sq * abs_t - 5 * a * abs_t_sq + 8 * a * abs_t - 4 * a;
+       return 0;
+}
+
+/* CubicSpline filter, default radius 2 */
+static double filter_cubic_spline(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+
+       if (x < 1.0 ) {
+               const double x2 = x*x;
+
+               return (0.5 * x2 * x - x2 + 2.0 / 3.0);
+       }
+       if (x < 2.0) {
+               return (pow(2.0 - x, 3.0)/6.0);
+       }
+       return 0;
+}
+
+/* CubicConvolution filter, default radius 3 */
+static double filter_cubic_convolution(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+       const double x2 = x1 * x1;
+       const double x2_x = x2 * x;
+
+       if (x <= 1.0) return ((4.0 / 3.0)* x2_x - (7.0 / 3.0) * x2 + 1.0);
+       if (x <= 2.0) return (- (7.0 / 12.0) * x2_x + 3 * x2 - (59.0 / 12.0) * x + 2.5);
+       if (x <= 3.0) return ( (1.0/12.0) * x2_x - (2.0 / 3.0) * x2 + 1.75 * x - 1.5);
+       return 0;
+}
+
+static double filter_box(double x) {
+       if (x < - DEFAULT_FILTER_BOX)
+               return 0.0f;
+       if (x < DEFAULT_FILTER_BOX)
+               return 1.0f;
+       return 0.0f;
+}
+
+static double filter_catmullrom(const double x)
+{
+       if (x < -2.0)
+               return(0.0f);
+       if (x < -1.0)
+               return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
+       if (x < 0.0)
+               return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
+       if (x < 1.0)
+               return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
+       if (x < 2.0)
+               return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
+       return(0.0f);
+}
+
+static double filter_filter(double t)
+{
+       /* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
+       if(t < 0.0) t = -t;
+       if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
+       return(0.0);
+}
+
+
+/* Lanczos8 filter, default radius 8 */
+static double filter_lanczos8(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+#define R DEFAULT_LANCZOS8_RADIUS
+
+       if ( x == 0.0) return 1;
+
+       if ( x < R) {
+               return R * sin(x*M_PI) * sin(x * M_PI/ R) / (x * M_PI * x * M_PI);
+       }
+       return 0.0;
+#undef R
+}
+
+
+/* Lanczos3 filter, default radius 3 */
+static double filter_lanczos3(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+#define R DEFAULT_LANCZOS3_RADIUS
+
+       if ( x == 0.0) return 1;
+
+       if ( x < R)
+       {
+               return R * sin(x*M_PI) * sin(x * M_PI / R) / (x * M_PI * x * M_PI);
+       }
+       return 0.0;
+#undef R
+}
+
+/* Hermite filter, default radius 1 */
+static double filter_hermite(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+
+       if (x < 1.0) return ((2.0 * x - 3) * x * x + 1.0 );
+
+       return 0.0;
+}
+
+/* Trangle filter, default radius 1 */
+static double filter_triangle(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+       if (x < 1.0) return (1.0 - x);
+       return 0.0;
+}
+
+/* Bell filter, default radius 1.5 */
+static double filter_bell(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+
+       if (x < 0.5) return (0.75 - x*x);
+       if (x < 1.5) return (0.5 * pow(x - 1.5, 2.0));
+       return 0.0;
+}
+
+/* Mitchell filter, default radius 2.0 */
+static double filter_mitchell(const double x)
+{
+#define KM_B (1.0f/3.0f)
+#define KM_C (1.0f/3.0f)
+#define KM_P0 ((  6.0f - 2.0f * KM_B ) / 6.0f)
+#define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
+#define KM_P3 (( 12.0f - 9.0f  * KM_B - 6.0f * KM_C) / 6.0f)
+#define KM_Q0 ((  8.0f * KM_B + 24.0f * KM_C) / 6.0f)
+#define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
+#define KM_Q2 ((  6.0f * KM_B + 30.0f * KM_C) / 6.0f)
+#define KM_Q3 (( -1.0f * KM_B -  6.0f * KM_C) / 6.0f)
+
+       if (x < -2.0)
+               return(0.0f);
+       if (x < -1.0)
+               return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
+       if (x < 0.0f)
+               return(KM_P0+x*x*(KM_P2-x*KM_P3));
+       if (x < 1.0f)
+               return(KM_P0+x*x*(KM_P2+x*KM_P3));
+       if (x < 2.0f)
+               return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
+       return(0.0f);
+}
+
+
+
+/* Cosine filter, default radius 1 */
+static double filter_cosine(const double x)
+{
+       if ((x >= -1.0) && (x <= 1.0)) return ((cos(x * M_PI) + 1.0)/2.0);
+
+       return 0;
+}
+
+/* Quadratic filter, default radius 1.5 */
+static double filter_quadratic(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+
+       if (x <= 0.5) return (- 2.0 * x * x + 1);
+       if (x <= 1.5) return (x * x - 2.5* x + 1.5);
+       return 0.0;
+}
+
+static double filter_bspline(const double x)
+{
+       if (x>2.0f) {
+               return 0.0f;
+       } else {
+               double a, b, c, d;
+               /* Was calculated anyway cause the "if((x-1.0f) < 0)" */
+               const double xm1 = x - 1.0f;
+               const double xp1 = x + 1.0f;
+               const double xp2 = x + 2.0f;
+
+               if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2;
+               if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
+               if (x <= 0) c = 0.0f; else c = x*x*x;
+               if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
+
+               return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
+       }
+}
+
+/* QuadraticBSpline filter, default radius 1.5 */
+static double filter_quadratic_bspline(const double x1)
+{
+       const double x = x1 < 0.0 ? -x1 : x1;
+
+       if (x <= 0.5) return (- x * x + 0.75);
+       if (x <= 1.5) return (0.5 * x * x - 1.5 * x + 1.125);
+       return 0.0;
+}
+
+static double filter_gaussian(const double x)
+{
+       /* return(exp((double) (-2.0 * x * x)) * sqrt(2.0 / M_PI)); */
+       return (double)(exp(-2.0f * x * x) * 0.79788456080287f);
+}
+
+static double filter_hanning(const double x)
+{
+       /* A Cosine windowing function */
+       return(0.5 + 0.5 * cos(M_PI * x));
+}
+
+static double filter_hamming(const double x)
+{
+       /* should be
+       (0.54+0.46*cos(M_PI*(double) x));
+       but this approximation is sufficient */
+       if (x < -1.0f)
+               return 0.0f;
+       if (x < 0.0f)
+               return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
+       if (x < 1.0f)
+               return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
+       return 0.0f;
+}
+
+static double filter_power(const double x)
+{
+       const double a = 2.0f;
+       if (fabs(x)>1) return 0.0f;
+       return (1.0f - (double)fabs(pow(x,a)));
+}
+
+static double filter_sinc(const double x)
+{
+       /* X-scaled Sinc(x) function. */
+       if (x == 0.0) return(1.0);
+       return (sin(M_PI * (double) x) / (M_PI * (double) x));
+}
+
+static double filter_welsh(const double x)
+{
+       /* Welsh parabolic windowing filter */
+       if (x <  1.0)
+               return(1 - x*x);
+       return(0.0);
+}
+
+
+/* Copied from upstream's libgd */
+static inline int _color_blend (const int dst, const int src)
+{
+    const int src_alpha = gdTrueColorGetAlpha(src);
+
+    if( src_alpha == gdAlphaOpaque ) {
+               return src;
+       } else {
+               const int dst_alpha = gdTrueColorGetAlpha(dst);
+
+               if( src_alpha == gdAlphaTransparent ) return dst;
+               if( dst_alpha == gdAlphaTransparent ) {
+                       return src;
+               } else {
+                       register int alpha, red, green, blue;
+                       const int src_weight = gdAlphaTransparent - src_alpha;
+                       const int dst_weight = (gdAlphaTransparent - dst_alpha) * src_alpha / gdAlphaMax;
+                       const int tot_weight = src_weight + dst_weight;
+
+                       alpha = src_alpha * dst_alpha / gdAlphaMax;
+
+                       red = (gdTrueColorGetRed(src) * src_weight
+                                  + gdTrueColorGetRed(dst) * dst_weight) / tot_weight;
+                       green = (gdTrueColorGetGreen(src) * src_weight
+                                  + gdTrueColorGetGreen(dst) * dst_weight) / tot_weight;
+                       blue = (gdTrueColorGetBlue(src) * src_weight
+                                  + gdTrueColorGetBlue(dst) * dst_weight) / tot_weight;
+
+                       return ((alpha << 24) + (red << 16) + (green << 8) + blue);
+               }
+       }
+}
+
+static inline int _setEdgePixel(const gdImagePtr src, unsigned int x, unsigned int y, gdFixed coverage, const int bgColor) 
+{
+       const gdFixed f_127 = gd_itofx(127);
+       register int c = src->tpixels[y][x];
+       c = c | (( (int) (gd_fxtof(gd_mulfx(coverage, f_127)) + 50.5f)) << 24);
+       return _color_blend(bgColor, c);
+}
+
+static inline int getPixelOverflowTC(gdImagePtr im, const int x, const int y, const int bgColor)
+{
+       if (gdImageBoundsSafe(im, x, y)) {
+               const int c = im->tpixels[y][x];
+               if (c == im->transparent) {
+                       return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
+               }
+               return c;
+       } else {
+               register int border;
+
+               if (y < im->cy1) {
+                       //border = gdImageGetPixel(im, im->cx1, 0);
+                       border = im->tpixels[0][im->cx1];
+                       goto processborder;
+               }
+
+               if (y < im->cy1) {
+                       //border = gdImageGetPixel(im, im->cx1, 0);
+                       border = im->tpixels[0][im->cx1];
+                       goto processborder;
+               }
+
+               if (y > im->cy2) {
+                       if (x >= im->cx1 && x <= im->cx1) {
+                               //border = gdImageGetPixel(im, x,  im->cy2);
+                               border = im->tpixels[im->cy2][x];
+                               goto processborder;
+                       } else {
+                               return gdTrueColorAlpha(0, 0, 0, 127);
+                       }
+               }
+
+               /* y is bound safe at this point */
+               if (x < im->cx1) {
+                       //border = gdImageGetPixel(im, im->cx1, y);
+                       border = im->tpixels[y][im->cx1];
+                       goto processborder;
+               }
+
+               if (x > im->cx2) {
+                       //border = gdImageGetPixel(im, im->cx2, y);
+                       border = im->tpixels[y][im->cx2];
+               }
+
+processborder:
+               if (border == im->transparent) {
+                       return gdTrueColorAlpha(0, 0, 0, 127);
+               } else{
+                       return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
+               }
+       }
+}
+
+#define colorIndex2RGBA(c) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(c)])
+#define colorIndex2RGBcustomA(c, a) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(a)])
+static inline int getPixelOverflowPalette(gdImagePtr im, const int x, const int y, const int bgColor)
+{
+       if (gdImageBoundsSafe(im, x, y)) {
+               const int c = im->pixels[y][x];
+               if (c == im->transparent) {
+                       return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
+               }
+               return colorIndex2RGBA(c);
+       } else {
+               register int border;
+               if (y < im->cy1) {
+                       border = gdImageGetPixel(im, im->cx1, 0);
+                       goto processborder;
+               }
+
+               if (y < im->cy1) {
+                       border = gdImageGetPixel(im, im->cx1, 0);
+                       goto processborder;
+               }
+
+               if (y > im->cy2) {
+                       if (x >= im->cx1 && x <= im->cx1) {
+                               border = gdImageGetPixel(im, x,  im->cy2);
+                               goto processborder;
+                       } else {
+                               return gdTrueColorAlpha(0, 0, 0, 127);
+                       }
+               }
+
+               /* y is bound safe at this point */
+               if (x < im->cx1) {
+                       border = gdImageGetPixel(im, im->cx1, y);
+                       goto processborder;
+               }
+
+               if (x > im->cx2) {
+                       border = gdImageGetPixel(im, im->cx2, y);
+               }
+
+processborder:
+               if (border == im->transparent) {
+                       return gdTrueColorAlpha(0, 0, 0, 127);
+               } else{
+                       return colorIndex2RGBcustomA(border, 127);
+               }
+       }
+}
+
+static int getPixelInterpolateWeight(gdImagePtr im, const double x, const double y, const int bgColor)
+{
+       /* Closest pixel <= (xf,yf) */
+       int sx = (int)(x);
+       int sy = (int)(y);
+       const double xf = x - (double)sx;
+       const double yf = y - (double)sy;
+       const double nxf = (double) 1.0 - xf;
+       const double nyf = (double) 1.0 - yf;
+       const double m1 = xf * yf;
+       const double m2 = nxf * yf;
+       const double m3 = xf * nyf;
+       const double m4 = nxf * nyf;
+
+       /* get color values of neighbouring pixels */
+       const int c1 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy, bgColor)         : getPixelOverflowPalette(im, sx, sy, bgColor);
+       const int c2 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy, bgColor)     : getPixelOverflowPalette(im, sx - 1, sy, bgColor);
+       const int c3 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy - 1, bgColor)     : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
+       const int c4 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy - 1, bgColor) : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
+       int r, g, b, a;
+
+       if (x < 0) sx--;
+       if (y < 0) sy--;
+
+       /* component-wise summing-up of color values */
+       if (im->trueColor) {
+               r = (int)(m1*gdTrueColorGetRed(c1)   + m2*gdTrueColorGetRed(c2)   + m3*gdTrueColorGetRed(c3)   + m4*gdTrueColorGetRed(c4));
+               g = (int)(m1*gdTrueColorGetGreen(c1) + m2*gdTrueColorGetGreen(c2) + m3*gdTrueColorGetGreen(c3) + m4*gdTrueColorGetGreen(c4));
+               b = (int)(m1*gdTrueColorGetBlue(c1)  + m2*gdTrueColorGetBlue(c2)  + m3*gdTrueColorGetBlue(c3)  + m4*gdTrueColorGetBlue(c4));
+               a = (int)(m1*gdTrueColorGetAlpha(c1) + m2*gdTrueColorGetAlpha(c2) + m3*gdTrueColorGetAlpha(c3) + m4*gdTrueColorGetAlpha(c4));
+       } else {
+               r = (int)(m1*im->red[(c1)]   + m2*im->red[(c2)]   + m3*im->red[(c3)]   + m4*im->red[(c4)]);
+               g = (int)(m1*im->green[(c1)] + m2*im->green[(c2)] + m3*im->green[(c3)] + m4*im->green[(c4)]);
+               b = (int)(m1*im->blue[(c1)]  + m2*im->blue[(c2)]  + m3*im->blue[(c3)]  + m4*im->blue[(c4)]);
+               a = (int)(m1*im->alpha[(c1)] + m2*im->alpha[(c2)] + m3*im->alpha[(c3)] + m4*im->alpha[(c4)]);
+       }
+
+       r = CLAMP(r, 0, 255);
+       g = CLAMP(g, 0, 255);
+       b = CLAMP(b, 0, 255);
+       a = CLAMP(a, 0, gdAlphaMax);
+       return gdTrueColorAlpha(r, g, b, a);
+}
+
+/**
+ * Function: getPixelInterpolated
+ *  Returns the interpolated color value using the default interpolation
+ *  method. The returned color is always in the ARGB format (truecolor).
+ *
+ * Parameters:
+ *     im - Image to set the default interpolation method
+ *  y - X value of the ideal position
+ *  y - Y value of the ideal position
+ *  method - Interpolation method <gdInterpolationMethod>
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ *
+ * See also:
+ *  <gdSetInterpolationMethod>
+ */
+int getPixelInterpolated(gdImagePtr im, const double x, const double y, const int bgColor)
+{
+       const int xi=(int)((x) < 0 ? x - 1: x);
+       const int yi=(int)((y) < 0 ? y - 1: y);
+       int yii;
+       int i;
+       double kernel, kernel_cache_y;
+       double kernel_x[12], kernel_y[4];
+       double new_r = 0.0f, new_g = 0.0f, new_b = 0.0f, new_a = 0.0f;
+
+       /* These methods use special implementations */
+       if (im->interpolation_id == GD_BILINEAR_FIXED || im->interpolation_id == GD_BICUBIC_FIXED || im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+               return -1;
+       }
+
+       /* Default to full alpha */
+       if (bgColor == -1) {
+       }
+
+       if (im->interpolation_id == GD_WEIGHTED4) {
+               return getPixelInterpolateWeight(im, x, y, bgColor);
+       }
+
+       if (im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+               if (im->trueColor == 1) {
+                       return getPixelOverflowTC(im, xi, yi, bgColor);
+               } else {
+                       return getPixelOverflowPalette(im, xi, yi, bgColor);
+               }
+       }
+       if (im->interpolation) {
+               for (i=0; i<4; i++) {
+                       kernel_x[i] = (double) im->interpolation((double)(xi+i-1-x));
+                       kernel_y[i] = (double) im->interpolation((double)(yi+i-1-y));
+               }
+       } else {
+               return -1;
+       }
+
+       /*
+        * TODO: use the known fast rgba multiplication implementation once
+        * the new formats are in place
+        */
+       for (yii = yi-1; yii < yi+3; yii++) {
+               int xii;
+               kernel_cache_y = kernel_y[yii-(yi-1)];
+               if (im->trueColor) {
+                       for (xii=xi-1; xii<xi+3; xii++) {
+                               const int rgbs = getPixelOverflowTC(im, xii, yii, bgColor);
+
+                               kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
+                               new_r += kernel * gdTrueColorGetRed(rgbs);
+                               new_g += kernel * gdTrueColorGetGreen(rgbs);
+                               new_b += kernel * gdTrueColorGetBlue(rgbs);
+                               new_a += kernel * gdTrueColorGetAlpha(rgbs);
+                       }
+               } else {
+                       for (xii=xi-1; xii<xi+3; xii++) {
+                               const int rgbs = getPixelOverflowPalette(im, xii, yii, bgColor);
+
+                               kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
+                               new_r += kernel * gdTrueColorGetRed(rgbs);
+                               new_g += kernel * gdTrueColorGetGreen(rgbs);
+                               new_b += kernel * gdTrueColorGetBlue(rgbs);
+                               new_a += kernel * gdTrueColorGetAlpha(rgbs);
+                       }
+               }
+       }
+
+       new_r = CLAMP(new_r, 0, 255);
+       new_g = CLAMP(new_g, 0, 255);
+       new_b = CLAMP(new_b, 0, 255);
+       new_a = CLAMP(new_a, 0, gdAlphaMax);
+
+       return gdTrueColorAlpha(((int)new_r), ((int)new_g), ((int)new_b), ((int)new_a));
+}
+
+static inline LineContribType * _gdContributionsAlloc(unsigned int line_length, unsigned int windows_size)
+{
+       unsigned int u = 0;
+    LineContribType *res;
+
+       res = (LineContribType *) gdMalloc(sizeof(LineContribType));
+       if (!res) {
+               return NULL;
+       }
+    res->WindowSize = windows_size;
+    res->LineLength = line_length;
+    res->ContribRow = (ContributionType *) gdMalloc(line_length * sizeof(ContributionType));
+
+    for (u = 0 ; u < line_length ; u++) {
+        res->ContribRow[u].Weights = (double *) gdMalloc(windows_size * sizeof(double));
+    }
+    return res;
+}
+
+static inline _gdContributionsFree(LineContribType * p)
+{
+       unsigned int u;
+       for (u = 0; u < p->LineLength; u++)  {
+               gdFree(p->ContribRow[u].Weights);
+       }
+       gdFree(p->ContribRow);
+       gdFree(p);
+}
+
+static inline LineContribType *_gdContributionsCalc(unsigned int line_size, unsigned int src_size, double scale_d,  const interpolation_method pFilter)
+{
+    double width_d;
+    double scale_f_d = 1.0;
+    const double filter_width_d = DEFAULT_BOX_RADIUS;
+       int windows_size;
+       unsigned int u;
+       LineContribType *res;
+
+    if (scale_d < 1.0) {
+        width_d = filter_width_d / scale_d;
+        scale_f_d = scale_d;
+    }  else {
+        width_d= filter_width_d;
+    }
+
+    windows_size = 2 * (int)ceil(width_d) + 1;
+    res = _gdContributionsAlloc(line_size, windows_size);
+
+    for (u = 0; u < line_size; u++) {
+        const double dCenter = (double)u / scale_d;
+        /* get the significant edge points affecting the pixel */
+        register int iLeft = max (0, (int)floor (dCenter - width_d));
+        int iRight = MIN((int)ceil(dCenter + width_d), (int)src_size - 1);
+        double dTotalWeight = 0.0;
+               int iSrc;
+
+        res->ContribRow[u].Left = iLeft;
+        res->ContribRow[u].Right = iRight;
+
+        /* Cut edge points to fit in filter window in case of spill-off */
+        if (iRight - iLeft + 1 > windows_size)  {
+            if (iLeft < ((int)src_size - 1 / 2))  {
+                iLeft++;
+            } else {
+                iRight--;
+            }
+        }
+
+        for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
+            dTotalWeight += (res->ContribRow[u].Weights[iSrc-iLeft] =  scale_f_d * (*pFilter)(scale_f_d * (dCenter - (double)iSrc)));
+        }
+
+               if (dTotalWeight < 0.0) {
+                       _gdContributionsFree(res);
+                       return NULL;
+               }
+
+        if (dTotalWeight > 0.0) {
+            for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
+                res->ContribRow[u].Weights[iSrc-iLeft] /= dTotalWeight;
+            }
+        }
+   }
+   return res;
+}
+
+static inline void _gdScaleRow(gdImagePtr pSrc,  unsigned int src_width, gdImagePtr dst, unsigned int dst_width, unsigned int row, LineContribType *contrib)
+{
+    int *p_src_row = pSrc->tpixels[row];
+    int *p_dst_row = dst->tpixels[row];
+       unsigned int x;
+
+    for (x = 0; x < dst_width - 1; x++) {
+               register unsigned char r = 0, g = 0, b = 0, a = 0;
+        const int left = contrib->ContribRow[x].Left;
+        const int right = contrib->ContribRow[x].Right;
+               int i;
+
+               /* Accumulate each channel */
+        for (i = left; i <= right; i++) {
+                       const left_channel = i - left;
+            r += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetRed(p_src_row[i])));
+            g += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetGreen(p_src_row[i])));
+            b += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetBlue(p_src_row[i])));
+                       a += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetAlpha(p_src_row[i])));
+        }
+        p_dst_row[x] = gdTrueColorAlpha(r, g, b, a);
+    }
+}
+
+static inline void _gdScaleHoriz(gdImagePtr pSrc, unsigned int src_width, unsigned int src_height, gdImagePtr pDst,  unsigned int dst_width, unsigned int dst_height)
+{
+       unsigned int u;
+       LineContribType * contrib;
+
+       /* same width, just copy it */
+       if (dst_width == src_width) {
+               unsigned int y;
+               for (y = 0; y < src_height - 1; ++y) {
+                       memcpy(pDst->tpixels[y], pSrc->tpixels[y], src_width);
+               }
+       }
+
+       contrib = _gdContributionsCalc(dst_width, src_width, (double)dst_width / (double)src_width, pSrc->interpolation);
+       if (contrib == NULL) {
+               return;
+       }
+       /* Scale each row */
+       for (u = 0; u < dst_height - 1; u++) {
+               _gdScaleRow(pSrc, src_width, pDst, dst_width, u, contrib);
+       }
+       _gdContributionsFree (contrib);
+}
+
+static inline _gdScaleCol (gdImagePtr pSrc,  unsigned int src_width, gdImagePtr pRes, unsigned int dst_width, unsigned int dst_height, unsigned int uCol, LineContribType *contrib)
+{
+       unsigned int y;
+    for (y = 0; y < dst_height - 1; y++) {
+        register unsigned char r = 0, g = 0, b = 0, a = 0;
+        const int iLeft = contrib->ContribRow[y].Left;
+        const int iRight = contrib->ContribRow[y].Right;
+               int i;
+               int *row = pRes->tpixels[y];
+
+               /* Accumulate each channel */
+        for (i = iLeft; i <= iRight; i++) {
+            const int pCurSrc = pSrc->tpixels[i][uCol];
+                       const int i_iLeft = i - iLeft;
+            r += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetRed(pCurSrc)));
+            g += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetGreen(pCurSrc)));
+            b += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetBlue(pCurSrc)));
+                       a += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetAlpha(pCurSrc)));
+        }
+               pRes->tpixels[y][uCol] = gdTrueColorAlpha(r, g, b, a);
+    }
+}
+
+static inline _gdScaleVert (const gdImagePtr pSrc, const unsigned int src_width, const unsigned int src_height, const gdImagePtr pDst, const unsigned int dst_width, const unsigned int dst_height)
+{
+       unsigned int u;
+       LineContribType * contrib;
+
+       /* same height, copy it */
+    if (src_height == dst_height) {
+               unsigned int y;
+               for (y = 0; y < src_height - 1; ++y) {
+                       memcpy(pDst->tpixels[y], pSrc->tpixels[y], src_width);
+               }
+    }
+
+       contrib = _gdContributionsCalc(dst_height, src_height, (double)(dst_height) / (double)(src_height), pSrc->interpolation);
+       /* scale each column */
+       for (u = 0; u < dst_width - 1; u++) {
+               _gdScaleCol(pSrc, src_width, pDst, dst_width, dst_height, u, contrib);
+       }
+       _gdContributionsFree(contrib);
+}
+
+gdImagePtr gdImageScaleTwoPass(const gdImagePtr src, const unsigned int src_width, const unsigned int src_height, const unsigned int new_width, const unsigned int new_height)
+{
+    gdImagePtr tmp_im;
+       gdImagePtr dst;
+
+       tmp_im = gdImageCreateTrueColor(new_width, src_height);
+       if (tmp_im == NULL) {
+               return NULL;
+       }
+       _gdScaleHoriz (src,  src_width, src_height, tmp_im, new_width, src_height);
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+       if (dst == NULL) {
+               return NULL;
+       }
+       _gdScaleVert(tmp_im, new_width, src_height, dst, new_width, new_height);
+       gdFree(tmp_im);
+
+
+    return dst;
+}
+
+gdImagePtr Scale(const gdImagePtr src, const unsigned int src_width, const unsigned int src_height, const gdImagePtr dst, const unsigned int new_width, const unsigned int new_height)
+{
+    gdImagePtr tmp_im;
+
+       tmp_im = gdImageCreateTrueColor(new_width, src_height);
+       if (tmp_im == NULL) {
+               return NULL;
+       }
+    _gdScaleHoriz(src, src_width, src_height, tmp_im, new_width, src_height);
+
+    _gdScaleVert(tmp_im, new_width, src_height, dst, new_width, new_height);
+
+       gdFree(tmp_im);
+    return dst;
+}
+
+/*
+       BilinearFixed, BicubicFixed and nearest implementations are rewamped versions of the implementation in CBitmapEx
+       http://www.codeproject.com/Articles/29121/CBitmapEx-Free-C-Bitmap-Manipulation-Class
+       Integer only implementation, good to have for common usages like pre scale very large
+       images before using another interpolation methods for the last step.
+*/
+gdImagePtr gdImageScaleNearestNeighbour(gdImagePtr im, const unsigned int width, const unsigned int height)
+{
+       const unsigned long new_width = MAX(1, width);
+       const unsigned long new_height = MAX(1, height);
+       const float dx = (float)im->sx / (float)new_width;
+       const float dy = (float)im->sy / (float)new_height;
+       const gdFixed f_dx = gd_ftofx(dx);
+       const gdFixed f_dy = gd_ftofx(dy);
+
+       gdImagePtr dst_img;
+       unsigned long  dst_offset_x;
+       unsigned long  dst_offset_y = 0;
+       unsigned int i;
+
+       dst_img = gdImageCreateTrueColor(new_width, new_height);
+
+       if (dst_img == NULL) {
+               return NULL;
+       }
+
+       for (i=0; i<new_height; i++) {
+               unsigned int j;
+               dst_offset_x = 0;
+               if (im->trueColor) {
+                       for (j=0; j<new_width; j++) {
+                               const gdFixed f_i = gd_itofx(i);
+                               const gdFixed f_j = gd_itofx(j);
+                               const gdFixed f_a = gd_mulfx(f_i, f_dy);
+                               const gdFixed f_b = gd_mulfx(f_j, f_dx);
+                               const long m = gd_fxtoi(f_a);
+                               const long n = gd_fxtoi(f_b);
+
+                               dst_img->tpixels[dst_offset_y][dst_offset_x++] = im->tpixels[m][n];
+                       }
+               } else {
+                       for (j=0; j<new_width; j++) {
+                               const gdFixed f_i = gd_itofx(i);
+                               const gdFixed f_j = gd_itofx(j);
+                               const gdFixed f_a = gd_mulfx(f_i, f_dy);
+                               const gdFixed f_b = gd_mulfx(f_j, f_dx);
+                               const long m = gd_fxtoi(f_a);
+                               const long n = gd_fxtoi(f_b);
+
+                               dst_img->tpixels[dst_offset_y][dst_offset_x++] = colorIndex2RGBA(im->pixels[m][n]);
+                       }
+               }
+               dst_offset_y++;
+       }
+       return dst_img;
+}
+
+static inline int getPixelOverflowColorTC(gdImagePtr im, const int x, const int y, const int color)
+{
+       if (gdImageBoundsSafe(im, x, y)) {
+               const int c = im->tpixels[y][x];
+               if (c == im->transparent) {
+                       return gdTrueColorAlpha(0, 0, 0, 127);
+               }
+               return c;
+       } else {
+               register int border;
+               if (y < im->cy1) {
+                       //border = gdImageGetPixel(im, im->cx1, 0);
+                       border = im->tpixels[0][im->cx1];
+                       goto processborder;
+               }
+
+               if (y < im->cy1) {
+                       //border = gdImageGetPixel(im, im->cx1, 0);
+                       border = im->tpixels[0][im->cx1];
+                       goto processborder;
+               }
+
+               if (y > im->cy2) {
+                       if (x >= im->cx1 && x <= im->cx1) {
+                               //border = gdImageGetPixel(im, x,  im->cy2);
+                               border = im->tpixels[im->cy2][x];
+                               goto processborder;
+                       } else {
+                               return gdTrueColorAlpha(0, 0, 0, 127);
+                       }
+               }
+
+               /* y is bound safe at this point */
+               if (x < im->cx1) {
+                       //border = gdImageGetPixel(im, im->cx1, y);
+                       border = im->tpixels[y][im->cx1];
+                       goto processborder;
+               }
+
+               if (x > im->cx2) {
+                       //border = gdImageGetPixel(im, im->cx2, y);
+                       border = im->tpixels[y][im->cx2];
+               }
+
+processborder:
+               if (border == im->transparent) {
+                       return gdTrueColorAlpha(0, 0, 0, 127);
+               } else{
+                       return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
+               }
+       }
+}
+
+static gdImagePtr gdImageScaleBilinearPalette(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
+{
+       long _width = MAX(1, new_width);
+       long _height = MAX(1, new_height);
+       float dx = (float)gdImageSX(im) / (float)_width;
+       float dy = (float)gdImageSY(im) / (float)_height;
+       gdFixed f_dx = gd_ftofx(dx);
+       gdFixed f_dy = gd_ftofx(dy);
+       gdFixed f_1 = gd_itofx(1);
+
+       int dst_offset_h;
+       int dst_offset_v = 0;
+       long i;
+       gdImagePtr new_img;
+       const int transparent = im->transparent;
+
+       new_img = gdImageCreateTrueColor(new_width, new_height);
+       if (new_img == NULL) {
+               return NULL;
+       }
+       new_img->transparent = gdTrueColorAlpha(im->red[transparent], im->green[transparent], im->blue[transparent], im->alpha[transparent]);
+
+       for (i=0; i < _height; i++) {
+               long j;
+               const gdFixed f_i = gd_itofx(i);
+               const gdFixed f_a = gd_mulfx(f_i, f_dy);
+               register long m = gd_fxtoi(f_a);
+
+               dst_offset_h = 0;
+
+               for (j=0; j < _width; j++) {
+                       /* Update bitmap */
+                       gdFixed f_j = gd_itofx(j);
+                       gdFixed f_b = gd_mulfx(f_j, f_dx);
+
+                       const long n = gd_fxtoi(f_b);
+                       gdFixed f_f = f_a - gd_itofx(m);
+                       gdFixed f_g = f_b - gd_itofx(n);
+
+                       const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+                       const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+                       const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+                       const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+                       unsigned int pixel1;
+                       unsigned int pixel2;
+                       unsigned int pixel3;
+                       unsigned int pixel4;
+                       register gdFixed f_r1, f_r2, f_r3, f_r4,
+                                       f_g1, f_g2, f_g3, f_g4,
+                                       f_b1, f_b2, f_b3, f_b4,
+                                       f_a1, f_a2, f_a3, f_a4;
+
+                       /* zero for the background color, nothig gets outside anyway */
+                       pixel1 = getPixelOverflowPalette(im, n, m, 0);
+                       pixel2 = getPixelOverflowPalette(im, n + 1, m, 0);
+                       pixel3 = getPixelOverflowPalette(im, n, m + 1, 0);
+                       pixel4 = getPixelOverflowPalette(im, n + 1, m + 1, 0);
+
+                       f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+                       f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+                       f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+                       f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+                       f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+                       f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+                       f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+                       f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+                       f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+                       f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+                       f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+                       f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+                       f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+                       f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+                       f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+                       f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+
+                       {
+                               const char red = (char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
+                               const char green = (char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
+                               const char blue = (char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
+                               const char alpha = (char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
+
+                               new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
+                       }
+
+                       dst_offset_h++;
+               }
+
+               dst_offset_v++;
+       }
+       return new_img;
+}
+
+static gdImagePtr gdImageScaleBilinearTC(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
+{
+       long dst_w = MAX(1, new_width);
+       long dst_h = MAX(1, new_height);
+       float dx = (float)gdImageSX(im) / (float)dst_w;
+       float dy = (float)gdImageSY(im) / (float)dst_h;
+       gdFixed f_dx = gd_ftofx(dx);
+       gdFixed f_dy = gd_ftofx(dy);
+       gdFixed f_1 = gd_itofx(1);
+
+       int dst_offset_h;
+       int dst_offset_v = 0;
+       int dwSrcTotalOffset;
+       long i;
+       gdImagePtr new_img;
+
+       new_img = gdImageCreateTrueColor(new_width, new_height);
+       if (!new_img){
+               return NULL;
+       }
+
+       for (i=0; i < dst_h; i++) {
+               long j;
+               dst_offset_h = 0;
+               for (j=0; j < dst_w; j++) {
+                       /* Update bitmap */
+                       gdFixed f_i = gd_itofx(i);
+                       gdFixed f_j = gd_itofx(j);
+                       gdFixed f_a = gd_mulfx(f_i, f_dy);
+                       gdFixed f_b = gd_mulfx(f_j, f_dx);
+                       const long m = gd_fxtoi(f_a);
+                       const long n = gd_fxtoi(f_b);
+                       gdFixed f_f = f_a - gd_itofx(m);
+                       gdFixed f_g = f_b - gd_itofx(n);
+
+                       const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+                       const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+                       const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+                       const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+                       unsigned int pixel1;
+                       unsigned int pixel2;
+                       unsigned int pixel3;
+                       unsigned int pixel4;
+                       register gdFixed f_r1, f_r2, f_r3, f_r4,
+                                       f_g1, f_g2, f_g3, f_g4,
+                                       f_b1, f_b2, f_b3, f_b4,
+                                       f_a1, f_a2, f_a3, f_a4;
+                       dwSrcTotalOffset = m + n;
+                       /* 0 for bgColor, nothing gets outside anyway */
+                       pixel1 = getPixelOverflowTC(im, n, m, 0);
+                       pixel2 = getPixelOverflowTC(im, n + 1, m, 0);
+                       pixel3 = getPixelOverflowTC(im, n, m + 1, 0);
+                       pixel4 = getPixelOverflowTC(im, n + 1, m + 1, 0);
+
+                       f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+                       f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+                       f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+                       f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+                       f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+                       f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+                       f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+                       f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+                       f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+                       f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+                       f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+                       f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+                       f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+                       f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+                       f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+                       f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+                       {
+                               const char red = (char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
+                               const char green = (char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
+                               const char blue = (char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
+                               const char alpha = (char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
+
+                               new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
+                       }
+
+                       dst_offset_h++;
+               }
+
+               dst_offset_v++;
+       }
+       return new_img;
+}
+
+gdImagePtr gdImageScaleBilinear(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
+{
+       if (im->trueColor) {
+               return gdImageScaleBilinearTC(im, new_width, new_height);
+       } else {
+               return gdImageScaleBilinearPalette(im, new_width, new_height);
+       }
+}
+
+gdImagePtr gdImageScaleBicubicFixed(gdImagePtr src, const unsigned int width, const unsigned int height)
+{
+       const long new_width = MAX(1, width);
+       const long new_height = MAX(1, height);
+       const int src_w = gdImageSX(src);
+       const int src_h = gdImageSY(src);
+       const gdFixed f_dx = gd_ftofx((float)src_w / (float)new_width);
+       const gdFixed f_dy = gd_ftofx((float)src_h / (float)new_height);
+       const gdFixed f_1 = gd_itofx(1);
+       const gdFixed f_2 = gd_itofx(2);
+       const gdFixed f_4 = gd_itofx(4);
+       const gdFixed f_6 = gd_itofx(6);
+       const gdFixed f_gamma = gd_ftofx(1.04f);
+       gdImagePtr dst;
+
+       unsigned int dst_offset_x;
+       unsigned int dst_offset_y = 0;
+       long i;
+
+       /* impact perf a bit, but not that much. Implementation for palette
+          images can be done at a later point.
+       */
+       if (src->trueColor == 0) {
+               gdImagePaletteToTrueColor(src);
+       }
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+       if (!dst) {
+               return NULL;
+       }
+
+       dst->saveAlphaFlag = 1;
+
+       for (i=0; i < new_height; i++) {
+               long j;
+               dst_offset_x = 0;
+
+               for (j=0; j < new_width; j++) {
+                       const gdFixed f_a = gd_mulfx(gd_itofx(i), f_dy);
+                       const gdFixed f_b = gd_mulfx(gd_itofx(j), f_dx);
+                       const long m = gd_fxtoi(f_a);
+                       const long n = gd_fxtoi(f_b);
+                       const gdFixed f_f = f_a - gd_itofx(m);
+                       const gdFixed f_g = f_b - gd_itofx(n);
+                       unsigned int src_offset_x[16], src_offset_y[16];
+                       long k;
+                       register gdFixed f_red = 0, f_green = 0, f_blue = 0, f_alpha = 0;
+                       unsigned char red, green, blue, alpha = 0;
+                       int *dst_row = dst->tpixels[dst_offset_y];
+
+                       if ((m < 1) || (n < 1)) {
+                               src_offset_x[0] = n;
+                               src_offset_y[0] = m;
+                       } else {
+                               src_offset_x[0] = n - 1;
+                               src_offset_y[0] = m;
+                       }
+
+                       if (m < 1) {
+                               src_offset_x[1] = n;
+                               src_offset_y[1] = m;
+                       } else {
+                               src_offset_x[1] = n;
+                               src_offset_y[1] = m;
+                       }
+
+                       if ((m < 1) || (n >= src_w - 1)) {
+                               src_offset_x[2] = n;
+                               src_offset_y[2] = m;
+                       } else {
+                               src_offset_x[2] = n + 1;
+                               src_offset_y[2] = m;
+                       }
+
+                       if ((m < 1) || (n >= src_w - 2)) {
+                               src_offset_x[3] = n;
+                               src_offset_y[3] = m;
+                       } else {
+                               src_offset_x[3] = n + 1 + 1;
+                               src_offset_y[3] = m;
+                       }
+
+                       if (n < 1) {
+                               src_offset_x[4] = n;
+                               src_offset_y[4] = m;
+                       } else {
+                               src_offset_x[4] = n - 1;
+                               src_offset_y[4] = m;
+                       }
+
+                       src_offset_x[5] = n;
+                       src_offset_y[5] = m;
+                       if (n >= src_w-1) {
+                               src_offset_x[6] = n;
+                               src_offset_y[6] = m;
+                       } else {
+                               src_offset_x[6] = n + 1;
+                               src_offset_y[6] = m;
+                       }
+
+                       if (n >= src_w - 2) {
+                               src_offset_x[7] = n;
+                               src_offset_y[7] = m;
+                       } else {
+                               src_offset_x[7] = n + 1 + 1;
+                               src_offset_y[7] = m;
+                       }
+
+                       if ((m >= src_h - 1) || (n < 1)) {
+                               src_offset_x[8] = n;
+                               src_offset_y[8] = m;
+                       } else {
+                               src_offset_x[8] = n - 1;
+                               src_offset_y[8] = m;
+                       }
+
+                       if (m >= src_h - 1) {
+                               src_offset_x[8] = n;
+                               src_offset_y[8] = m;
+                       } else {
+                               src_offset_x[9] = n;
+                               src_offset_y[9] = m;
+                       }
+
+                       if ((m >= src_h-1) || (n >= src_w-1)) {
+                               src_offset_x[10] = n;
+                               src_offset_y[10] = m;
+                       } else {
+                               src_offset_x[10] = n + 1;
+                               src_offset_y[10] = m;
+                       }
+
+                       if ((m >= src_h - 1) || (n >= src_w - 2)) {
+                               src_offset_x[11] = n;
+                               src_offset_y[11] = m;
+                       } else {
+                               src_offset_x[11] = n + 1 + 1;
+                               src_offset_y[11] = m;
+                       }
+
+                       if ((m >= src_h - 2) || (n < 1)) {
+                               src_offset_x[12] = n;
+                               src_offset_y[12] = m;
+                       } else {
+                               src_offset_x[12] = n - 1;
+                               src_offset_y[12] = m;
+                       }
+
+                       if (m >= src_h - 2) {
+                               src_offset_x[13] = n;
+                               src_offset_y[13] = m;
+                       } else {
+                               src_offset_x[13] = n;
+                               src_offset_y[13] = m;
+                       }
+
+                       if ((m >= src_h - 2) || (n >= src_w - 1)) {
+                               src_offset_x[14] = n;
+                               src_offset_y[14] = m;
+                       } else {
+                               src_offset_x[14] = n + 1;
+                               src_offset_y[14] = m;
+                       }
+
+                       if ((m >= src_h - 2) || (n >= src_w - 2)) {
+                               src_offset_x[15] = n;
+                               src_offset_y[15] = m;
+                       } else {
+                               src_offset_x[15] = n  + 1 + 1;
+                               src_offset_y[15] = m;
+                       }
+
+                       for (k = -1; k < 3; k++) {
+                               const gdFixed f = gd_itofx(k)-f_f;
+                               const gdFixed f_fm1 = f - f_1;
+                               const gdFixed f_fp1 = f + f_1;
+                               const gdFixed f_fp2 = f + f_2;
+                               register gdFixed f_a = 0, f_b = 0, f_d = 0, f_c = 0;
+                               register gdFixed f_RY;
+                               int l;
+
+                               if (f_fp2 > 0) f_a = gd_mulfx(f_fp2, gd_mulfx(f_fp2,f_fp2));
+                               if (f_fp1 > 0) f_b = gd_mulfx(f_fp1, gd_mulfx(f_fp1,f_fp1));
+                               if (f > 0)     f_c = gd_mulfx(f, gd_mulfx(f,f));
+                               if (f_fm1 > 0) f_d = gd_mulfx(f_fm1, gd_mulfx(f_fm1,f_fm1));
+
+                               f_RY = gd_divfx((f_a - gd_mulfx(f_4,f_b) + gd_mulfx(f_6,f_c) - gd_mulfx(f_4,f_d)),f_6);
+
+                               for (l = -1; l < 3; l++) {
+                                       const gdFixed f = gd_itofx(l) - f_g;
+                                       const gdFixed f_fm1 = f - f_1;
+                                       const gdFixed f_fp1 = f + f_1;
+                                       const gdFixed f_fp2 = f + f_2;
+                                       register gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
+                                       register gdFixed f_RX, f_R, f_rs, f_gs, f_bs, f_ba;
+                                       register int c;
+                                       const int _k = ((k+1)*4) + (l+1);
+
+                                       if (f_fp2 > 0) f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+
+                                       if (f_fp1 > 0) f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+
+                                       if (f > 0) f_c = gd_mulfx(f,gd_mulfx(f,f));
+
+                                       if (f_fm1 > 0) f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+
+                                       f_RX = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
+                                       f_R = gd_mulfx(f_RY,f_RX);
+
+                                       c = src->tpixels[*(src_offset_y + _k)][*(src_offset_x + _k)];
+                                       f_rs = gd_itofx(gdTrueColorGetRed(c));
+                                       f_gs = gd_itofx(gdTrueColorGetGreen(c));
+                                       f_bs = gd_itofx(gdTrueColorGetBlue(c));
+                                       f_ba = gd_itofx(gdTrueColorGetAlpha(c));
+
+                                       f_red += gd_mulfx(f_rs,f_R);
+                                       f_green += gd_mulfx(f_gs,f_R);
+                                       f_blue += gd_mulfx(f_bs,f_R);
+                                       f_alpha += gd_mulfx(f_ba,f_R);
+                               }
+                       }
+
+                       red    = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red,   f_gamma)),  0, 255);
+                       green  = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gamma)),  0, 255);
+                       blue   = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue,  f_gamma)),  0, 255);
+                       alpha  = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha,  f_gamma)), 0, 127);
+
+                       *(dst_row + dst_offset_x) = gdTrueColorAlpha(red, green, blue, alpha);
+
+                       dst_offset_x++;
+               }
+               dst_offset_y++;
+       }
+       return dst;
+}
+
+gdImagePtr gdImageScale(const gdImagePtr src, const unsigned int new_width, const unsigned int new_height)
+{
+       gdImagePtr im_scaled = NULL;
+
+       if (src == NULL || src->interpolation_id < 0 || src->interpolation_id > GD_METHOD_COUNT) {
+               return 0;
+       }
+
+       switch (src->interpolation_id) {
+               /*Special cases, optimized implementations */
+               case GD_NEAREST_NEIGHBOUR:
+                       im_scaled = gdImageScaleNearestNeighbour(src, new_width, new_height);
+                       break;
+
+               case GD_BILINEAR_FIXED:
+                       im_scaled = gdImageScaleBilinear(src, new_width, new_height);
+                       break;
+
+               case GD_BICUBIC_FIXED:
+                       im_scaled = gdImageScaleBicubicFixed(src, new_width, new_height);
+                       break;
+
+               /* generic */
+               default:
+                       if (src->interpolation == NULL) {
+                               return NULL;
+                       }
+                       im_scaled = gdImageScaleTwoPass(src, src->sx, src->sy, new_width, new_height);
+                       break;
+       }
+       return im_scaled;
+}
+
+gdImagePtr gdImageRotateNearestNeighbour(gdImagePtr src, const float degrees, const int bgColor)
+{
+       float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
+       const int src_w  = gdImageSX(src);
+       const int src_h = gdImageSY(src);
+       const unsigned int new_width = (unsigned int)(abs((int)(src_w * cos(_angle))) + abs((int)(src_h * sin(_angle))) + 0.5f);
+       const unsigned int new_height = (unsigned int)(abs((int)(src_w * sin(_angle))) + abs((int)(src_h * cos(_angle))) + 0.5f);
+       const gdFixed f_0_5 = gd_ftofx(0.5f);
+       const gdFixed f_H = gd_itofx(src_h/2);
+       const gdFixed f_W = gd_itofx(src_w/2);
+       const gdFixed f_cos = gd_ftofx(cos(-_angle));
+       const gdFixed f_sin = gd_ftofx(sin(-_angle));
+
+       unsigned int dst_offset_x;
+       unsigned int dst_offset_y = 0;
+       unsigned int i;
+       gdImagePtr dst;
+
+       /* impact perf a bit, but not that much. Implementation for palette
+          images can be done at a later point.
+       */
+       if (src->trueColor == 0) {
+               gdImagePaletteToTrueColor(src);
+       }
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+       if (!dst) {
+               return NULL;
+       }
+       dst->saveAlphaFlag = 1;
+       for (i = 0; i < new_height; i++) {
+               unsigned int j;
+               dst_offset_x = 0;
+               for (j = 0; j < new_width; j++) {
+                       gdFixed f_i = gd_itofx(i - new_height/2);
+                       gdFixed f_j = gd_itofx(j-new_width/2);
+                       gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+                       gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+                       long m = gd_fxtoi(f_m);
+                       long n = gd_fxtoi(f_n);
+
+                       if ((m > 0) && (m < src_h-1) && (n > 0) && (n < src_w-1)) {
+                               if (dst_offset_y < new_height) {
+                                       dst->tpixels[dst_offset_y][dst_offset_x++] = src->tpixels[m][n];
+                               }
+                       } else {
+                               if (dst_offset_y < new_height) {
+                                       dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+                               }
+                       }
+               }
+               dst_offset_y++;
+       }
+       return dst;
+}
+
+gdImagePtr gdImageRotateGeneric(gdImagePtr src, const float degrees, const int bgColor)
+{
+       float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
+       const int src_w  = gdImageSX(src);
+       const int src_h = gdImageSY(src);
+       const unsigned int new_width = (unsigned int)(abs((int)(src_w * cos(_angle))) + abs((int)(src_h * sin(_angle))) + 0.5f);
+       const unsigned int new_height = (unsigned int)(abs((int)(src_w * sin(_angle))) + abs((int)(src_h * cos(_angle))) + 0.5f);
+       const gdFixed f_0_5 = gd_ftofx(0.5f);
+       const gdFixed f_H = gd_itofx(src_h/2);
+       const gdFixed f_W = gd_itofx(src_w/2);
+       const gdFixed f_cos = gd_ftofx(cos(-_angle));
+       const gdFixed f_sin = gd_ftofx(sin(-_angle));
+
+       unsigned int dst_offset_x;
+       unsigned int dst_offset_y = 0;
+       unsigned int i;
+       gdImagePtr dst;
+
+       const gdFixed f_slop_y = f_sin;
+       const gdFixed f_slop_x = f_cos;
+       const gdFixed f_slop = f_slop_x > 0 && f_slop_x > 0 ?
+                                                       f_slop_x > f_slop_y ? gd_divfx(f_slop_y, f_slop_x) : gd_divfx(f_slop_x, f_slop_y)
+                                               : 0;
+
+       /* impact perf a bit, but not that much. Implementation for palette
+          images can be done at a later point.
+       */
+       if (src->trueColor == 0) {
+               gdImagePaletteToTrueColor(src);
+       }
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+       if (!dst) {
+               return NULL;
+       }
+       dst->saveAlphaFlag = 1;
+
+       for (i = 0; i < new_height; i++) {
+               unsigned int j;
+               dst_offset_x = 0;
+               for (j = 0; j < new_width; j++) {
+                       gdFixed f_i = gd_itofx(i - new_height/ 2);
+                       gdFixed f_j = gd_itofx(j  -new_width / 2);
+                       gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+                       gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+                       long m = gd_fxtoi(f_m);
+                       long n = gd_fxtoi(f_n);
+
+                       if ((n <= 0) || (m <= 0) || (m >= src_h) || (n >= src_w)) {
+                               dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+                       } else if ((n <= 1) || (m <= 1) || (m >= src_h - 1) || (n >= src_w - 1)) {
+                               gdFixed f_127 = gd_itofx(127);
+                               register int c = getPixelInterpolated(src, n, m, bgColor);
+                               c = c | (( gdTrueColorGetAlpha(c) + ((int)(127* gd_fxtof(f_slop)))) << 24);
+
+                               dst->tpixels[dst_offset_y][dst_offset_x++] = _color_blend(bgColor, c);
+                       } else {
+                               dst->tpixels[dst_offset_y][dst_offset_x++] = getPixelInterpolated(src, n, m, bgColor);
+                       }
+               }
+               dst_offset_y++;
+       }
+       return dst;
+}
+
+gdImagePtr gdImageRotateBilinear(gdImagePtr src, const float degrees, const int bgColor)
+{
+       float _angle = (float)((- degrees / 180.0f) * M_PI);
+       const unsigned int src_w = gdImageSX(src);
+       const unsigned int src_h = gdImageSY(src);
+       unsigned int new_width = abs((int)(src_w*cos(_angle))) + abs((int)(src_h*sin(_angle) + 0.5f));
+       unsigned int new_height = abs((int)(src_w*sin(_angle))) + abs((int)(src_h*cos(_angle) + 0.5f));
+       const gdFixed f_0_5 = gd_ftofx(0.5f);
+       const gdFixed f_H = gd_itofx(src_h/2);
+       const gdFixed f_W = gd_itofx(src_w/2);
+       const gdFixed f_cos = gd_ftofx(cos(-_angle));
+       const gdFixed f_sin = gd_ftofx(sin(-_angle));
+       const gdFixed f_1 = gd_itofx(1);
+       unsigned int i;
+       unsigned int dst_offset_x;
+       unsigned int dst_offset_y = 0;
+       unsigned int src_offset_x, src_offset_y;
+       gdImagePtr dst;
+
+       /* impact perf a bit, but not that much. Implementation for palette
+          images can be done at a later point.
+       */
+       if (src->trueColor == 0) {
+               gdImagePaletteToTrueColor(src);
+       }
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+       if (dst == NULL) {
+               return NULL;
+       }
+       dst->saveAlphaFlag = 1;
+
+       for (i = 0; i < new_height; i++) {
+               unsigned int j;
+               dst_offset_x = 0;
+
+               for (j=0; j < new_width; j++) {
+                       const gdFixed f_i = gd_itofx(i-new_height/2);
+                       const gdFixed f_j = gd_itofx(j-new_width/2);
+                       const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+                       const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+                       const unsigned int m = gd_fxtoi(f_m);
+                       const unsigned int n = gd_fxtoi(f_n);
+
+                       if ((m > 0) && (m < src_h - 1) && (n > 0) && (n < src_w - 1)) {
+                               const gdFixed f_f = f_m - gd_itofx(m);
+                               const gdFixed f_g = f_n - gd_itofx(n);
+                               const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+                               const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+                               const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+                               const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+
+                               if (n < src_w - 1) {
+                                       src_offset_x = m + 1;
+                                       src_offset_y = n;
+                               }
+
+                               if (m < src_h-1) {
+                                       src_offset_x = m;
+                                       src_offset_y = n + 1;
+                               }
+
+                               if (!((n >= src_w-1) || (m >= src_h-1))) {
+                                       src_offset_x = m + 1;
+                                       src_offset_y = n + 1;
+                               }
+                               {
+                                       const int pixel1 = src->tpixels[src_offset_y][src_offset_x];
+                                       register int pixel2, pixel3, pixel4;
+
+                                       if (src_offset_y + 1 >= src_h) {
+                                               pixel2 = bgColor;
+                                               pixel3 = bgColor;
+                                               pixel4 = bgColor;
+                                       } else if (src_offset_x + 1 >= src_w) {
+                                               pixel2 = bgColor;
+                                               pixel3 = bgColor;
+                                               pixel4 = bgColor;
+                                       } else {
+                                           pixel2 = src->tpixels[src_offset_y][src_offset_x + 1];
+                                               pixel3 = src->tpixels[src_offset_y + 1][src_offset_x];
+                                               pixel4 = src->tpixels[src_offset_y + 1][src_offset_x + 1];
+                                       }
+                                       {
+                                               const gdFixed f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+                                               const gdFixed f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+                                               const gdFixed f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+                                               const gdFixed f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+                                               const gdFixed f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+                                               const gdFixed f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+                                               const gdFixed f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+                                               const gdFixed f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+                                               const gdFixed f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+                                               const gdFixed f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+                                               const gdFixed f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+                                               const gdFixed f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+                                               const gdFixed f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+                                               const gdFixed f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+                                               const gdFixed f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+                                               const gdFixed f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+                                               const gdFixed f_red = gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4);
+                                               const gdFixed f_green = gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4);
+                                               const gdFixed f_blue = gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4);
+                                               const gdFixed f_alpha = gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4);
+
+                                               const unsigned char red   = (unsigned char) CLAMP(gd_fxtoi(f_red),   0, 255);
+                                               const unsigned char green = (unsigned char) CLAMP(gd_fxtoi(f_green), 0, 255);
+                                               const unsigned char blue  = (unsigned char) CLAMP(gd_fxtoi(f_blue),  0, 255);
+                                               const unsigned char alpha = (unsigned char) CLAMP(gd_fxtoi(f_alpha), 0, 127);
+
+                                               dst->tpixels[dst_offset_y][dst_offset_x++] = gdTrueColorAlpha(red, green, blue, alpha);
+                                       }
+                               }
+                       } else {
+                               dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+                       }
+               }
+               dst_offset_y++;
+       }
+       return dst;
+}
+
+gdImagePtr gdImageRotateBicubicFixed(gdImagePtr src, const float degrees, const int bgColor)
+{
+       const float _angle = (float)((- degrees / 180.0f) * M_PI);
+       const int src_w = gdImageSX(src);
+       const int src_h = gdImageSY(src);
+       const unsigned int new_width = abs((int)(src_w*cos(_angle))) + abs((int)(src_h*sin(_angle) + 0.5f));
+       const unsigned int new_height = abs((int)(src_w*sin(_angle))) + abs((int)(src_h*cos(_angle) + 0.5f));
+       const gdFixed f_0_5 = gd_ftofx(0.5f);
+       const gdFixed f_H = gd_itofx(src_h/2);
+       const gdFixed f_W = gd_itofx(src_w/2);
+       const gdFixed f_cos = gd_ftofx(cos(-_angle));
+       const gdFixed f_sin = gd_ftofx(sin(-_angle));
+       const gdFixed f_1 = gd_itofx(1);
+       const gdFixed f_2 = gd_itofx(2);
+       const gdFixed f_4 = gd_itofx(4);
+       const gdFixed f_6 = gd_itofx(6);
+       const gdFixed f_gama = gd_ftofx(1.04f);
+
+       unsigned int dst_offset_x;
+       unsigned int dst_offset_y = 0;
+       unsigned int i;
+       gdImagePtr dst;
+
+       /* impact perf a bit, but not that much. Implementation for palette
+          images can be done at a later point.
+       */
+       if (src->trueColor == 0) {
+               gdImagePaletteToTrueColor(src);
+       }
+
+       dst = gdImageCreateTrueColor(new_width, new_height);
+
+       if (dst == NULL) {
+               return NULL;
+       }
+       dst->saveAlphaFlag = 1;
+
+       for (i=0; i < new_height; i++) {
+               unsigned int j;
+               dst_offset_x = 0;
+
+               for (j=0; j < new_width; j++) {
+                       const gdFixed f_i = gd_itofx(i-new_height/2);
+                       const gdFixed f_j = gd_itofx(j-new_width/2);
+                       const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+                       const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+                       const int m = gd_fxtoi(f_m);
+                       const int n = gd_fxtoi(f_n);
+
+                       if ((m > 0) && (m < src_h - 1) && (n > 0) && (n < src_w-1)) {
+                               const gdFixed f_f = f_m - gd_itofx(m);
+                               const gdFixed f_g = f_n - gd_itofx(n);
+                               unsigned int src_offset_x[16], src_offset_y[16];
+                               unsigned char red, green, blue, alpha;
+                               gdFixed f_red=0, f_green=0, f_blue=0, f_alpha=0;
+                               int k;
+
+                               if ((m < 1) || (n < 1)) {
+                                       src_offset_x[0] = n;
+                                       src_offset_y[0] = m;
+                               } else {
+                                       src_offset_x[0] = n - 1;
+                                       src_offset_y[0] = m;
+                               }
+
+                               if (m < 1) {
+                                       src_offset_x[1] = n;
+                                       src_offset_y[1] = m;
+                               } else {
+                                       src_offset_x[1] = n;
+                                       src_offset_y[1] = m ;
+                               }
+
+                               if ((m < 1) || (n >= src_w-1)) {
+                                       src_offset_x[2] = - 1;
+                                       src_offset_y[2] = - 1;
+                               } else {
+                                       src_offset_x[2] = n + 1;
+                                       src_offset_y[2] = m ;
+                               }
+
+                               if ((m < 1) || (n >= src_w-2)) {
+                                       src_offset_x[3] = - 1;
+                                       src_offset_y[3] = - 1;
+                               } else {
+                                       src_offset_x[3] = n + 1 + 1;
+                                       src_offset_y[3] = m ;
+                               }
+
+                               if (n < 1) {
+                                       src_offset_x[4] = - 1;
+                                       src_offset_y[4] = - 1;
+                               } else {
+                                       src_offset_x[4] = n - 1;
+                                       src_offset_y[4] = m;
+                               }
+
+                               src_offset_x[5] = n;
+                               src_offset_y[5] = m;
+                               if (n >= src_w-1) {
+                                       src_offset_x[6] = - 1;
+                                       src_offset_y[6] = - 1;
+                               } else {
+                                       src_offset_x[6] = n + 1;
+                                       src_offset_y[6] = m;
+                               }
+
+                               if (n >= src_w-2) {
+                                       src_offset_x[7] = - 1;
+                                       src_offset_y[7] = - 1;
+                               } else {
+                                       src_offset_x[7] = n + 1 + 1;
+                                       src_offset_y[7] = m;
+                               }
+
+                               if ((m >= src_h-1) || (n < 1)) {
+                                       src_offset_x[8] = - 1;
+                                       src_offset_y[8] = - 1;
+                               } else {
+                                       src_offset_x[8] = n - 1;
+                                       src_offset_y[8] = m;
+                               }
+
+                               if (m >= src_h-1) {
+                                       src_offset_x[8] = - 1;
+                                       src_offset_y[8] = - 1;
+                               } else {
+                                       src_offset_x[9] = n;
+                                       src_offset_y[9] = m;
+                               }
+
+                               if ((m >= src_h-1) || (n >= src_w-1)) {
+                                       src_offset_x[10] = - 1;
+                                       src_offset_y[10] = - 1;
+                               } else {
+                                       src_offset_x[10] = n + 1;
+                                       src_offset_y[10] = m;
+                               }
+
+                               if ((m >= src_h-1) || (n >= src_w-2)) {
+                                       src_offset_x[11] = - 1;
+                                       src_offset_y[11] = - 1;
+                               } else {
+                                       src_offset_x[11] = n + 1 + 1;
+                                       src_offset_y[11] = m;
+                               }
+
+                               if ((m >= src_h-2) || (n < 1)) {
+                                       src_offset_x[12] = - 1;
+                                       src_offset_y[12] = - 1;
+                               } else {
+                                       src_offset_x[12] = n - 1;
+                                       src_offset_y[12] = m;
+                               }
+
+                               if (m >= src_h-2) {
+                                       src_offset_x[13] = - 1;
+                                       src_offset_y[13] = - 1;
+                               } else {
+                                       src_offset_x[13] = n;
+                                       src_offset_y[13] = m;
+                               }
+
+                               if ((m >= src_h-2) || (n >= src_w - 1)) {
+                                       src_offset_x[14] = - 1;
+                                       src_offset_y[14] = - 1;
+                               } else {
+                                       src_offset_x[14] = n + 1;
+                                       src_offset_y[14] = m;
+                               }
+
+                               if ((m >= src_h-2) || (n >= src_w-2)) {
+                                       src_offset_x[15] = - 1;
+                                       src_offset_y[15] = - 1;
+                               } else {
+                                       src_offset_x[15] = n  + 1 + 1;
+                                       src_offset_y[15] = m;
+                               }
+
+                               for (k=-1; k<3; k++) {
+                                       const gdFixed f = gd_itofx(k)-f_f;
+                                       const gdFixed f_fm1 = f - f_1;
+                                       const gdFixed f_fp1 = f + f_1;
+                                       const gdFixed f_fp2 = f + f_2;
+                                       gdFixed f_a = 0, f_b = 0,f_c = 0, f_d = 0;
+                                       gdFixed f_RY;
+                                       int l;
+
+                                       if (f_fp2 > 0) {
+                                               f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+                                       }
+
+                                       if (f_fp1 > 0) {
+                                               f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+                                       }
+
+                                       if (f > 0) {
+                                               f_c = gd_mulfx(f,gd_mulfx(f,f));
+                                       }
+
+                                       if (f_fm1 > 0) {
+                                               f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+                                       }
+                                       f_RY = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
+
+                                       for (l=-1;  l< 3; l++) {
+                                               const gdFixed f = gd_itofx(l) - f_g;
+                                               const gdFixed f_fm1 = f - f_1;
+                                               const gdFixed f_fp1 = f + f_1;
+                                               const gdFixed f_fp2 = f + f_2;
+                                               gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
+                                               gdFixed f_RX, f_R;
+                                               const int _k = ((k + 1) * 4) + (l + 1);
+                                               register gdFixed f_rs, f_gs, f_bs, f_as;
+                                               register int c;
+
+                                               if (f_fp2 > 0) {
+                                                       f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+                                               }
+
+                                               if (f_fp1 > 0) {
+                                                       f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+                                               }
+
+                                               if (f > 0) {
+                                                       f_c = gd_mulfx(f,gd_mulfx(f,f));
+                                               }
+
+                                               if (f_fm1 > 0) {
+                                                       f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+                                               }
+
+                                               f_RX = gd_divfx((f_a - gd_mulfx(f_4, f_b) + gd_mulfx(f_6, f_c) - gd_mulfx(f_4, f_d)), f_6);
+                                               f_R = gd_mulfx(f_RY, f_RX);
+
+                                               if ((src_offset_x[_k] <= 0) || (src_offset_y[_k] <= 0) || (src_offset_y[_k] >= src_h) || (src_offset_x[_k] >= src_w)) {
+                                                       c = bgColor;
+                                               } else if ((src_offset_x[_k] <= 1) || (src_offset_y[_k] <= 1) || (src_offset_y[_k] >= (int)src_h - 1) || (src_offset_x[_k] >= (int)src_w - 1)) {
+                                                       gdFixed f_127 = gd_itofx(127);
+                                                       c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
+                                                       c = c | (( (int) (gd_fxtof(gd_mulfx(f_R, f_127)) + 50.5f)) << 24);
+                                                       c = _color_blend(bgColor, c);
+                                               } else {
+                                                       c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
+                                               }
+
+                                               f_rs = gd_itofx(gdTrueColorGetRed(c));
+                                               f_gs = gd_itofx(gdTrueColorGetGreen(c));
+                                               f_bs = gd_itofx(gdTrueColorGetBlue(c));
+                                               f_as = gd_itofx(gdTrueColorGetAlpha(c));
+
+                                               f_red   += gd_mulfx(f_rs, f_R);
+                                               f_green += gd_mulfx(f_gs, f_R);
+                                               f_blue  += gd_mulfx(f_bs, f_R);
+                                               f_alpha += gd_mulfx(f_as, f_R);
+                                       }
+                               }
+
+                               red   = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red, f_gama)),   0, 255);
+                               green = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gama)), 0, 255);
+                               blue  = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue, f_gama)),  0, 255);
+                               alpha = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha, f_gama)), 0, 127);
+
+                               dst->tpixels[dst_offset_y][dst_offset_x] =  gdTrueColorAlpha(red, green, blue, alpha);
+                       } else {
+                               dst->tpixels[dst_offset_y][dst_offset_x] =  bgColor;
+                       }
+                       dst_offset_x++;
+               }
+
+               dst_offset_y++;
+       }
+       return dst;
+}
+
+gdImagePtr gdImageRotateInterpolated(const gdImagePtr src, const float angle, int bgcolor)
+{
+
+       if (src == NULL || src->interpolation_id < 1 || src->interpolation_id > GD_METHOD_COUNT) {
+               return NULL;
+       }
+
+       switch (src->interpolation_id) {
+               case GD_NEAREST_NEIGHBOUR:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_BILINEAR_FIXED:
+                       return gdImageRotateBilinear(src, angle, bgcolor);
+                       break;
+
+               case GD_BICUBIC:
+                       return gdImageRotateBicubicFixed(src, angle, bgcolor);
+                       break;
+
+               case GD_BICUBIC_FIXED:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_WEIGHTED4:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_BSPLINE:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_BOX:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_HERMITE:
+                       return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+                       break;
+
+               case GD_HAMMING:
+               break;
+               case GD_SINC:
+               break;
+               case GD_BLACKMAN:
+               break;
+
+               case GD_GAUSSIAN:
+               break;
+               case GD_QUADRATIC:
+               break;
+               case GD_MITCHELL:
+               break;
+               case GD_CATMULLROM:
+               break;
+               case GD_POWER:
+               break;
+       }
+       return NULL;
+}
+
+/**
+ * Title: Affine transformation
+ **/
+
+/**
+ * Group: Transform
+ **/
+
+ static void gdImageClipRectangle(gdImagePtr im, gdRectPtr r)
+{
+       int c1x, c1y, c2x, c2y;
+       int x1,y1;
+
+       gdImageGetClip(im, &c1x, &c1y, &c2x, &c2y);
+       x1 = r->x + r->width - 1;
+       y1 = r->y + r->height - 1;
+       r->x = CLAMP(r->x, c1x, c2x);
+       r->y = CLAMP(r->y, c1y, c2y);
+       r->width = CLAMP(x1, c1x, c2x) - r->x + 1;
+       r->height = CLAMP(y1, c1y, c2y) - r->y + 1;
+}
+
+void gdDumpRect(const char *msg, gdRectPtr r)
+{
+       printf("%s (%i, %i) (%i, %i)\n", msg, r->x, r->y, r->width, r->height);
+}
+
+/**
+ * Function: gdTransformAffineGetImage
+ *  Applies an affine transformation to a region and return an image
+ *  containing the complete transformation.
+ *
+ * Parameters:
+ *     dst - Pointer to a gdImagePtr to store the created image, NULL when
+ *        the creation or the transformation failed
+ *  src - Source image
+ *  src_area - rectangle defining the source region to transform
+ *  dstY - Y position in the destination image
+ *  affine - The desired affine transformation
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdTransformAffineGetImage(gdImagePtr *dst,
+                 const gdImagePtr src,
+                 gdRectPtr src_area,
+                 const double affine[6])
+{
+       int res;
+       double m[6];
+       gdRect bbox;
+       gdRect area_full;
+
+       if (src_area == NULL) {
+               area_full.x = 0;
+               area_full.y = 0;
+               area_full.width  = gdImageSX(src);
+               area_full.height = gdImageSY(src);
+               src_area = &area_full;
+       }
+
+       gdTransformAffineBoundingBox(src_area, affine, &bbox);
+
+       *dst = gdImageCreateTrueColor(bbox.width, bbox.height);
+       if (*dst == NULL) {
+               return GD_FALSE;
+       }
+       (*dst)->saveAlphaFlag = 1;
+
+       if (!src->trueColor) {
+               gdImagePaletteToTrueColor(src);
+       }
+       
+       /* Translate to dst origin (0,0) */
+       gdAffineTranslate(m, -bbox.x, -bbox.y);
+       gdAffineConcat(m, affine, m);
+
+       gdImageAlphaBlending(*dst, 0);
+
+       res = gdTransformAffineCopy(*dst,
+                 0,0,
+                 src,
+                 src_area,
+                 m);
+
+       if (res != GD_TRUE) {
+               gdImageDestroy(*dst);
+               dst = NULL;
+               return GD_FALSE;
+       } else {
+               return GD_TRUE;
+       }
+}
+
+/**
+ * Function: gdTransformAffineCopy
+ *  Applies an affine transformation to a region and copy the result
+ *  in a destination to the given position.
+ *
+ * Parameters:
+ *     dst - Image to draw the transformed image
+ *  src - Source image
+ *  dstX - X position in the destination image
+ *  dstY - Y position in the destination image
+ *  src_area - Rectangular region to rotate in the src image
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdTransformAffineCopy(gdImagePtr dst,
+                 int dst_x, int dst_y,
+                 const gdImagePtr src,
+                 gdRectPtr src_region,
+                 const double affine[6])
+{
+       int c1x,c1y,c2x,c2y;
+       int backclip = 0;
+       int backup_clipx1, backup_clipy1, backup_clipx2, backup_clipy2;
+       register int x, y, src_offset_x, src_offset_y;
+       double inv[6];
+       int *dst_p;
+       gdPointF pt, src_pt;
+       gdRect bbox;
+       int end_x, end_y;
+       gdInterpolationMethod interpolotion_id_bak;
+       interpolation_method interpolation_bak;
+
+/*
+       gdInterpolationMethod interpolation_id;
+       interpolation_method interpolation;
+*/
+
+       /* These methods use special implementations */
+       if (src->interpolation_id == GD_BILINEAR_FIXED || src->interpolation_id == GD_BICUBIC_FIXED || src->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+               interpolotion_id_bak = src->interpolation_id;
+               interpolation_bak = src->interpolation;
+               
+               gdImageSetInterpolationMethod(src, GD_BICUBIC);
+       }
+
+
+       gdImageClipRectangle(src, src_region);
+
+       if (src_region->x > 0 || src_region->y > 0
+               || src_region->width < gdImageSX(src)
+               || src_region->height < gdImageSY(src)) {
+               backclip = 1;
+
+               gdImageGetClip(src, &backup_clipx1, &backup_clipy1,
+               &backup_clipx2, &backup_clipy2);
+
+               gdImageSetClip(src, src_region->x, src_region->y,
+                       src_region->x + src_region->width - 1,
+                       src_region->y + src_region->height - 1);
+       }
+
+       if (!gdTransformAffineBoundingBox(src_region, affine, &bbox)) {
+               if (backclip) {
+                       gdImageSetClip(src, backup_clipx1, backup_clipy1,
+                                       backup_clipx2, backup_clipy2);
+               }
+               gdImageSetInterpolationMethod(src, interpolotion_id_bak);
+               return GD_FALSE;
+       }
+
+       gdImageGetClip(dst, &c1x, &c1y, &c2x, &c2y);
+
+       end_x = bbox.width  + (int) fabs(bbox.x);
+       end_y = bbox.height + (int) fabs(bbox.y);
+
+       /* Get inverse affine to let us work with destination -> source */
+       gdAffineInvert(inv, affine);
+
+       src_offset_x =  src_region->x;
+       src_offset_y =  src_region->y;
+
+       if (dst->alphaBlendingFlag) {
+               for (y = bbox.y; y <= end_y; y++) {
+                       pt.y = y + 0.5;
+                       for (x = 0; x <= end_x; x++) {
+                               pt.x = x + 0.5;
+                               gdAffineApplyToPointF(&src_pt, &pt, inv);
+                               gdImageSetPixel(dst, dst_x + x, dst_y + y, getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, 0));
+                       }
+               }
+       } else {
+               for (y = 0; y <= end_y; y++) {
+                       pt.y = y + 0.5 + bbox.y;
+                       if ((dst_y + y) < 0 || ((dst_y + y) > gdImageSY(dst) -1)) {
+                               continue;
+                       }
+                       dst_p = dst->tpixels[dst_y + y] + dst_x;
+
+                       for (x = 0; x <= end_x; x++) {
+                               pt.x = x + 0.5 + bbox.x;
+                               gdAffineApplyToPointF(&src_pt, &pt, inv);
+
+                               if ((dst_x + x) < 0 || (dst_x + x) > (gdImageSX(dst) - 1)) {
+                                       break;
+                               }
+                               *(dst_p++) = getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, -1);
+                       }
+               }
+       }
+
+       /* Restore clip if required */
+       if (backclip) {
+               gdImageSetClip(src, backup_clipx1, backup_clipy1,
+                               backup_clipx2, backup_clipy2);
+       }
+
+       gdImageSetInterpolationMethod(src, interpolotion_id_bak);
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdTransformAffineBoundingBox
+ *  Returns the bounding box of an affine transformation applied to a
+ *  rectangular area <gdRect>
+ *
+ * Parameters:
+ *     src - Rectangular source area for the affine transformation
+ *  affine - the affine transformation
+ *  bbox - the resulting bounding box
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdTransformAffineBoundingBox(gdRectPtr src, const double affine[6], gdRectPtr bbox)
+{
+       gdPointF extent[4], min, max, point;
+       int i;
+
+       extent[0].x=0.0;
+       extent[0].y=0.0;
+       extent[1].x=(double) src->width;
+       extent[1].y=0.0;
+       extent[2].x=(double) src->width;
+       extent[2].y=(double) src->height;
+       extent[3].x=0.0;
+       extent[3].y=(double) src->height;
+
+       for (i=0; i < 4; i++) {
+               point=extent[i];
+               if (gdAffineApplyToPointF(&extent[i], &point, affine) != GD_TRUE) {
+                       return GD_FALSE;
+               }
+       }
+       min=extent[0];
+       max=extent[0];
+
+       for (i=1; i < 4; i++) {
+               if (min.x > extent[i].x)
+                       min.x=extent[i].x;
+               if (min.y > extent[i].y)
+                       min.y=extent[i].y;
+               if (max.x < extent[i].x)
+                       max.x=extent[i].x;
+               if (max.y < extent[i].y)
+                       max.y=extent[i].y;
+       }
+       bbox->x = (int) min.x;
+       bbox->y = (int) min.y;
+       bbox->width  = (int) floor(max.x - min.x) - 1;
+       bbox->height = (int) floor(max.y - min.y);
+       return GD_TRUE;
+}
+
+int gdImageSetInterpolationMethod(gdImagePtr im, gdInterpolationMethod id)
+{
+       if (im == NULL || id < 0 || id > GD_METHOD_COUNT) {
+               return 0;
+       }
+
+       switch (id) {
+               case GD_DEFAULT:
+                       im->interpolation_id = GD_BILINEAR_FIXED;
+                       im->interpolation = NULL;
+                       break;
+
+               /* Optimized versions */
+               case GD_BILINEAR_FIXED:
+               case GD_BICUBIC_FIXED:
+               case GD_NEAREST_NEIGHBOUR:
+               case GD_WEIGHTED4:
+                       im->interpolation = NULL;
+                       break;
+
+               /* generic versions*/
+               case GD_BELL:
+                       im->interpolation = filter_bell;
+                       break;
+               case GD_BESSEL:
+                       im->interpolation = filter_bessel;
+                       break;
+               case GD_BICUBIC:
+                       im->interpolation = filter_bicubic;
+                       break;
+               case GD_BLACKMAN:
+                       im->interpolation = filter_blackman;
+                       break;
+               case GD_BOX:
+                       im->interpolation = filter_box;
+                       break;
+               case GD_BSPLINE:
+                       im->interpolation = filter_bspline;
+                       break;
+               case GD_CATMULLROM:
+                       im->interpolation = filter_catmullrom;
+                       break;
+               case GD_GAUSSIAN:
+                       im->interpolation = filter_gaussian;
+                       break;
+               case GD_GENERALIZED_CUBIC:
+                       im->interpolation = filter_generalized_cubic;
+                       break;
+               case GD_HERMITE:
+                       im->interpolation = filter_hermite;
+                       break;
+               case GD_HAMMING:
+                       im->interpolation = filter_hamming;
+                       break;
+               case GD_HANNING:
+                       im->interpolation = filter_hanning;
+                       break;
+               case GD_MITCHELL:
+                       im->interpolation = filter_mitchell;
+                       break;
+               case GD_POWER:
+                       im->interpolation = filter_power;
+                       break;
+               case GD_QUADRATIC:
+                       im->interpolation = filter_quadratic;
+                       break;
+               case GD_SINC:
+                       im->interpolation = filter_sinc;
+                       break;
+               case GD_TRIANGLE:
+                       im->interpolation = filter_triangle;
+                       break;
+
+               default:
+                       return 0;
+                       break;
+       }
+       im->interpolation_id = id;
+       return 1;
+}
+
+#ifdef _MSC_VER
+# pragma optimize("", on)
+#endif
\ No newline at end of file
diff --git a/ext/gd/libgd/gd_matrix.c b/ext/gd/libgd/gd_matrix.c
new file mode 100644 (file)
index 0000000..83438bd
--- /dev/null
@@ -0,0 +1,334 @@
+#include "gd.h"
+#include <math.h>
+
+#ifndef M_PI
+# define M_PI 3.14159265358979323846
+#endif
+
+/**
+ * Title: Matrix
+ * Group: Affine Matrix
+ */
+
+/**
+ * Function: gdAffineApplyToPointF
+ *  Applies an affine transformation to a point (floating point
+ *  gdPointF)
+ *
+ *
+ * Parameters:
+ *     dst - Where to store the resulting point
+ *  affine - Source Point
+ *  flip_horz - affine matrix
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
+                 const double affine[6])
+{
+       double x = src->x;
+       double y = src->y;
+       x = src->x;
+       y = src->y;
+       dst->x = x * affine[0] + y * affine[2] + affine[4];
+       dst->y = x * affine[1] + y * affine[3] + affine[5];
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineInvert
+ *  Find the inverse of an affine transformation.
+ *
+ * All non-degenerate affine transforms are invertible. Applying the
+ * inverted matrix will restore the original values. Multiplying <src>
+ * by <dst> (commutative) will return the identity affine (rounding
+ * error possible).
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *  src_affine - Original affine matrix
+ *  flip_horz - Whether or not to flip horizontally
+ *  flip_vert - Whether or not to flip vertically
+ *
+ * See also:
+ *  <gdAffineIdentity>
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdAffineInvert (double dst[6], const double src[6])
+{
+       double r_det = (src[0] * src[3] - src[1] * src[2]);
+
+       if (r_det <= 0.0) {
+               return GD_FALSE;
+       }
+
+       r_det = 1.0 / r_det;
+       dst[0] = src[3] * r_det;
+       dst[1] = -src[1] * r_det;
+       dst[2] = -src[2] * r_det;
+       dst[3] = src[0] * r_det;
+       dst[4] = -src[4] * dst[0] - src[5] * dst[2];
+       dst[5] = -src[4] * dst[1] - src[5] * dst[3];
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineFlip
+ *  Flip an affine transformation horizontally or vertically.
+ *
+ * Flips the affine transform, giving GD_FALSE for <flip_horz> and
+ * <flip_vert> will clone the affine matrix. GD_TRUE for both will
+ * copy a 180° rotation.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *  src_affine - Original affine matrix
+ *  flip_h - Whether or not to flip horizontally
+ *  flip_v - Whether or not to flip vertically
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
+{
+       dst[0] = flip_h ? - src[0] : src[0];
+       dst[1] = flip_h ? - src[1] : src[1];
+       dst[2] = flip_v ? - src[2] : src[2];
+       dst[3] = flip_v ? - src[3] : src[3];
+       dst[4] = flip_h ? - src[4] : src[4];
+       dst[5] = flip_v ? - src[5] : src[5];
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineConcat
+ * Concat (Multiply) two affine transformation matrices.
+ *
+ * Concats two affine transforms together, i.e. the result
+ * will be the equivalent of doing first the transformation m1 and then
+ * m2. All parameters can be the same matrix (safe to call using
+ * the same array for all three arguments).
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *  m1 - First affine matrix
+ *  m2 - Second affine matrix
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
+{
+       double dst0, dst1, dst2, dst3, dst4, dst5;
+
+       dst0 = m1[0] * m2[0] + m1[1] * m2[2];
+       dst1 = m1[0] * m2[1] + m1[1] * m2[3];
+       dst2 = m1[2] * m2[0] + m1[3] * m2[2];
+       dst3 = m1[2] * m2[1] + m1[3] * m2[3];
+       dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
+       dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
+       dst[0] = dst0;
+       dst[1] = dst1;
+       dst[2] = dst2;
+       dst[3] = dst3;
+       dst[4] = dst4;
+       dst[5] = dst5;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineIdentity
+ * Set up the identity matrix.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineIdentity (double dst[6])
+{
+       dst[0] = 1;
+       dst[1] = 0;
+       dst[2] = 0;
+       dst[3] = 1;
+       dst[4] = 0;
+       dst[5] = 0;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineScale
+ * Set up a scaling matrix.
+ *
+ * Parameters:
+ *     scale_x - X scale factor
+ *     scale_y - Y scale factor
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineScale (double dst[6], const double scale_x, const double scale_y)
+{
+       dst[0] = scale_x;
+       dst[1] = 0;
+       dst[2] = 0;
+       dst[3] = scale_y;
+       dst[4] = 0;
+       dst[5] = 0;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineRotate
+ * Set up a rotation affine transform.
+ *
+ * Like the other angle in libGD, in which increasing y moves
+ * downward, this is a counterclockwise rotation.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *     angle - Rotation angle in degrees
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineRotate (double dst[6], const double angle)
+{
+       const double sin_t = sin (angle * M_PI / 180.0);
+       const double cos_t = cos (angle * M_PI / 180.0);
+
+       dst[0] = cos_t;
+       dst[1] = sin_t;
+       dst[2] = -sin_t;
+       dst[3] = cos_t;
+       dst[4] = 0;
+       dst[5] = 0;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineShearHorizontal
+ * Set up a horizontal shearing matrix || becomes \\.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *     angle - Shear angle in degrees
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineShearHorizontal(double dst[6], const double angle)
+{
+       dst[0] = 1;
+       dst[1] = 0;
+       dst[2] = tan(angle * M_PI / 180.0);
+       dst[3] = 1;
+       dst[4] = 0;
+       dst[5] = 0;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineShearVertical
+ * Set up a vertical shearing matrix, columns are untouched.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *     angle - Shear angle in degrees
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineShearVertical(double dst[6], const double angle)
+{
+       dst[0] = 1;
+       dst[1] = tan(angle * M_PI / 180.0);;
+       dst[2] = 0;
+       dst[3] = 1;
+       dst[4] = 0;
+       dst[5] = 0;
+       return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineTranslate
+ * Set up a translation matrix.
+ *
+ * Parameters:
+ *     dst - Where to store the resulting affine transform
+ *     offset_x - Horizontal translation amount
+ *     offset_y - Vertical translation amount
+ *
+ * Returns:
+ *  GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
+{
+       dst[0] = 1;
+       dst[1] = 0;
+       dst[2] = 0;
+       dst[3] = 1;
+       dst[4] = offset_x;
+       dst[5] = offset_y;
+    return GD_TRUE;
+}
+
+/**
+ * gdAffineexpansion: Find the affine's expansion factor.
+ * @src: The affine transformation.
+ *
+ * Finds the expansion factor, i.e. the square root of the factor
+ * by which the affine transform affects area. In an affine transform
+ * composed of scaling, rotation, shearing, and translation, returns
+ * the amount of scaling.
+ *
+ *  GD_SUCCESS on success or GD_FAILURE
+ **/
+double gdAffineExpansion (const double src[6])
+{
+  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
+}
+
+/**
+ * Function: gdAffineRectilinear
+ * Determines whether the affine transformation is axis aligned. A
+ * tolerance has been implemented using GD_EPSILON.
+ *
+ * Parameters:
+ *     m - The affine transformation
+ *
+ * Returns:
+ *  GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+int gdAffineRectilinear (const double m[6])
+{
+  return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
+         (fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
+}
+
+/**
+ * Function: gdAffineEqual
+ * Determines whether two affine transformations are equal. A tolerance
+ * has been implemented using GD_EPSILON.
+ *
+ * Parameters:
+ *     m1 - The first affine transformation
+ *     m2 - The first affine transformation
+ *
+ * Returns:
+ *     GD_SUCCESS on success or GD_FAILURE
+ */
+int gdAffineEqual (const double m1[6], const double m2[6])
+{
+  return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
+         fabs (m1[1] - m2[1]) < GD_EPSILON &&
+         fabs (m1[2] - m2[2]) < GD_EPSILON &&
+         fabs (m1[3] - m2[3]) < GD_EPSILON &&
+         fabs (m1[4] - m2[4]) < GD_EPSILON &&
+         fabs (m1[5] - m2[5]) < GD_EPSILON);
+}
+