uint64_t ImmToFold;
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
- UseMI(MI), UseOpNo(OpNo), OpToFold(FoldOp), ImmToFold(0) { }
-
- FoldCandidate(MachineInstr *MI, unsigned OpNo, uint64_t Imm) :
- UseMI(MI), UseOpNo(OpNo), OpToFold(nullptr), ImmToFold(Imm) { }
+ UseMI(MI), UseOpNo(OpNo) {
+
+ if (FoldOp->isImm()) {
+ OpToFold = nullptr;
+ ImmToFold = FoldOp->getImm();
+ } else {
+ assert(FoldOp->isReg());
+ OpToFold = FoldOp;
+ }
+ }
bool isImm() const {
return !OpToFold;
return false;
}
+static bool tryAddToFoldList(std::vector<FoldCandidate> &FoldList,
+ MachineInstr *MI, unsigned OpNo,
+ MachineOperand *OpToFold,
+ const SIInstrInfo *TII) {
+ if (!TII->isOperandLegal(MI, OpNo, OpToFold)) {
+ // Operand is not legal, so try to commute the instruction to
+ // see if this makes it possible to fold.
+ unsigned CommuteIdx0;
+ unsigned CommuteIdx1;
+ bool CanCommute = TII->findCommutedOpIndices(MI, CommuteIdx0, CommuteIdx1);
+
+ if (CanCommute) {
+ if (CommuteIdx0 == OpNo)
+ OpNo = CommuteIdx1;
+ else if (CommuteIdx1 == OpNo)
+ OpNo = CommuteIdx0;
+ }
+
+ if (!CanCommute || !TII->commuteInstruction(MI))
+ return false;
+
+ if (!TII->isOperandLegal(MI, OpNo, OpToFold))
+ return false;
+ }
+
+ FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
+ return true;
+}
+
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII =
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm() || OpToFold.isFPImm();
+ // FIXME: We could also be folding things like FrameIndexes and
+ // TargetIndexes.
+ if (!FoldingImm && !OpToFold.isReg())
+ continue;
+
// Folding immediates with more than one use will increase program side.
// FIXME: This will also reduce register usage, which may be better
// in some cases. A better heuristic is needed.
UseDesc.OpInfo[Use.getOperandNo()].RegClass == -1)
continue;
-
if (FoldingImm) {
- const MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
- if (TII->isOperandLegal(UseMI, Use.getOperandNo(), &ImmOp)) {
- FoldList.push_back(FoldCandidate(UseMI, Use.getOperandNo(),
- Imm.getSExtValue()));
- }
- continue;
- }
-
- // Normal substitution with registers
- if (TII->isOperandLegal(UseMI, Use.getOperandNo(), &OpToFold)) {
- FoldList.push_back(FoldCandidate(UseMI, Use.getOperandNo(), &OpToFold));
+ MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
+ tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &ImmOp, TII);
continue;
}
- // FIXME: We could commute the instruction to create more opportunites
- // for folding. This will only be useful if we have 32-bit instructions.
+ tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &OpToFold, TII);
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunites. The shrink operands pass
MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
+
if (MI->getNumOperands() < 3)
return nullptr;
// Make sure it's legal to commute operands for VOP2.
if (isVOP2(MI->getOpcode()) &&
(!isOperandLegal(MI, Src0Idx, &Src1) ||
- !isOperandLegal(MI, Src1Idx, &Src0)))
+ !isOperandLegal(MI, Src1Idx, &Src0))) {
return nullptr;
+ }
if (!Src1.isReg()) {
// Allow commuting instructions with Imm or FPImm operands.
//
// s_sendmsg 0, s0 ; Operand defined as m0reg
// ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
+
return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
}
; SI: s_load_dword [[SGPR0:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0xb
; SI: s_load_dword [[SGPR1:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0xc
; SI: v_mov_b32_e32 [[VGPR1:v[0-9]+]], [[SGPR1]]
-; SI: v_fma_f32 [[RESULT:v[0-9]+]], [[SGPR0]], [[VGPR1]], [[SGPR0]]
+; SI: v_fma_f32 [[RESULT:v[0-9]+]], [[VGPR1]], [[SGPR0]], [[SGPR0]]
; SI: buffer_store_dword [[RESULT]]
define void @test_sgpr_use_twice_ternary_op_a_b_a(float addrspace(1)* %out, float %a, float %b) #0 {
%fma = call float @llvm.fma.f32(float %a, float %b, float %a) #1
; SI: s_load_dword [[SGPR0:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0xb
; SI: s_load_dword [[SGPR1:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0xc
; SI: v_mov_b32_e32 [[VGPR1:v[0-9]+]], [[SGPR1]]
-; SI: v_fma_f32 [[RESULT:v[0-9]+]], [[VGPR1]], [[SGPR0]], [[SGPR0]]
+; SI: v_fma_f32 [[RESULT:v[0-9]+]], [[SGPR0]], [[VGPR1]], [[SGPR0]]
; SI: buffer_store_dword [[RESULT]]
define void @test_sgpr_use_twice_ternary_op_b_a_a(float addrspace(1)* %out, float %a, float %b) #0 {
%fma = call float @llvm.fma.f32(float %b, float %a, float %a) #1