; There should be no difference between llvm.ctlz.i32(%a, true) and
; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0.
-; CHECK-LABEL: myctpop(
-define i32 @myctpop(i32 %a) {
+; CHECK-LABEL: myctlz(
+define i32 @myctlz(i32 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b32
; CHECK-NEXT: st.param.
%val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone
ret i32 %val
}
-; CHECK-LABEL: myctpop_2(
-define i32 @myctpop_2(i32 %a) {
+; CHECK-LABEL: myctlz_2(
+define i32 @myctlz_2(i32 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b32
; CHECK-NEXT: st.param.
; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit
; value, so here we have to zero-extend it.
-; CHECK-LABEL: myctpop64(
-define i64 @myctpop64(i64 %a) {
+; CHECK-LABEL: myctlz64(
+define i64 @myctlz64(i64 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b64
; CHECK-NEXT: cvt.u64.u32
%val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
ret i64 %val
}
-; CHECK-LABEL: myctpop64_2(
-define i64 @myctpop64_2(i64 %a) {
+; CHECK-LABEL: myctlz64_2(
+define i64 @myctlz64_2(i64 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b64
; CHECK-NEXT: cvt.u64.u32
; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the
; natural return width of ptx's clz.b64 instruction. No conversions should be
; necessary in the PTX.
-; CHECK-LABEL: myctpop64_as_32(
-define i32 @myctpop64_as_32(i64 %a) {
+; CHECK-LABEL: myctlz64_as_32(
+define i32 @myctlz64_as_32(i64 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b64
; CHECK-NEXT: st.param.
%trunc = trunc i64 %val to i32
ret i32 %trunc
}
-; CHECK-LABEL: myctpop64_as_32_2(
-define i32 @myctpop64_as_32_2(i64 %a) {
+; CHECK-LABEL: myctlz64_as_32_2(
+define i32 @myctlz64_as_32_2(i64 %a) {
; CHECK: ld.param.
; CHECK-NEXT: clz.b64
; CHECK-NEXT: st.param.
; and then truncating the result back down to i16. But the NVPTX ABI
; zero-extends i16 return values to i32, so the final truncation doesn't appear
; in this function.
-; CHECK-LABEL: myctpop_ret16(
-define i16 @myctpop_ret16(i16 %a) {
+; CHECK-LABEL: myctlz_ret16(
+define i16 @myctlz_ret16(i16 %a) {
; CHECK: ld.param.
; CHECK-NEXT: cvt.u32.u16
; CHECK-NEXT: clz.b32
%val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
ret i16 %val
}
-; CHECK-LABEL: myctpop_ret16_2(
-define i16 @myctpop_ret16_2(i16 %a) {
+; CHECK-LABEL: myctlz_ret16_2(
+define i16 @myctlz_ret16_2(i16 %a) {
; CHECK: ld.param.
; CHECK-NEXT: cvt.u32.u16
; CHECK-NEXT: clz.b32
; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should
; remain.
-; CHECK-LABEL: myctpop_store16(
-define void @myctpop_store16(i16 %a, i16* %b) {
+; CHECK-LABEL: myctlz_store16(
+define void @myctlz_store16(i16 %a, i16* %b) {
; CHECK: ld.param.
; CHECK-NEXT: cvt.u32.u16
; CHECK-NET: clz.b32
store i16 %val, i16* %b
ret void
}
-; CHECK-LABEL: myctpop_store16_2(
-define void @myctpop_store16_2(i16 %a, i16* %b) {
+; CHECK-LABEL: myctlz_store16_2(
+define void @myctlz_store16_2(i16 %a, i16* %b) {
; CHECK: ld.param.
; CHECK-NEXT: cvt.u32.u16
; CHECK-NET: clz.b32