2x2 luminance sampling factors and 2x1 or 1x2 chrominance sampling factors.
This is a non-standard way of specifying 2x subsampling (normally 4:2:2 JPEGs
have 2x1 luminance and 1x1 chrominance sampling factors, and 4:4:0 JPEGs have
-1x2 luminance and 1x1 chrominance sampling factors), but the JPEG specification
-and the libjpeg API both allow it.
+1x2 luminance and 1x1 chrominance sampling factors), but the JPEG format and
+the libjpeg API both allow it.
7. Fixed an unsigned integer overflow in the libjpeg memory manager, detected
by the Clang undefined behavior sanitizer, that could be triggered by
* This file was part of the Independent JPEG Group's software:
* Developed 1997-2009 by Guido Vollbeding.
* libjpeg-turbo Modifications:
- * Copyright (C) 2015, D. R. Commander.
+ * Copyright (C) 2015, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains probability estimation tables for common use in
* arithmetic entropy encoding and decoding routines.
*
- * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
- * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
- * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
+ * This data represents Table D.2 in
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 and Table 24 in
+ * Recommendation ITU-T T.82 (1993) | ISO/IEC 11544:1993.
*/
#define JPEG_INTERNALS
* file.
*
* This file contains portable arithmetic entropy encoding routines for JPEG
- * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
+ *
+ * NOTE: All referenced figures are from
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
+ * Copyright (C) 2009-2011, 2014-2016, 2018, D. R. Commander.
* Copyright (C) 2015, Matthieu Darbois.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
* back up to the start of the current MCU. To do this, we copy state
* variables into local working storage, and update them back to the
* permanent JPEG objects only upon successful completion of an MCU.
+ *
+ * NOTE: All referenced figures are from
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
* one bits (so that padding bits added at the end of a compressed segment
* can't look like a valid code). Because of the canonical ordering of
* codewords, this just means that there must be an unused slot in the
- * longest codeword length category. Section K.2 of the JPEG spec suggests
- * reserving such a slot by pretending that symbol 256 is a valid symbol
- * with count 1. In theory that's not optimal; giving it count zero but
- * including it in the symbol set anyway should give a better Huffman code.
- * But the theoretically better code actually seems to come out worse in
- * practice, because it produces more all-ones bytes (which incur stuffed
- * zero bytes in the final file). In any case the difference is tiny.
+ * longest codeword length category. Annex K (Clause K.2) of
+ * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
+ * by pretending that symbol 256 is a valid symbol with count 1. In theory
+ * that's not optimal; giving it count zero but including it in the symbol set
+ * anyway should give a better Huffman code. But the theoretically better code
+ * actually seems to come out worse in practice, because it produces more
+ * all-ones bytes (which incur stuffed zero bytes in the final file). In any
+ * case the difference is tiny.
*
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
* If some symbols have a very small but nonzero probability, the Huffman tree
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
* Huffman procedure assigned any such lengths, we must adjust the coding.
- * Here is what the JPEG spec says about how this next bit works:
- * Since symbols are paired for the longest Huffman code, the symbols are
- * removed from this length category two at a time. The prefix for the pair
- * (which is one bit shorter) is allocated to one of the pair; then,
- * skipping the BITS entry for that prefix length, a code word from the next
- * shortest nonzero BITS entry is converted into a prefix for two code words
- * one bit longer.
+ * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
+ * bit works: Since symbols are paired for the longest Huffman code, the
+ * symbols are removed from this length category two at a time. The prefix
+ * for the pair (which is one bit shorter) is allocated to one of the pair;
+ * then, skipping the BITS entry for that prefix length, a code word from the
+ * next shortest nonzero BITS entry is converted into a prefix for two code
+ * words one bit longer.
*/
for (i = MAX_CLEN; i > 16; i--) {
/* Return a list of the symbols sorted by code length */
/* It's not real clear to me why we don't need to consider the codelength
- * changes made above, but the JPEG spec seems to think this works.
+ * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
+ * this works.
*/
p = 0;
for (i = 1; i <= MAX_CLEN; i++) {
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2010 by Guido Vollbeding.
* libjpeg-turbo Modifications:
- * Copyright (C) 2010, 2016, D. R. Commander.
+ * Copyright (C) 2010, 2016, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
Al = scanptr->Al;
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
- /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
- * seems wrong: the upper bound ought to depend on data precision.
- * Perhaps they really meant 0..N+1 for N-bit precision.
+ /* Rec. ITU-T T.81 | ISO/IEC 10918-1 simply gives the ranges 0..13 for Ah
+ * and Al, but that seems wrong: the upper bound ought to depend on data
+ * precision. Perhaps they really meant 0..N+1 for N-bit precision.
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
* out-of-range reconstructed DC values during the first DC scan,
* which might cause problems for some decoders.
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2008 by Guido Vollbeding.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009-2011, D. R. Commander.
+ * Copyright (C) 2009-2011, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
}
-/* These are the sample quantization tables given in JPEG spec section K.1.
+/* These are the sample quantization tables given in Annex K (Clause K.1) of
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
* The spec says that the values given produce "good" quality, and
* when divided by 2, "very good" quality.
*/
* This file was part of the Independent JPEG Group's software:
* Developed 1997-2015 by Guido Vollbeding.
* libjpeg-turbo Modifications:
- * Copyright (C) 2015-2017, D. R. Commander.
+ * Copyright (C) 2015-2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
- * This file contains portable arithmetic entropy decoding routines for JPEG
- * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ * This file contains portable arithmetic entropy encoding routines for JPEG
+ * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
+ *
+ * NOTE: All referenced figures are from
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009-2011, 2016, D. R. Commander.
+ * Copyright (C) 2009-2011, 2016, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* up to the start of the current MCU. To do this, we copy state variables
* into local working storage, and update them back to the permanent
* storage only upon successful completion of an MCU.
+ *
+ * NOTE: All referenced figures are from
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
code = GET_BITS(l);
/* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
+ /* This is per Figure F.16. */
while (code > htbl->maxcode[l]) {
code <<= 1;
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2010, 2016, D. R. Commander.
+ * Copyright (C) 2010, 2016, 2018, D. R. Commander.
* Copyright (C) 2015, Google, Inc.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
* means that we have to save away the table actually used for each component.
* We do this by copying the table at the start of the first scan containing
* the component.
- * The JPEG spec prohibits the encoder from changing the contents of a Q-table
- * slot between scans of a component using that slot. If the encoder does so
- * anyway, this decoder will simply use the Q-table values that were current
- * at the start of the first scan for the component.
+ * Rec. ITU-T T.81 | ISO/IEC 10918-1 prohibits the encoder from changing the
+ * contents of a Q-table slot between scans of a component using that slot. If
+ * the encoder does so anyway, this decoder will simply use the Q-table values
+ * that were current at the start of the first scan for the component.
*
* The decompressor output side looks only at the saved quant tables,
* not at the current Q-table slots.
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1995-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2015-2016, D. R. Commander.
+ * Copyright (C) 2015-2016, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* up to the start of the current MCU. To do this, we copy state variables
* into local working storage, and update them back to the permanent
* storage only upon successful completion of an MCU.
+ *
+ * NOTE: All referenced figures are from
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2009 by Guido Vollbeding.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009, 2011, 2014-2015, D. R. Commander.
+ * Copyright (C) 2009, 2011, 2014-2015, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
/*
* Maximum number of components (color channels) allowed in JPEG image.
- * To meet the letter of the JPEG spec, set this to 255. However, darn
- * few applications need more than 4 channels (maybe 5 for CMYK + alpha
- * mask). We recommend 10 as a reasonable compromise; use 4 if you are
+ * To meet the letter of Rec. ITU-T T.81 | ISO/IEC 10918-1, set this to 255.
+ * However, darn few applications need more than 4 channels (maybe 5 for CMYK +
+ * alpha mask). We recommend 10 as a reasonable compromise; use 4 if you are
* really short on memory. (Each allowed component costs a hundred or so
* bytes of storage, whether actually used in an image or not.)
*/
This file was part of the Independent JPEG Group's software:
Copyright (C) 1994-2013, Thomas G. Lane, Guido Vollbeding.
libjpeg-turbo Modifications:
-Copyright (C) 2010, 2014-2017, D. R. Commander.
+Copyright (C) 2010, 2014-2018, D. R. Commander.
Copyright (C) 2015, Google, Inc.
For conditions of distribution and use, see the accompanying README.ijg file.
just one or a few scanlines at a time. The expected format for the passed
data is discussed under "Data formats", above.
-Image data should be written in top-to-bottom scanline order. The JPEG spec
-contains some weasel wording about how top and bottom are application-defined
-terms (a curious interpretation of the English language...) but if you want
-your files to be compatible with everyone else's, you WILL use top-to-bottom
-order. If the source data must be read in bottom-to-top order, you can use
-the JPEG library's virtual array mechanism to invert the data efficiently.
-Examples of this can be found in the sample application cjpeg.
+Image data should be written in top-to-bottom scanline order.
+Rec. ITU-T T.81 | ISO/IEC 10918-1 says, "Applications determine which edges of
+a source image are defined as top, bottom, left, and right." However, if you
+want your files to be compatible with everyone else's, then top-to-bottom order
+must be used. If the source data must be read in bottom-to-top order, then you
+can use the JPEG library's virtual array mechanism to invert the data
+efficiently. Examples of this can be found in the sample application cjpeg.
The library maintains a count of the number of scanlines written so far
in the next_scanline field of the JPEG object. Usually you can just use
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
boolean force_baseline)
Same as jpeg_set_quality() except that the generated tables are the
- sample tables given in the JPEC spec section K.1, multiplied by the
+ sample tables given in Annex K (Clause K.1) of
+ Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994, multiplied by the
specified scale factor (which is expressed as a percentage; thus
scale_factor = 100 reproduces the spec's tables). Note that larger
scale factors give lower quality. This entry point is useful for
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2010, D. R. Commander.
+ * Copyright (C) 2010, 2018, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
#if JPEG_LIB_VERSION < 70
-/* These are the sample quantization tables given in JPEG spec section K.1.
+/* These are the sample quantization tables given in Annex K (Clause K.1) of
+ * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
* The spec says that the values given produce "good" quality, and
* when divided by 2, "very good" quality.
*/
The compressor and decompressor are each divided into two main sections:
the JPEG compressor or decompressor proper, and the preprocessing or
postprocessing functions. The interface between these two sections is the
-image data that the official JPEG spec regards as its input or output: this
-data is in the colorspace to be used for compression, and it is downsampled
-to the sampling factors to be used. The preprocessing and postprocessing
-steps are responsible for converting a normal image representation to or from
-this form. (Those few applications that want to deal with YCbCr downsampled
-data can skip the preprocessing or postprocessing step.)
+image data that Rec. ITU-T T.81 | ISO/IEC 10918-1 regards as its input or
+output: this data is in the colorspace to be used for compression, and it is
+downsampled to the sampling factors to be used. The preprocessing and
+postprocessing steps are responsible for converting a normal image
+representation to or from this form. (Those few applications that want to deal
+with YCbCr downsampled data can skip the preprocessing or postprocessing step.)
Looking more closely, the compressor library contains the following main
elements:
Note: it is convenient to regard edge expansion (padding to block boundaries)
-as a preprocessing/postprocessing function, even though the JPEG spec includes
-it in compression/decompression. We do this because downsampling/upsampling
-can be simplified a little if they work on padded data: it's not necessary to
-have special cases at the right and bottom edges. Therefore the interface
-buffer is always an integral number of blocks wide and high, and we expect
-compression preprocessing to pad the source data properly. Padding will occur
-only to the next block (8-sample) boundary. In an interleaved-scan situation,
-additional dummy blocks may be used to fill out MCUs, but the MCU assembly and
-disassembly logic will create or discard these blocks internally. (This is
-advantageous for speed reasons, since we avoid DCTing the dummy blocks.
-It also permits a small reduction in file size, because the compressor can
-choose dummy block contents so as to minimize their size in compressed form.
-Finally, it makes the interface buffer specification independent of whether
-the file is actually interleaved or not.) Applications that wish to deal
-directly with the downsampled data must provide similar buffering and padding
-for odd-sized images.
+as a preprocessing/postprocessing function, even though
+Rec. ITU-T T.81 | ISO/IEC 10918-1 includes it in compression/decompression. We
+do this because downsampling/upsampling can be simplified a little if they work
+on padded data: it's not necessary to have special cases at the right and
+bottom edges. Therefore the interface buffer is always an integral number of
+blocks wide and high, and we expect compression preprocessing to pad the source
+data properly. Padding will occur only to the next block (8-sample) boundary.
+In an interleaved-scan situation, additional dummy blocks may be used to fill
+out MCUs, but the MCU assembly and disassembly logic will create or discard
+these blocks internally. (This is advantageous for speed reasons, since we
+avoid DCTing the dummy blocks. It also permits a small reduction in file size,
+because the compressor can choose dummy block contents so as to minimize their
+size in compressed form. Finally, it makes the interface buffer specification
+independent of whether the file is actually interleaved or not.) Applications
+that wish to deal directly with the downsampled data must provide similar
+buffering and padding for odd-sized images.
*** Poor man's object-oriented programming ***
with '#' and extends to the end of the line. Here is an example file that
duplicates the default quantization tables:
- # Quantization tables given in JPEG spec, section K.1
+ # Quantization tables given in Annex K (Clause K.1) of
+ # Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
# This is table 0 (the luminance table):
16 11 10 16 24 40 51 61