--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * partprune.c
+ * Parses clauses attempting to match them up to partition keys of a
+ * given relation and generates a set of "pruning steps", which can be
+ * later "executed" either from the planner or the executor to determine
+ * the minimum set of partitions which match the given clauses.
+ *
+ * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/partitioning/partprune.c
+ *
+ *-------------------------------------------------------------------------
+*/
+#include "postgres.h"
+
+#include "access/hash.h"
+#include "access/nbtree.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_opfamily.h"
+#include "catalog/pg_type.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/planner.h"
+#include "optimizer/predtest.h"
+#include "optimizer/prep.h"
+#include "partitioning/partprune.h"
+#include "partitioning/partbounds.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/lsyscache.h"
+
+
+/*
+ * Information about a clause matched with a partition key.
+ */
+typedef struct PartClauseInfo
+{
+ int keyno; /* Partition key number (0 to partnatts - 1) */
+ Oid opno; /* operator used to compare partkey to 'expr' */
+ bool op_is_ne; /* is clause's original operator <> ? */
+ Expr *expr; /* expr the partition key is compared to */
+ Oid cmpfn; /* Oid of function to compare 'expr' to the
+ * partition key */
+ int op_strategy; /* cached info. */
+} PartClauseInfo;
+
+/*
+ * PartClauseMatchStatus
+ * Describes the result match_clause_to_partition_key produces for a
+ * given clause and the partition key to match with that are passed to it
+ */
+typedef enum PartClauseMatchStatus
+{
+ PARTCLAUSE_NOMATCH,
+ PARTCLAUSE_MATCH_CLAUSE,
+ PARTCLAUSE_MATCH_NULLNESS,
+ PARTCLAUSE_MATCH_STEPS,
+ PARTCLAUSE_MATCH_CONTRADICT,
+ PARTCLAUSE_UNSUPPORTED
+} PartClauseMatchStatus;
+
+/*
+ * GeneratePruningStepsContext
+ * Information about the current state of generation of "pruning steps"
+ * for a given set of clauses
+ *
+ * gen_partprune_steps() initializes an instance of this struct, which is used
+ * throughout the step generation process.
+ */
+typedef struct GeneratePruningStepsContext
+{
+ int next_step_id;
+ List *steps;
+} GeneratePruningStepsContext;
+
+/* The result of performing one PartitionPruneStep */
+typedef struct PruneStepResult
+{
+ /*
+ * The offsets of bounds (in a table's boundinfo) whose partition is
+ * selected by the pruning step.
+ */
+ Bitmapset *bound_offsets;
+
+ bool scan_default; /* Scan the default partition? */
+ bool scan_null; /* Scan the partition for NULL values? */
+} PruneStepResult;
+
+
+static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
+ RelOptInfo *rel, List *clauses,
+ bool *contradictory);
+static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
+ StrategyNumber opstrategy, bool op_is_ne,
+ List *exprs, List *cmpfns, Bitmapset *nullkeys);
+static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
+ List *source_stepids,
+ PartitionPruneCombineOp combineOp);
+static PartitionPruneStep *gen_prune_steps_from_opexps(PartitionScheme part_scheme,
+ GeneratePruningStepsContext *context,
+ List **keyclauses, Bitmapset *nullkeys);
+static PartClauseMatchStatus match_clause_to_partition_key(RelOptInfo *rel,
+ GeneratePruningStepsContext *context,
+ Expr *clause, Expr *partkey, int partkeyidx,
+ bool *clause_is_not_null,
+ PartClauseInfo **pc, List **clause_steps);
+static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
+ StrategyNumber step_opstrategy,
+ bool step_op_is_ne,
+ Expr *step_lastexpr,
+ Oid step_lastcmpfn,
+ int step_lastkeyno,
+ Bitmapset *step_nullkeys,
+ List *prefix);
+static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
+ StrategyNumber step_opstrategy,
+ bool step_op_is_ne,
+ Expr *step_lastexpr,
+ Oid step_lastcmpfn,
+ int step_lastkeyno,
+ Bitmapset *step_nullkeys,
+ ListCell *start,
+ List *step_exprs,
+ List *step_cmpfns);
+static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum *values, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys);
+static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum value, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys);
+static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum *values, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys);
+static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
+ PartitionPruneStepOp *opstep);
+static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
+ PartitionPruneStepCombine *cstep,
+ PruneStepResult **step_results);
+static bool match_boolean_partition_clause(Oid partopfamily, Expr *clause,
+ Expr *partkey, Expr **outconst);
+static bool partkey_datum_from_expr(PartitionPruneContext *context,
+ Expr *expr, Datum *value);
+
+
+/*
+ * gen_partprune_steps
+ * Process 'clauses' (a rel's baserestrictinfo list of clauses) and return
+ * a list of "partition pruning steps"
+ *
+ * If the clauses in the input list are contradictory or there is a
+ * pseudo-constant "false", *contradictory is set to true upon return.
+ */
+List *
+gen_partprune_steps(RelOptInfo *rel, List *clauses, bool *contradictory)
+{
+ GeneratePruningStepsContext context;
+
+ context.next_step_id = 0;
+ context.steps = NIL;
+
+ /* The clauses list may be modified below, so better make a copy. */
+ clauses = list_copy(clauses);
+
+ /*
+ * For sub-partitioned tables there's a corner case where if the
+ * sub-partitioned table shares any partition keys with its parent, then
+ * it's possible that the partitioning hierarchy allows the parent
+ * partition to only contain a narrower range of values than the
+ * sub-partitioned table does. In this case it is possible that we'd
+ * include partitions that could not possibly have any tuples matching
+ * 'clauses'. The possibility of such a partition arrangement is perhaps
+ * unlikely for non-default partitions, but it may be more likely in the
+ * case of default partitions, so we'll add the parent partition table's
+ * partition qual to the clause list in this case only. This may result
+ * in the default partition being eliminated.
+ */
+ if (partition_bound_has_default(rel->boundinfo) &&
+ rel->partition_qual != NIL)
+ {
+ List *partqual = rel->partition_qual;
+
+ partqual = (List *) expression_planner((Expr *) partqual);
+
+ /* Fix Vars to have the desired varno */
+ if (rel->relid != 1)
+ ChangeVarNodes((Node *) partqual, 1, rel->relid, 0);
+
+ clauses = list_concat(clauses, partqual);
+ }
+
+ /* Down into the rabbit-hole. */
+ gen_partprune_steps_internal(&context, rel, clauses, contradictory);
+
+ return context.steps;
+}
+
+/*
+ * prune_append_rel_partitions
+ * Returns RT indexes of the minimum set of child partitions which must
+ * be scanned to satisfy rel's baserestrictinfo quals.
+ *
+ * Callers must ensure that 'rel' is a partitioned table.
+ */
+Relids
+prune_append_rel_partitions(RelOptInfo *rel)
+{
+ Relids result;
+ List *clauses = rel->baserestrictinfo;
+ List *pruning_steps;
+ bool contradictory;
+ PartitionPruneContext context;
+ Bitmapset *partindexes;
+ int i;
+
+ Assert(clauses != NIL);
+ Assert(rel->part_scheme != NULL);
+
+ /* If there are no partitions, return the empty set */
+ if (rel->nparts == 0)
+ return NULL;
+
+ /*
+ * Process clauses. If the clauses are found to be contradictory, we can
+ * return the empty set.
+ */
+ pruning_steps = gen_partprune_steps(rel, clauses, &contradictory);
+ if (contradictory)
+ return NULL;
+
+ context.strategy = rel->part_scheme->strategy;
+ context.partnatts = rel->part_scheme->partnatts;
+ context.partopfamily = rel->part_scheme->partopfamily;
+ context.partopcintype = rel->part_scheme->partopcintype;
+ context.partcollation = rel->part_scheme->partcollation;
+ context.partsupfunc = rel->part_scheme->partsupfunc;
+ context.nparts = rel->nparts;
+ context.boundinfo = rel->boundinfo;
+
+ /* Actual pruning happens here. */
+ partindexes = get_matching_partitions(&context, pruning_steps);
+
+ /* Add selected partitions' RT indexes to result. */
+ i = -1;
+ result = NULL;
+ while ((i = bms_next_member(partindexes, i)) >= 0)
+ result = bms_add_member(result, rel->part_rels[i]->relid);
+
+ return result;
+}
+
+/*
+ * get_matching_partitions
+ * Determine partitions that survive partition pruning
+ *
+ * Returns a Bitmapset of indexes of surviving partitions.
+ */
+Bitmapset *
+get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
+{
+ Bitmapset *result;
+ int num_steps = list_length(pruning_steps),
+ i;
+ PruneStepResult **results,
+ *final_result;
+ ListCell *lc;
+
+ /* If there are no pruning steps then all partitions match. */
+ if (num_steps == 0)
+ return bms_add_range(NULL, 0, context->nparts - 1);
+
+ /*
+ * Allocate space for individual pruning steps to store its result. Each
+ * slot will hold a PruneStepResult after performing a given pruning step.
+ * Later steps may use the result of one or more earlier steps. The
+ * result of applying all pruning steps is the value contained in the slot
+ * of the last pruning step.
+ */
+ results = (PruneStepResult **)
+ palloc0(num_steps * sizeof(PruneStepResult *));
+ foreach(lc, pruning_steps)
+ {
+ PartitionPruneStep *step = lfirst(lc);
+
+ switch (nodeTag(step))
+ {
+ case T_PartitionPruneStepOp:
+ results[step->step_id] =
+ perform_pruning_base_step(context,
+ (PartitionPruneStepOp *) step);
+ break;
+
+ case T_PartitionPruneStepCombine:
+ results[step->step_id] =
+ perform_pruning_combine_step(context,
+ (PartitionPruneStepCombine *) step,
+ results);
+ break;
+
+ default:
+ elog(ERROR, "invalid pruning step type: %d",
+ (int) nodeTag(step));
+ }
+ }
+
+ /*
+ * At this point we know the offsets of all the datums whose corresponding
+ * partitions need to be in the result, including special null-accepting
+ * and default partitions. Collect the actual partition indexes now.
+ */
+ final_result = results[num_steps - 1];
+ Assert(final_result != NULL);
+ i = -1;
+ result = NULL;
+ while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
+ {
+ int partindex = context->boundinfo->indexes[i];
+
+ /*
+ * In range and hash partitioning cases, some slots may contain -1,
+ * indicating that no partition has been defined to accept a given
+ * range of data or for a given remainder, respectively. The default
+ * partition, if any, in case of range partitioning, will be added to
+ * the result, because the specified range still satisfies the query's
+ * conditions.
+ */
+ if (partindex >= 0)
+ result = bms_add_member(result, partindex);
+ }
+
+ /* Add the null and/or default partition if needed and if present. */
+ if (final_result->scan_null)
+ {
+ Assert(context->strategy == PARTITION_STRATEGY_LIST);
+ Assert(partition_bound_accepts_nulls(context->boundinfo));
+ result = bms_add_member(result, context->boundinfo->null_index);
+ }
+ if (final_result->scan_default)
+ {
+ Assert(context->strategy == PARTITION_STRATEGY_LIST ||
+ context->strategy == PARTITION_STRATEGY_RANGE);
+ Assert(partition_bound_has_default(context->boundinfo));
+ result = bms_add_member(result, context->boundinfo->default_index);
+ }
+
+ return result;
+}
+
+/*
+ * gen_partprune_steps_internal
+ * Processes 'clauses' to generate partition pruning steps.
+ *
+ * From OpExpr clauses that are mutually AND'd, we find combinations of those
+ * that match to the partition key columns and for every such combination,
+ * we emit a PartitionPruneStepOp containing a vector of expressions whose
+ * values are used as a look up key to search partitions by comparing the
+ * values with partition bounds. Relevant details of the operator and a
+ * vector of (possibly cross-type) comparison functions is also included with
+ * each step.
+ *
+ * For BoolExpr clauses, we recursively generate steps for each argument, and
+ * return a PartitionPruneStepCombine of their results.
+ *
+ * The generated steps are added to the context's steps list. Each step is
+ * assigned a step identifier, unique even across recursive calls.
+ *
+ * If we find clauses that are mutually contradictory, or a pseudoconstant
+ * clause that contains false, we set *contradictory to true and return NIL
+ * (that is, no pruning steps). Caller should consider all partitions as
+ * pruned in that case. Otherwise, *contradictory is set to false.
+ *
+ * Note: the 'clauses' List may be modified inside this function. Callers may
+ * like to make a copy of it before passing them to this function.
+ */
+static List *
+gen_partprune_steps_internal(GeneratePruningStepsContext *context,
+ RelOptInfo *rel, List *clauses,
+ bool *contradictory)
+{
+ PartitionScheme part_scheme = rel->part_scheme;
+ List *keyclauses[PARTITION_MAX_KEYS];
+ Bitmapset *nullkeys = NULL,
+ *notnullkeys = NULL;
+ bool generate_opsteps = false;
+ List *result = NIL;
+ ListCell *lc;
+
+ *contradictory = false;
+
+ memset(keyclauses, 0, sizeof(keyclauses));
+ foreach(lc, clauses)
+ {
+ Expr *clause = (Expr *) lfirst(lc);
+ int i;
+
+ if (IsA(clause, RestrictInfo))
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) clause;
+
+ clause = rinfo->clause;
+ if (rinfo->pseudoconstant &&
+ IsA(rinfo->clause, Const) &&
+ !DatumGetBool(((Const *) clause)->constvalue))
+ {
+ *contradictory = true;
+ return NIL;
+ }
+ }
+
+ /* Get the BoolExpr's out of the way. */
+ if (IsA(clause, BoolExpr))
+ {
+ /*
+ * Generate steps for arguments.
+ *
+ * While steps generated for the arguments themselves will be
+ * added to context->steps during recursion and will be evaluated
+ * independently, collect their step IDs to be stored in the
+ * combine step we'll be creating.
+ */
+ if (or_clause((Node *) clause))
+ {
+ List *arg_stepids = NIL;
+ bool all_args_contradictory = true;
+ ListCell *lc1;
+
+ /*
+ * Get pruning step for each arg. If we get contradictory for
+ * all args, it means the OR expression is false as a whole.
+ */
+ foreach(lc1, ((BoolExpr *) clause)->args)
+ {
+ Expr *arg = lfirst(lc1);
+ bool arg_contradictory;
+ List *argsteps;
+
+ argsteps =
+ gen_partprune_steps_internal(context, rel,
+ list_make1(arg),
+ &arg_contradictory);
+ if (!arg_contradictory)
+ all_args_contradictory = false;
+
+ if (argsteps != NIL)
+ {
+ PartitionPruneStep *step;
+
+ Assert(list_length(argsteps) == 1);
+ step = (PartitionPruneStep *) linitial(argsteps);
+ arg_stepids = lappend_int(arg_stepids, step->step_id);
+ }
+ else
+ {
+ /*
+ * No steps either means that arg_contradictory is
+ * true or the arg didn't contain a clause matching
+ * this partition key.
+ *
+ * In case of the latter, we cannot prune using such
+ * an arg. To indicate that to the pruning code, we
+ * must construct a dummy PartitionPruneStepCombine
+ * whose source_stepids is set to an empty List.
+ * However, if we can prove using constraint exclusion
+ * that the clause refutes the table's partition
+ * constraint (if it's sub-partitioned), we need not
+ * bother with that. That is, we effectively ignore
+ * this OR arm.
+ */
+ List *partconstr = rel->partition_qual;
+ PartitionPruneStep *orstep;
+
+ /* Just ignore this argument. */
+ if (arg_contradictory)
+ continue;
+
+ if (partconstr)
+ {
+ partconstr = (List *)
+ expression_planner((Expr *) partconstr);
+ if (rel->relid != 1)
+ ChangeVarNodes((Node *) partconstr, 1,
+ rel->relid, 0);
+ if (predicate_refuted_by(partconstr,
+ list_make1(arg),
+ false))
+ continue;
+ }
+
+ orstep = gen_prune_step_combine(context, NIL,
+ PARTPRUNE_COMBINE_UNION);
+ arg_stepids = lappend_int(arg_stepids, orstep->step_id);
+ }
+ }
+
+ *contradictory = all_args_contradictory;
+
+ /* Check if any contradicting clauses were found */
+ if (*contradictory)
+ return NIL;
+
+ if (arg_stepids != NIL)
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_combine(context, arg_stepids,
+ PARTPRUNE_COMBINE_UNION);
+ result = lappend(result, step);
+ }
+ continue;
+ }
+ else if (and_clause((Node *) clause))
+ {
+ List *args = ((BoolExpr *) clause)->args;
+ List *argsteps,
+ *arg_stepids = NIL;
+ ListCell *lc1;
+
+ /*
+ * args may itself contain clauses of arbitrary type, so just
+ * recurse and later combine the component partitions sets
+ * using a combine step.
+ */
+ argsteps = gen_partprune_steps_internal(context, rel, args,
+ contradictory);
+ if (*contradictory)
+ return NIL;
+
+ foreach(lc1, argsteps)
+ {
+ PartitionPruneStep *step = lfirst(lc1);
+
+ arg_stepids = lappend_int(arg_stepids, step->step_id);
+ }
+
+ if (arg_stepids != NIL)
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_combine(context, arg_stepids,
+ PARTPRUNE_COMBINE_INTERSECT);
+ result = lappend(result, step);
+ }
+ continue;
+ }
+
+ /*
+ * Fall-through for a NOT clause, which if it's a Boolean clause,
+ * will be handled in match_clause_to_partition_key(). We
+ * currently don't perform any pruning for more complex NOT
+ * clauses.
+ */
+ }
+
+ /*
+ * Must be a clause for which we can check if one of its args matches
+ * the partition key.
+ */
+ for (i = 0; i < part_scheme->partnatts; i++)
+ {
+ Expr *partkey = linitial(rel->partexprs[i]);
+ bool clause_is_not_null = false;
+ PartClauseInfo *pc = NULL;
+ List *clause_steps = NIL;
+
+ switch (match_clause_to_partition_key(rel, context,
+ clause, partkey, i,
+ &clause_is_not_null,
+ &pc, &clause_steps))
+ {
+ case PARTCLAUSE_MATCH_CLAUSE:
+ Assert(pc != NULL);
+
+ /*
+ * Since we only allow strict operators, check for any
+ * contradicting IS NULL.
+ */
+ if (bms_is_member(i, nullkeys))
+ {
+ *contradictory = true;
+ return NIL;
+ }
+ generate_opsteps = true;
+ keyclauses[i] = lappend(keyclauses[i], pc);
+ break;
+
+ case PARTCLAUSE_MATCH_NULLNESS:
+ if (!clause_is_not_null)
+ {
+ /* check for conflicting IS NOT NULL */
+ if (bms_is_member(i, notnullkeys))
+ {
+ *contradictory = true;
+ return NIL;
+ }
+ nullkeys = bms_add_member(nullkeys, i);
+ }
+ else
+ {
+ /* check for conflicting IS NULL */
+ if (bms_is_member(i, nullkeys))
+ {
+ *contradictory = true;
+ return NIL;
+ }
+ notnullkeys = bms_add_member(notnullkeys, i);
+ }
+ break;
+
+ case PARTCLAUSE_MATCH_STEPS:
+ Assert(clause_steps != NIL);
+ result = list_concat(result, clause_steps);
+ break;
+
+ case PARTCLAUSE_MATCH_CONTRADICT:
+ /* We've nothing more to do if a contradiction was found. */
+ *contradictory = true;
+ return NIL;
+
+ case PARTCLAUSE_NOMATCH:
+
+ /*
+ * Clause didn't match this key, but it might match the
+ * next one.
+ */
+ continue;
+
+ case PARTCLAUSE_UNSUPPORTED:
+ /* This clause cannot be used for pruning. */
+ break;
+
+ default:
+ Assert(false);
+ break;
+ }
+
+ /* done; go check the next clause. */
+ break;
+ }
+ }
+
+ /*
+ * If generate_opsteps is set to false it means no OpExprs were directly
+ * present in the input list.
+ */
+ if (!generate_opsteps)
+ {
+ /*
+ * Generate one prune step for the information derived from IS NULL,
+ * if any. To prune hash partitions, we must have found IS NULL
+ * clauses for all partition keys.
+ */
+ if (!bms_is_empty(nullkeys) &&
+ (part_scheme->strategy != PARTITION_STRATEGY_HASH ||
+ bms_num_members(nullkeys) == part_scheme->partnatts))
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_op(context, InvalidStrategy,
+ false, NIL, NIL, nullkeys);
+ result = lappend(result, step);
+ }
+
+ /*
+ * Note that for IS NOT NULL clauses, simply having step suffices;
+ * there is no need to propagate the exact details of which keys are
+ * required to be NOT NULL. Hash partitioning expects to see actual
+ * values to perform any pruning.
+ */
+ if (!bms_is_empty(notnullkeys) &&
+ part_scheme->strategy != PARTITION_STRATEGY_HASH)
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_op(context, InvalidStrategy,
+ false, NIL, NIL, NULL);
+ result = lappend(result, step);
+ }
+ }
+ else
+ {
+ PartitionPruneStep *step;
+
+ /* Generate pruning steps from OpExpr clauses in keyclauses. */
+ step = gen_prune_steps_from_opexps(part_scheme, context,
+ keyclauses, nullkeys);
+ if (step != NULL)
+ result = lappend(result, step);
+ }
+
+ /*
+ * Finally, results from all entries appearing in result should be
+ * combined using an INTERSECT combine step, if more than one.
+ */
+ if (list_length(result) > 1)
+ {
+ List *step_ids = NIL;
+
+ foreach(lc, result)
+ {
+ PartitionPruneStep *step = lfirst(lc);
+
+ step_ids = lappend_int(step_ids, step->step_id);
+ }
+
+ if (step_ids != NIL)
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_combine(context, step_ids,
+ PARTPRUNE_COMBINE_INTERSECT);
+ result = lappend(result, step);
+ }
+ }
+
+ return result;
+}
+
+/*
+ * gen_prune_step_op
+ * Generate a pruning step for a specific operator
+ *
+ * The step is assigned a unique step identifier and added to context's 'steps'
+ * list.
+ */
+static PartitionPruneStep *
+gen_prune_step_op(GeneratePruningStepsContext *context,
+ StrategyNumber opstrategy, bool op_is_ne,
+ List *exprs, List *cmpfns,
+ Bitmapset *nullkeys)
+{
+ PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);
+
+ opstep->step.step_id = context->next_step_id++;
+
+ /*
+ * For clauses that contain an <> operator, set opstrategy to
+ * InvalidStrategy to signal get_matching_list_bounds to do the right
+ * thing.
+ */
+ if (op_is_ne)
+ {
+ Assert(opstrategy == BTEqualStrategyNumber);
+ opstep->opstrategy = InvalidStrategy;
+ }
+ else
+ opstep->opstrategy = opstrategy;
+ Assert(list_length(exprs) == list_length(cmpfns));
+ opstep->exprs = exprs;
+ opstep->cmpfns = cmpfns;
+ opstep->nullkeys = nullkeys;
+
+ context->steps = lappend(context->steps, opstep);
+
+ return (PartitionPruneStep *) opstep;
+}
+
+/*
+ * gen_prune_step_combine
+ * Generate a pruning step for a combination of several other steps
+ *
+ * The step is assigned a unique step identifier and added to context's
+ * 'steps' list.
+ */
+static PartitionPruneStep *
+gen_prune_step_combine(GeneratePruningStepsContext *context,
+ List *source_stepids,
+ PartitionPruneCombineOp combineOp)
+{
+ PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);
+
+ cstep->step.step_id = context->next_step_id++;
+ cstep->combineOp = combineOp;
+ cstep->source_stepids = source_stepids;
+
+ context->steps = lappend(context->steps, cstep);
+
+ return (PartitionPruneStep *) cstep;
+}
+
+/*
+ * gen_prune_steps_from_opexps
+ * Generate pruning steps based on clauses for partition keys
+ *
+ * 'keyclauses' contains one list of clauses per partition key. We check here
+ * if we have found clauses for a valid subset of the partition key. In some
+ * cases, (depending on the type of partitioning being used) if we didn't
+ * find clauses for a given key, we discard clauses that may have been
+ * found for any subsequent keys; see specific notes below.
+ */
+static PartitionPruneStep *
+gen_prune_steps_from_opexps(PartitionScheme part_scheme,
+ GeneratePruningStepsContext *context,
+ List **keyclauses, Bitmapset *nullkeys)
+{
+ ListCell *lc;
+ List *opsteps = NIL;
+ List *btree_clauses[BTMaxStrategyNumber + 1],
+ *hash_clauses[HTMaxStrategyNumber + 1];
+ bool need_next_less,
+ need_next_eq,
+ need_next_greater;
+ int i;
+
+ memset(btree_clauses, 0, sizeof(btree_clauses));
+ memset(hash_clauses, 0, sizeof(hash_clauses));
+ for (i = 0; i < part_scheme->partnatts; i++)
+ {
+ List *clauselist = keyclauses[i];
+ bool consider_next_key = true;
+
+ /*
+ * To be useful for pruning, we must have clauses for a prefix of
+ * partition keys in the case of range partitioning. So, ignore
+ * clauses for keys after this one.
+ */
+ if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
+ clauselist == NIL)
+ break;
+
+ /*
+ * For hash partitioning, if a column doesn't have the necessary
+ * equality clause, there should be an IS NULL clause, otherwise
+ * pruning is not possible.
+ */
+ if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
+ clauselist == NIL && !bms_is_member(i, nullkeys))
+ return NULL;
+
+ need_next_eq = need_next_less = need_next_greater = true;
+ foreach(lc, clauselist)
+ {
+ PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
+ Oid lefttype,
+ righttype;
+
+ /* Look up the operator's btree/hash strategy number. */
+ if (pc->op_strategy == InvalidStrategy)
+ get_op_opfamily_properties(pc->opno,
+ part_scheme->partopfamily[i],
+ false,
+ &pc->op_strategy,
+ &lefttype,
+ &righttype);
+
+ switch (part_scheme->strategy)
+ {
+ case PARTITION_STRATEGY_LIST:
+ case PARTITION_STRATEGY_RANGE:
+ {
+ PartClauseInfo *last = NULL;
+ bool inclusive = false;
+
+ /*
+ * Add this clause to the list of clauses to be used
+ * for pruning if this is the first such key for this
+ * operator strategy or if it is consecutively next to
+ * the last column for which a clause with this
+ * operator strategy was matched.
+ */
+ if (btree_clauses[pc->op_strategy] != NIL)
+ last = llast(btree_clauses[pc->op_strategy]);
+
+ if (last == NULL ||
+ i == last->keyno || i == last->keyno + 1)
+ btree_clauses[pc->op_strategy] =
+ lappend(btree_clauses[pc->op_strategy], pc);
+
+ /*
+ * We may not need the next clause if they're of
+ * certain strategy.
+ */
+ switch (pc->op_strategy)
+ {
+ case BTLessEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTLessStrategyNumber:
+ if (!inclusive)
+ need_next_eq = need_next_less = false;
+ break;
+ case BTEqualStrategyNumber:
+ /* always accept clauses for the next key. */
+ break;
+ case BTGreaterEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTGreaterStrategyNumber:
+ if (!inclusive)
+ need_next_eq = need_next_greater = false;
+ break;
+ }
+
+ /* We may want to change our mind. */
+ if (consider_next_key)
+ consider_next_key = (need_next_eq ||
+ need_next_less ||
+ need_next_greater);
+ break;
+ }
+
+ case PARTITION_STRATEGY_HASH:
+ if (pc->op_strategy != HTEqualStrategyNumber)
+ elog(ERROR, "invalid clause for hash partitioning");
+ hash_clauses[pc->op_strategy] =
+ lappend(hash_clauses[pc->op_strategy], pc);
+ break;
+
+ default:
+ elog(ERROR, "invalid partition strategy: %c",
+ part_scheme->strategy);
+ break;
+ }
+ }
+
+ /*
+ * If we've decided that clauses for subsequent partition keys
+ * wouldn't be useful for pruning, don't search any further.
+ */
+ if (!consider_next_key)
+ break;
+ }
+
+ /*
+ * Now, we have divided clauses according to their operator strategies.
+ * Check for each strategy if we can generate pruning step(s) by
+ * collecting a list of expressions whose values will constitute a vector
+ * that can be used as a lookup key by a partition bound searching
+ * function.
+ */
+ switch (part_scheme->strategy)
+ {
+ case PARTITION_STRATEGY_LIST:
+ case PARTITION_STRATEGY_RANGE:
+ {
+ List *eq_clauses = btree_clauses[BTEqualStrategyNumber];
+ List *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
+ List *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
+ int strat;
+
+ /*
+ * For each clause under consideration for a given strategy,
+ * we collect expressions from clauses for earlier keys, whose
+ * operator strategy is inclusive, into a list called
+ * 'prefix'. By appending the clause's own expression to the
+ * 'prefix', we'll generate one step using the so generated
+ * vector and assign the current strategy to it. Actually,
+ * 'prefix' might contain multiple clauses for the same key,
+ * in which case, we must generate steps for various
+ * combinations of expressions of different keys, which
+ * get_steps_using_prefix takes care of for us.
+ */
+ for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
+ {
+ foreach(lc, btree_clauses[strat])
+ {
+ PartClauseInfo *pc = lfirst(lc);
+ ListCell *lc1;
+ List *prefix = NIL;
+ List *pc_steps;
+
+ /*
+ * Expressions from = clauses can always be in the
+ * prefix, provided they're from an earlier key.
+ */
+ foreach(lc1, eq_clauses)
+ {
+ PartClauseInfo *eqpc = lfirst(lc1);
+
+ if (eqpc->keyno == pc->keyno)
+ break;
+ if (eqpc->keyno < pc->keyno)
+ prefix = lappend(prefix, eqpc);
+ }
+
+ /*
+ * If we're generating steps for </<= strategy, we can
+ * add other <= clauses to the prefix, provided
+ * they're from an earlier key.
+ */
+ if (strat == BTLessStrategyNumber ||
+ strat == BTLessEqualStrategyNumber)
+ {
+ foreach(lc1, le_clauses)
+ {
+ PartClauseInfo *lepc = lfirst(lc1);
+
+ if (lepc->keyno == pc->keyno)
+ break;
+ if (lepc->keyno < pc->keyno)
+ prefix = lappend(prefix, lepc);
+ }
+ }
+
+ /*
+ * If we're generating steps for >/>= strategy, we can
+ * add other >= clauses to the prefix, provided
+ * they're from an earlier key.
+ */
+ if (strat == BTGreaterStrategyNumber ||
+ strat == BTGreaterEqualStrategyNumber)
+ {
+ foreach(lc1, ge_clauses)
+ {
+ PartClauseInfo *gepc = lfirst(lc1);
+
+ if (gepc->keyno == pc->keyno)
+ break;
+ if (gepc->keyno < pc->keyno)
+ prefix = lappend(prefix, gepc);
+ }
+ }
+
+ /*
+ * As mentioned above, if 'prefix' contains multiple
+ * expressions for the same key, the following will
+ * generate multiple steps, one for each combination
+ * of the expressions for different keys.
+ *
+ * Note that we pass NULL for step_nullkeys, because
+ * we don't search list/range partition bounds where
+ * some keys are NULL.
+ */
+ Assert(pc->op_strategy == strat);
+ pc_steps = get_steps_using_prefix(context, strat,
+ pc->op_is_ne,
+ pc->expr,
+ pc->cmpfn,
+ pc->keyno,
+ NULL,
+ prefix);
+ opsteps = list_concat(opsteps, list_copy(pc_steps));
+ }
+ }
+ break;
+ }
+
+ case PARTITION_STRATEGY_HASH:
+ {
+ List *eq_clauses = hash_clauses[HTEqualStrategyNumber];
+
+ /* For hash partitioning, we have just the = strategy. */
+ if (eq_clauses != NIL)
+ {
+ PartClauseInfo *pc;
+ List *pc_steps;
+ List *prefix = NIL;
+ int last_keyno;
+ ListCell *lc1;
+
+ /*
+ * Locate the clause for the greatest column. This may
+ * not belong to the last partition key, but it is the
+ * clause belonging to the last partition key we found a
+ * clause for above.
+ */
+ pc = llast(eq_clauses);
+
+ /*
+ * There might be multiple clauses which matched to that
+ * partition key; find the first such clause. While at
+ * it, add all the clauses before that one to 'prefix'.
+ */
+ last_keyno = pc->keyno;
+ foreach(lc, eq_clauses)
+ {
+ pc = lfirst(lc);
+ if (pc->keyno == last_keyno)
+ break;
+ prefix = lappend(prefix, pc);
+ }
+
+ /*
+ * For each clause for the "last" column, after appending
+ * the clause's own expression to the 'prefix', we'll
+ * generate one step using the so generated vector and and
+ * assign = as its strategy. Actually, 'prefix' might
+ * contain multiple clauses for the same key, in which
+ * case, we must generate steps for various combinations
+ * of expressions of different keys, which
+ * get_steps_using_prefix will take care of for us.
+ */
+ for_each_cell(lc1, lc)
+ {
+ pc = lfirst(lc1);
+
+ /*
+ * Note that we pass nullkeys for step_nullkeys,
+ * because we need to tell hash partition bound search
+ * function which of the keys we found IS NULL clauses
+ * for.
+ */
+ Assert(pc->op_strategy == HTEqualStrategyNumber);
+ pc_steps =
+ get_steps_using_prefix(context,
+ HTEqualStrategyNumber,
+ false,
+ pc->expr,
+ pc->cmpfn,
+ pc->keyno,
+ nullkeys,
+ prefix);
+ opsteps = list_concat(opsteps, list_copy(pc_steps));
+ }
+ }
+ break;
+ }
+
+ default:
+ elog(ERROR, "invalid partition strategy: %c",
+ part_scheme->strategy);
+ break;
+ }
+
+ /* Lastly, add a combine step to mutually AND these op steps, if needed */
+ if (list_length(opsteps) > 1)
+ {
+ List *opstep_ids = NIL;
+
+ foreach(lc, opsteps)
+ {
+ PartitionPruneStep *step = lfirst(lc);
+
+ opstep_ids = lappend_int(opstep_ids, step->step_id);
+ }
+
+ if (opstep_ids != NIL)
+ return gen_prune_step_combine(context, opstep_ids,
+ PARTPRUNE_COMBINE_INTERSECT);
+ return NULL;
+ }
+ else if (opsteps != NIL)
+ return linitial(opsteps);
+
+ return NULL;
+}
+
+/*
+ * If the partition key has a collation, then the clause must have the same
+ * input collation. If the partition key is non-collatable, we assume the
+ * collation doesn't matter, because while collation wasn't considered when
+ * performing partitioning, the clause still may have a collation assigned
+ * due to the other input being of a collatable type.
+ *
+ * See also IndexCollMatchesExprColl.
+ */
+#define PartCollMatchesExprColl(partcoll, exprcoll) \
+ ((partcoll) == InvalidOid || (partcoll) == (exprcoll))
+
+/*
+ * match_clause_to_partition_key
+ * Attempt to match the given 'clause' with the specified partition key.
+ *
+ * Return value is:
+ * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
+ * caller should keep trying, because it might match a subsequent key).
+ * Output arguments: none set.
+ *
+ * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
+ * Output arguments: *pc is set to a PartClauseInfo constructed for the
+ * matched clause.
+ *
+ * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
+ * either a "a IS NULL" or "a IS NOT NULL" clause.
+ * Output arguments: *clause_is_not_null is set to false in the former case
+ * true otherwise.
+ *
+ * * PARTCLAUSE_MATCH_STEPS if there is a match.
+ * Output arguments: *clause_steps is set to a list of PartitionPruneStep
+ * generated for the clause.
+ *
+ * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory. This can
+ * only happen if it's a BoolExpr whose arguments are self-contradictory.
+ * Output arguments: none set.
+ *
+ * * PARTCLAUSE_UNSUPPORTED if the clause cannot be used for pruning at all
+ * due to one of its properties, such as argument volatility, even if it may
+ * have been matched with a key.
+ * Output arguments: none set.
+ */
+static PartClauseMatchStatus
+match_clause_to_partition_key(RelOptInfo *rel,
+ GeneratePruningStepsContext *context,
+ Expr *clause, Expr *partkey, int partkeyidx,
+ bool *clause_is_not_null, PartClauseInfo **pc,
+ List **clause_steps)
+{
+ PartitionScheme part_scheme = rel->part_scheme;
+ Expr *expr;
+ Oid partopfamily = part_scheme->partopfamily[partkeyidx],
+ partcoll = part_scheme->partcollation[partkeyidx];
+
+ /*
+ * Recognize specially shaped clauses that match with the Boolean
+ * partition key.
+ */
+ if (match_boolean_partition_clause(partopfamily, clause, partkey, &expr))
+ {
+ PartClauseInfo *partclause;
+
+ partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
+ partclause->keyno = partkeyidx;
+ /* Do pruning with the Boolean equality operator. */
+ partclause->opno = BooleanEqualOperator;
+ partclause->op_is_ne = false;
+ partclause->expr = expr;
+ /* We know that expr is of Boolean type. */
+ partclause->cmpfn = rel->part_scheme->partsupfunc[partkeyidx].fn_oid;
+ partclause->op_strategy = InvalidStrategy;
+
+ *pc = partclause;
+
+ return PARTCLAUSE_MATCH_CLAUSE;
+ }
+ else if (IsA(clause, OpExpr) &&
+ list_length(((OpExpr *) clause)->args) == 2)
+ {
+ OpExpr *opclause = (OpExpr *) clause;
+ Expr *leftop,
+ *rightop;
+ Oid commutator = InvalidOid,
+ negator = InvalidOid;
+ Oid cmpfn;
+ Oid exprtype;
+ bool is_opne_listp = false;
+ PartClauseInfo *partclause;
+
+ leftop = (Expr *) get_leftop(clause);
+ if (IsA(leftop, RelabelType))
+ leftop = ((RelabelType *) leftop)->arg;
+ rightop = (Expr *) get_rightop(clause);
+ if (IsA(rightop, RelabelType))
+ rightop = ((RelabelType *) rightop)->arg;
+
+ /* check if the clause matches this partition key */
+ if (equal(leftop, partkey))
+ expr = rightop;
+ else if (equal(rightop, partkey))
+ {
+ expr = leftop;
+ commutator = get_commutator(opclause->opno);
+
+ /* nothing we can do unless we can swap the operands */
+ if (!OidIsValid(commutator))
+ return PARTCLAUSE_UNSUPPORTED;
+ }
+ else
+ /* clause does not match this partition key, but perhaps next. */
+ return PARTCLAUSE_NOMATCH;
+
+ /*
+ * Partition key also consists of a collation that's specified for it,
+ * so try to match it too. There may be multiple keys with the same
+ * expression but different collations.
+ */
+ if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
+ return PARTCLAUSE_NOMATCH;
+
+ /*
+ * Matched with this key. Now check various properties of the clause
+ * to see if it's sane to use it for pruning. If any of the
+ * properties makes it unsuitable for pruning, then the clause is
+ * useless no matter which key it's matched to.
+ */
+
+ /*
+ * Only allow strict operators. This will guarantee nulls are
+ * filtered.
+ */
+ if (!op_strict(opclause->opno))
+ return PARTCLAUSE_UNSUPPORTED;
+
+ /* We can't use any volatile expressions to prune partitions. */
+ if (contain_volatile_functions((Node *) expr))
+ return PARTCLAUSE_UNSUPPORTED;
+
+ /*
+ * Normally we only bother with operators that are listed as being
+ * part of the partitioning operator family. But we make an exception
+ * in one case -- operators named '<>' are not listed in any operator
+ * family whatsoever, in which case, we try to perform partition
+ * pruning with it only if list partitioning is in use.
+ */
+ if (!op_in_opfamily(opclause->opno, partopfamily))
+ {
+ if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
+ return PARTCLAUSE_UNSUPPORTED;
+
+ /*
+ * To confirm if the operator is really '<>', check if its negator
+ * is a btree equality operator.
+ */
+ negator = get_negator(opclause->opno);
+ if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
+ {
+ Oid lefttype;
+ Oid righttype;
+ int strategy;
+
+ get_op_opfamily_properties(negator, partopfamily, false,
+ &strategy, &lefttype, &righttype);
+
+ if (strategy == BTEqualStrategyNumber)
+ is_opne_listp = true;
+ }
+
+ /* Operator isn't really what we were hoping it'd be. */
+ if (!is_opne_listp)
+ return PARTCLAUSE_UNSUPPORTED;
+ }
+
+ /* Check if we're going to need a cross-type comparison function. */
+ exprtype = exprType((Node *) expr);
+ if (exprtype != part_scheme->partopcintype[partkeyidx])
+ {
+ switch (part_scheme->strategy)
+ {
+ case PARTITION_STRATEGY_LIST:
+ case PARTITION_STRATEGY_RANGE:
+ cmpfn =
+ get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
+ part_scheme->partopcintype[partkeyidx],
+ exprtype, BTORDER_PROC);
+ break;
+
+ case PARTITION_STRATEGY_HASH:
+ cmpfn =
+ get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
+ exprtype, exprtype, HASHEXTENDED_PROC);
+ break;
+
+ default:
+ elog(ERROR, "invalid partition strategy: %c",
+ part_scheme->strategy);
+ break;
+ }
+
+ /* If we couldn't find one, we cannot use this expression. */
+ if (!OidIsValid(cmpfn))
+ return PARTCLAUSE_UNSUPPORTED;
+ }
+ else
+ cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
+
+ partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
+ partclause->keyno = partkeyidx;
+
+ /* For <> operator clauses, pass on the negator. */
+ partclause->op_is_ne = false;
+ partclause->op_strategy = InvalidStrategy;
+
+ if (is_opne_listp)
+ {
+ Assert(OidIsValid(negator));
+ partclause->opno = negator;
+ partclause->op_is_ne = true;
+
+ /*
+ * We already know the strategy in this case, so may as well set
+ * it rather than having to look it up later.
+ */
+ partclause->op_strategy = BTEqualStrategyNumber;
+ }
+ /* And if commuted before matching, pass on the commutator */
+ else if (OidIsValid(commutator))
+ partclause->opno = commutator;
+ else
+ partclause->opno = opclause->opno;
+
+ partclause->expr = expr;
+ partclause->cmpfn = cmpfn;
+
+ *pc = partclause;
+
+ return PARTCLAUSE_MATCH_CLAUSE;
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ Oid saop_op = saop->opno;
+ Oid saop_coll = saop->inputcollid;
+ Expr *leftop = (Expr *) linitial(saop->args),
+ *rightop = (Expr *) lsecond(saop->args);
+ List *elem_exprs,
+ *elem_clauses;
+ ListCell *lc1;
+
+ if (IsA(leftop, RelabelType))
+ leftop = ((RelabelType *) leftop)->arg;
+
+ /* Check it matches this partition key */
+ if (!equal(leftop, partkey) ||
+ !PartCollMatchesExprColl(partcoll, saop->inputcollid))
+ return PARTCLAUSE_NOMATCH;
+
+ /*
+ * Matched with this key. Check various properties of the clause to
+ * see if it can sanely be used for partition pruning.
+ */
+
+ /*
+ * Only allow strict operators. This will guarantee nulls are
+ * filtered.
+ */
+ if (!op_strict(saop->opno))
+ return PARTCLAUSE_UNSUPPORTED;
+
+ /* Useless if the array has any volatile functions. */
+ if (contain_volatile_functions((Node *) rightop))
+ return PARTCLAUSE_UNSUPPORTED;
+
+ /*
+ * In case of NOT IN (..), we get a '<>', which we handle if list
+ * partitioning is in use and we're able to confirm that it's negator
+ * is a btree equality operator belonging to the partitioning operator
+ * family.
+ */
+ if (!op_in_opfamily(saop_op, partopfamily))
+ {
+ Oid negator;
+
+ if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
+ return PARTCLAUSE_UNSUPPORTED;
+
+ negator = get_negator(saop_op);
+ if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
+ {
+ int strategy;
+ Oid lefttype,
+ righttype;
+
+ get_op_opfamily_properties(negator, partopfamily,
+ false, &strategy,
+ &lefttype, &righttype);
+ if (strategy != BTEqualStrategyNumber)
+ return PARTCLAUSE_UNSUPPORTED;
+ }
+ }
+
+ /*
+ * First generate a list of Const nodes, one for each array element
+ * (excepting nulls).
+ */
+ elem_exprs = NIL;
+ if (IsA(rightop, Const))
+ {
+ Const *arr = castNode(Const, rightop);
+ ArrayType *arrval = DatumGetArrayTypeP(arr->constvalue);
+ int16 elemlen;
+ bool elembyval;
+ char elemalign;
+ Datum *elem_values;
+ bool *elem_nulls;
+ int num_elems,
+ i;
+
+ get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
+ &elemlen, &elembyval, &elemalign);
+ deconstruct_array(arrval,
+ ARR_ELEMTYPE(arrval),
+ elemlen, elembyval, elemalign,
+ &elem_values, &elem_nulls,
+ &num_elems);
+ for (i = 0; i < num_elems; i++)
+ {
+ Const *elem_expr;
+
+ /* Only consider non-null values. */
+ if (elem_nulls[i])
+ continue;
+
+ elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
+ arr->constcollid, elemlen,
+ elem_values[i], false, elembyval);
+ elem_exprs = lappend(elem_exprs, elem_expr);
+ }
+ }
+ else
+ {
+ ArrayExpr *arrexpr = castNode(ArrayExpr, rightop);
+
+ /*
+ * For a nested ArrayExpr, we don't know how to get the actual
+ * scalar values out into a flat list, so we give up doing
+ * anything with this ScalarArrayOpExpr.
+ */
+ if (arrexpr->multidims)
+ return PARTCLAUSE_UNSUPPORTED;
+
+ elem_exprs = arrexpr->elements;
+ }
+
+ /*
+ * Now generate a list of clauses, one for each array element, of the
+ * form saop_leftop saop_op elem_expr
+ */
+ elem_clauses = NIL;
+ foreach(lc1, elem_exprs)
+ {
+ Expr *rightop = (Expr *) lfirst(lc1),
+ *elem_clause;
+
+ elem_clause = make_opclause(saop_op, BOOLOID, false,
+ leftop, rightop,
+ InvalidOid, saop_coll);
+ elem_clauses = lappend(elem_clauses, elem_clause);
+ }
+
+ /*
+ * Build a combine step as if for an OR clause or add the clauses to
+ * the end of the list that's being processed currently.
+ */
+ if (saop->useOr && list_length(elem_clauses) > 1)
+ {
+ Expr *orexpr;
+ bool contradictory;
+
+ orexpr = makeBoolExpr(OR_EXPR, elem_clauses, -1);
+ *clause_steps =
+ gen_partprune_steps_internal(context, rel, list_make1(orexpr),
+ &contradictory);
+ if (contradictory)
+ return PARTCLAUSE_MATCH_CONTRADICT;
+
+ Assert(list_length(*clause_steps) == 1);
+ return PARTCLAUSE_MATCH_STEPS;
+ }
+ else
+ {
+ bool contradictory;
+
+ *clause_steps =
+ gen_partprune_steps_internal(context, rel, elem_clauses,
+ &contradictory);
+ if (contradictory)
+ return PARTCLAUSE_MATCH_CONTRADICT;
+ Assert(list_length(*clause_steps) >= 1);
+ return PARTCLAUSE_MATCH_STEPS;
+ }
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *nulltest = (NullTest *) clause;
+ Expr *arg = nulltest->arg;
+
+ if (IsA(arg, RelabelType))
+ arg = ((RelabelType *) arg)->arg;
+
+ /* Does arg match with this partition key column? */
+ if (!equal(arg, partkey))
+ return PARTCLAUSE_NOMATCH;
+
+ *clause_is_not_null = nulltest->nulltesttype == IS_NOT_NULL;
+
+ return PARTCLAUSE_MATCH_NULLNESS;
+ }
+
+ return PARTCLAUSE_UNSUPPORTED;
+}
+
+/*
+ * get_steps_using_prefix
+ * Generate list of PartitionPruneStepOp steps each consisting of given
+ * opstrategy
+ *
+ * To generate steps, step_lastexpr and step_lastcmpfn are appended to
+ * expressions and cmpfns, respectively, extracted from the clauses in
+ * 'prefix'. Actually, since 'prefix' may contain multiple clauses for the
+ * same partition key column, we must generate steps for various combinations
+ * of the clauses of different keys.
+ */
+static List *
+get_steps_using_prefix(GeneratePruningStepsContext *context,
+ StrategyNumber step_opstrategy,
+ bool step_op_is_ne,
+ Expr *step_lastexpr,
+ Oid step_lastcmpfn,
+ int step_lastkeyno,
+ Bitmapset *step_nullkeys,
+ List *prefix)
+{
+ /* Quick exit if there are no values to prefix with. */
+ if (list_length(prefix) == 0)
+ {
+ PartitionPruneStep *step;
+
+ step = gen_prune_step_op(context,
+ step_opstrategy,
+ step_op_is_ne,
+ list_make1(step_lastexpr),
+ list_make1_oid(step_lastcmpfn),
+ step_nullkeys);
+ return list_make1(step);
+ }
+
+ /* Recurse to generate steps for various combinations. */
+ return get_steps_using_prefix_recurse(context,
+ step_opstrategy,
+ step_op_is_ne,
+ step_lastexpr,
+ step_lastcmpfn,
+ step_lastkeyno,
+ step_nullkeys,
+ list_head(prefix),
+ NIL, NIL);
+}
+
+/*
+ * get_steps_using_prefix_recurse
+ * Recursively generate combinations of clauses for different partition
+ * keys and start generating steps upon reaching clauses for the greatest
+ * column that is less than the one for which we're currently generating
+ * steps (that is, step_lastkeyno)
+ *
+ * 'start' is where we should start iterating for the current invocation.
+ * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
+ * we've generated so far from the clauses for the previous part keys.
+ */
+static List *
+get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
+ StrategyNumber step_opstrategy,
+ bool step_op_is_ne,
+ Expr *step_lastexpr,
+ Oid step_lastcmpfn,
+ int step_lastkeyno,
+ Bitmapset *step_nullkeys,
+ ListCell *start,
+ List *step_exprs,
+ List *step_cmpfns)
+{
+ List *result = NIL;
+ ListCell *lc;
+ int cur_keyno;
+
+ /* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
+ check_stack_depth();
+
+ /* Check if we need to recurse. */
+ Assert(start != NULL);
+ cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
+ if (cur_keyno < step_lastkeyno - 1)
+ {
+ PartClauseInfo *pc;
+ ListCell *next_start;
+
+ /*
+ * For each clause with cur_keyno, adds its expr and cmpfn to
+ * step_exprs and step_cmpfns, respectively, and recurse after setting
+ * next_start to the ListCell of the first clause for the next
+ * partition key.
+ */
+ for_each_cell(lc, start)
+ {
+ pc = lfirst(lc);
+
+ if (pc->keyno > cur_keyno)
+ break;
+ }
+ next_start = lc;
+
+ for_each_cell(lc, start)
+ {
+ List *moresteps;
+
+ pc = lfirst(lc);
+ if (pc->keyno == cur_keyno)
+ {
+ /* clean up before starting a new recursion cycle. */
+ if (cur_keyno == 0)
+ {
+ list_free(step_exprs);
+ list_free(step_cmpfns);
+ step_exprs = list_make1(pc->expr);
+ step_cmpfns = list_make1_oid(pc->cmpfn);
+ }
+ else
+ {
+ step_exprs = lappend(step_exprs, pc->expr);
+ step_cmpfns = lappend_oid(step_cmpfns, pc->cmpfn);
+ }
+ }
+ else
+ {
+ Assert(pc->keyno > cur_keyno);
+ break;
+ }
+
+ moresteps = get_steps_using_prefix_recurse(context,
+ step_opstrategy,
+ step_op_is_ne,
+ step_lastexpr,
+ step_lastcmpfn,
+ step_lastkeyno,
+ step_nullkeys,
+ next_start,
+ step_exprs,
+ step_cmpfns);
+ result = list_concat(result, moresteps);
+ }
+ }
+ else
+ {
+ /*
+ * End the current recursion cycle and start generating steps, one for
+ * each clause with cur_keyno, which is all clauses from here onward
+ * till the end of the list.
+ */
+ Assert(list_length(step_exprs) == cur_keyno);
+ for_each_cell(lc, start)
+ {
+ PartClauseInfo *pc = lfirst(lc);
+ PartitionPruneStep *step;
+ List *step_exprs1,
+ *step_cmpfns1;
+
+ Assert(pc->keyno == cur_keyno);
+
+ /* Leave the original step_exprs unmodified. */
+ step_exprs1 = list_copy(step_exprs);
+ step_exprs1 = lappend(step_exprs1, pc->expr);
+ step_exprs1 = lappend(step_exprs1, step_lastexpr);
+
+ /* Leave the original step_cmpfns unmodified. */
+ step_cmpfns1 = list_copy(step_cmpfns);
+ step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
+ step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);
+
+ step = gen_prune_step_op(context,
+ step_opstrategy, step_op_is_ne,
+ step_exprs1, step_cmpfns1,
+ step_nullkeys);
+ result = lappend(result, step);
+ }
+ }
+
+ return result;
+}
+
+/*
+ * get_matching_hash_bounds
+ * Determine offset of the hash bound matching the specified values,
+ * considering that all the non-null values come from clauses containing
+ * a compatible hash equality operator and any keys that are null come
+ * from an IS NULL clause.
+ *
+ * Generally this function will return a single matching bound offset,
+ * although if a partition has not been setup for a given modulus then we may
+ * return no matches. If the number of clauses found don't cover the entire
+ * partition key, then we'll need to return all offsets.
+ *
+ * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
+ *
+ * 'values' contains Datums indexed by the partition key to use for pruning.
+ *
+ * 'nvalues', the number of Datums in the 'values' array.
+ *
+ * 'partsupfunc' contains partition hashing functions that can produce correct
+ * hash for the type of the values contained in 'values'.
+ *
+ * 'nullkeys' is the set of partition keys that are null.
+ */
+static PruneStepResult *
+get_matching_hash_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum *values, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys)
+{
+ PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
+ PartitionBoundInfo boundinfo = context->boundinfo;
+ int *partindices = boundinfo->indexes;
+ int partnatts = context->partnatts;
+ bool isnull[PARTITION_MAX_KEYS];
+ int i;
+ uint64 rowHash;
+ int greatest_modulus;
+
+ Assert(context->strategy == PARTITION_STRATEGY_HASH);
+
+ /*
+ * For hash partitioning we can only perform pruning based on equality
+ * clauses to the partition key or IS NULL clauses. We also can only
+ * prune if we got values for all keys.
+ */
+ if (nvalues + bms_num_members(nullkeys) == partnatts)
+ {
+ /*
+ * If there are any values, they must have come from clauses
+ * containing an equality operator compatible with hash partitioning.
+ */
+ Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);
+
+ for (i = 0; i < partnatts; i++)
+ isnull[i] = bms_is_member(i, nullkeys);
+
+ greatest_modulus = get_hash_partition_greatest_modulus(boundinfo);
+ rowHash = compute_hash_value(partnatts, partsupfunc, values, isnull);
+
+ if (partindices[rowHash % greatest_modulus] >= 0)
+ result->bound_offsets =
+ bms_make_singleton(rowHash % greatest_modulus);
+ }
+ else
+ result->bound_offsets = bms_add_range(NULL, 0,
+ boundinfo->ndatums - 1);
+
+ /*
+ * There is neither a special hash null partition or the default hash
+ * partition.
+ */
+ result->scan_null = result->scan_default = false;
+
+ return result;
+}
+
+/*
+ * get_matching_list_bounds
+ * Determine the offsets of list bounds matching the specified value,
+ * according to the semantics of the given operator strategy
+ * 'opstrategy' if non-zero must be a btree strategy number.
+ *
+ * 'value' contains the value to use for pruning.
+ *
+ * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
+ *
+ * 'partsupfunc' contains the list partitioning comparison function to be used
+ * to perform partition_list_bsearch
+ *
+ * 'nullkeys' is the set of partition keys that are null.
+ */
+static PruneStepResult *
+get_matching_list_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum value, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys)
+{
+ PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
+ PartitionBoundInfo boundinfo = context->boundinfo;
+ int off,
+ minoff,
+ maxoff;
+ bool is_equal;
+ bool inclusive = false;
+ Oid *partcollation = context->partcollation;
+
+ Assert(context->strategy == PARTITION_STRATEGY_LIST);
+ Assert(context->partnatts == 1);
+
+ result->scan_null = result->scan_default = false;
+
+ if (!bms_is_empty(nullkeys))
+ {
+ /*
+ * Nulls may exist in only one partition - the partition whose
+ * accepted set of values includes null or the default partition if
+ * the former doesn't exist.
+ */
+ if (partition_bound_accepts_nulls(boundinfo))
+ result->scan_null = true;
+ else
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+ }
+
+ /*
+ * If there are no datums to compare keys with, but there are partitions,
+ * just return the default partition if one exists.
+ */
+ if (boundinfo->ndatums == 0)
+ {
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+ }
+
+ minoff = 0;
+ maxoff = boundinfo->ndatums - 1;
+
+ /*
+ * If there are no values to compare with the datums in boundinfo, it
+ * means the caller asked for partitions for all non-null datums. Add
+ * indexes of *all* partitions, including the default if any.
+ */
+ if (nvalues == 0)
+ {
+ result->bound_offsets = bms_add_range(NULL, 0,
+ boundinfo->ndatums - 1);
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+ }
+
+ /* Special case handling of values coming from a <> operator clause. */
+ if (opstrategy == InvalidStrategy)
+ {
+ /*
+ * First match to all bounds. We'll remove any matching datums below.
+ */
+ result->bound_offsets = bms_add_range(NULL, 0,
+ boundinfo->ndatums - 1);
+
+ off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
+ value, &is_equal);
+ if (off >= 0 && is_equal)
+ {
+
+ /* We have a match. Remove from the result. */
+ Assert(boundinfo->indexes[off] >= 0);
+ result->bound_offsets = bms_del_member(result->bound_offsets,
+ off);
+ }
+
+ /* Always include the default partition if any. */
+ result->scan_default = partition_bound_has_default(boundinfo);
+
+ return result;
+ }
+
+ /*
+ * With range queries, always include the default list partition, because
+ * list partitions divide the key space in a discontinuous manner, not all
+ * values in the given range will have a partition assigned. This may not
+ * technically be true for some data types (e.g. integer types), however,
+ * we currently lack any sort of infrastructure to provide us with proofs
+ * that would allow us to do anything smarter here.
+ */
+ if (opstrategy != BTEqualStrategyNumber)
+ result->scan_default = partition_bound_has_default(boundinfo);
+
+ switch (opstrategy)
+ {
+ case BTEqualStrategyNumber:
+ off = partition_list_bsearch(partsupfunc,
+ partcollation,
+ boundinfo, value,
+ &is_equal);
+ if (off >= 0 && is_equal)
+ {
+ Assert(boundinfo->indexes[off] >= 0);
+ result->bound_offsets = bms_make_singleton(off);
+ }
+ else
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+
+ case BTGreaterEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTGreaterStrategyNumber:
+ off = partition_list_bsearch(partsupfunc,
+ partcollation,
+ boundinfo, value,
+ &is_equal);
+ if (off >= 0)
+ {
+ /* We don't want the matched datum to be in the result. */
+ if (!is_equal || !inclusive)
+ off++;
+ }
+ else
+ {
+ /*
+ * This case means all partition bounds are greater, which in
+ * turn means that all partitions satisfy this key.
+ */
+ off = 0;
+ }
+
+ /*
+ * off is greater than the numbers of datums we have partitions
+ * for. The only possible partition that could contain a match is
+ * the default partition, but we must've set context->scan_default
+ * above anyway if one exists.
+ */
+ if (off > boundinfo->ndatums - 1)
+ return result;
+
+ minoff = off;
+ break;
+
+ case BTLessEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTLessStrategyNumber:
+ off = partition_list_bsearch(partsupfunc,
+ partcollation,
+ boundinfo, value,
+ &is_equal);
+ if (off >= 0 && is_equal && !inclusive)
+ off--;
+
+ /*
+ * off is smaller than the datums of all non-default partitions.
+ * The only possible partition that could contain a match is the
+ * default partition, but we must've set context->scan_default
+ * above anyway if one exists.
+ */
+ if (off < 0)
+ return result;
+
+ maxoff = off;
+ break;
+
+ default:
+ elog(ERROR, "invalid strategy number %d", opstrategy);
+ break;
+ }
+
+ result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
+ return result;
+}
+
+
+/*
+ * get_matching_range_datums
+ * Determine the offsets of range bounds matching the specified values,
+ * according to the semantics of the given operator strategy
+ *
+ * Each datum whose offset is in result is to be treated as the upper bound of
+ * the partition that will contain the desired values.
+ *
+ * If default partition needs to be scanned for given values, set scan_default
+ * in result if present.
+ *
+ * 'opstrategy' if non-zero must be a btree strategy number.
+ *
+ * 'values' contains Datums indexed by the partition key to use for pruning.
+ *
+ * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
+ *
+ * 'partsupfunc' contains the range partitioning comparison functions to be
+ * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
+ * using.
+ *
+ * 'nullkeys' is the set of partition keys that are null.
+ */
+static PruneStepResult *
+get_matching_range_bounds(PartitionPruneContext *context,
+ StrategyNumber opstrategy, Datum *values, int nvalues,
+ FmgrInfo *partsupfunc, Bitmapset *nullkeys)
+{
+ PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
+ PartitionBoundInfo boundinfo = context->boundinfo;
+ Oid *partcollation = context->partcollation;
+ int partnatts = context->partnatts;
+ int *partindices = boundinfo->indexes;
+ int off,
+ minoff,
+ maxoff,
+ i;
+ bool is_equal;
+ bool inclusive = false;
+
+ Assert(context->strategy == PARTITION_STRATEGY_RANGE);
+ Assert(nvalues <= partnatts);
+
+ result->scan_null = result->scan_default = false;
+
+ /*
+ * If there are no datums to compare keys with, or if we got an IS NULL
+ * clause just return the default partition, if it exists.
+ */
+ if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
+ {
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+ }
+
+ minoff = 0;
+ maxoff = boundinfo->ndatums;
+
+ /*
+ * If there are no values to compare with the datums in boundinfo, it
+ * means the caller asked for partitions for all non-null datums. Add
+ * indexes of *all* partitions, including the default partition if one
+ * exists.
+ */
+ if (nvalues == 0)
+ {
+ if (partindices[minoff] < 0)
+ minoff++;
+ if (partindices[maxoff] < 0)
+ maxoff--;
+
+ result->scan_default = partition_bound_has_default(boundinfo);
+ result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
+
+ return result;
+ }
+
+ /*
+ * If the query does not constrain all key columns, we'll need to scan the
+ * the default partition, if any.
+ */
+ if (nvalues < partnatts)
+ result->scan_default = partition_bound_has_default(boundinfo);
+
+ switch (opstrategy)
+ {
+ case BTEqualStrategyNumber:
+ /* Look for the smallest bound that is = lookup value. */
+ off = partition_range_datum_bsearch(partsupfunc,
+ partcollation,
+ boundinfo,
+ nvalues, values,
+ &is_equal);
+
+ if (off >= 0 && is_equal)
+ {
+ if (nvalues == partnatts)
+ {
+ /* There can only be zero or one matching partition. */
+ if (partindices[off + 1] >= 0)
+ result->bound_offsets = bms_make_singleton(off + 1);
+ else
+ result->scan_default =
+ partition_bound_has_default(boundinfo);
+ return result;
+ }
+ else
+ {
+ int saved_off = off;
+
+ /*
+ * Since the lookup value contains only a prefix of keys,
+ * we must find other bounds that may also match the
+ * prefix. partition_range_datum_bsearch() returns the
+ * offset of one of them, find others by checking adjacent
+ * bounds.
+ */
+
+ /*
+ * First find greatest bound that's smaller than the
+ * lookup value.
+ */
+ while (off >= 1)
+ {
+ int32 cmpval;
+
+ cmpval =
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off - 1],
+ boundinfo->kind[off - 1],
+ values, nvalues);
+ if (cmpval != 0)
+ break;
+ off--;
+ }
+
+ Assert(0 ==
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off],
+ boundinfo->kind[off],
+ values, nvalues));
+
+ /*
+ * We can treat 'off' as the offset of the smallest bound
+ * to be included in the result, if we know it is the
+ * upper bound of the partition in which the lookup value
+ * could possibly exist. One case it couldn't is if the
+ * bound, or precisely the matched portion of its prefix,
+ * is not inclusive.
+ */
+ if (boundinfo->kind[off][nvalues] ==
+ PARTITION_RANGE_DATUM_MINVALUE)
+ off++;
+
+ minoff = off;
+
+ /*
+ * Now find smallest bound that's greater than the lookup
+ * value.
+ */
+ off = saved_off;
+ while (off < boundinfo->ndatums - 1)
+ {
+ int32 cmpval;
+
+ cmpval = partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off + 1],
+ boundinfo->kind[off + 1],
+ values, nvalues);
+ if (cmpval != 0)
+ break;
+ off++;
+ }
+
+ Assert(0 ==
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off],
+ boundinfo->kind[off],
+ values, nvalues));
+
+ /*
+ * off + 1, then would be the offset of the greatest bound
+ * to be included in the result.
+ */
+ maxoff = off + 1;
+ }
+
+ /*
+ * Skip if minoff/maxoff are actually the upper bound of a
+ * un-assigned portion of values.
+ */
+ if (partindices[minoff] < 0 && minoff < boundinfo->ndatums)
+ minoff++;
+ if (partindices[maxoff] < 0 && maxoff >= 1)
+ maxoff--;
+
+ /*
+ * There may exist a range of values unassigned to any
+ * non-default partition between the datums at minoff and
+ * maxoff. Add the default partition in that case.
+ */
+ if (partition_bound_has_default(boundinfo))
+ {
+ for (i = minoff; i <= maxoff; i++)
+ {
+ if (partindices[i] < 0)
+ {
+ result->scan_default = true;
+ break;
+ }
+ }
+ }
+
+ Assert(minoff >= 0 && maxoff >= 0);
+ result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
+ }
+ else if (off >= 0) /* !is_equal */
+ {
+ /*
+ * The lookup value falls in the range between some bounds in
+ * boundinfo. 'off' would be the offset of the greatest bound
+ * that is <= lookup value, so add off + 1 to the result
+ * instead as the offset of the upper bound of the only
+ * partition that may contain the lookup value.
+ */
+ if (partindices[off + 1] >= 0)
+ result->bound_offsets = bms_make_singleton(off + 1);
+ else
+ result->scan_default =
+ partition_bound_has_default(boundinfo);
+ }
+ else
+ {
+ /*
+ * off < 0: the lookup value is smaller than all bounds, so
+ * only the default partition qualifies, if there is one.
+ */
+ result->scan_default = partition_bound_has_default(boundinfo);
+ }
+
+ return result;
+
+ case BTGreaterEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTGreaterStrategyNumber:
+
+ /*
+ * Look for the smallest bound that is > or >= lookup value and
+ * set minoff to its offset.
+ */
+ off = partition_range_datum_bsearch(partsupfunc,
+ partcollation,
+ boundinfo,
+ nvalues, values,
+ &is_equal);
+ if (off < 0)
+ {
+ /*
+ * All bounds are greater than the lookup value, so include
+ * all of them in the result.
+ */
+ minoff = 0;
+ }
+ else
+ {
+ if (is_equal && nvalues < partnatts)
+ {
+ /*
+ * Since the lookup value contains only a prefix of keys,
+ * we must find other bounds that may also match the
+ * prefix. partition_range_datum_bsearch() returns the
+ * offset of one of them, find others by checking adjacent
+ * bounds.
+ *
+ * Based on whether the lookup values are inclusive or
+ * not, we must either include the indexes of all such
+ * bounds in the result (that is, set minoff to the index
+ * of smallest such bound) or find the smallest one that's
+ * greater than the lookup values and set minoff to that.
+ */
+ while (off >= 1 && off < boundinfo->ndatums - 1)
+ {
+ int32 cmpval;
+ int nextoff;
+
+ nextoff = inclusive ? off - 1 : off + 1;
+ cmpval =
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[nextoff],
+ boundinfo->kind[nextoff],
+ values, nvalues);
+ if (cmpval != 0)
+ break;
+
+ off = nextoff;
+ }
+
+ Assert(0 ==
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off],
+ boundinfo->kind[off],
+ values, nvalues));
+
+ minoff = inclusive ? off : off + 1;
+ }
+
+ /*
+ * lookup value falls in the range between some bounds in
+ * boundinfo. off would be the offset of the greatest bound
+ * that is <= lookup value, so add off + 1 to the result
+ * instead as the offset of the upper bound of the smallest
+ * partition that may contain the lookup value.
+ */
+ else
+ minoff = off + 1;
+ }
+ break;
+
+ case BTLessEqualStrategyNumber:
+ inclusive = true;
+ /* fall through */
+ case BTLessStrategyNumber:
+
+ /*
+ * Look for the greatest bound that is < or <= lookup value and
+ * set minoff to its offset.
+ */
+ off = partition_range_datum_bsearch(partsupfunc,
+ partcollation,
+ boundinfo,
+ nvalues, values,
+ &is_equal);
+ if (off < 0)
+ {
+ /*
+ * All bounds are greater than the key, so we could only
+ * expect to find the lookup key in the default partition.
+ */
+ result->scan_default = partition_bound_has_default(boundinfo);
+ return result;
+ }
+ else
+ {
+ /*
+ * See the comment above.
+ */
+ if (is_equal && nvalues < partnatts)
+ {
+ while (off >= 1 && off < boundinfo->ndatums - 1)
+ {
+ int32 cmpval;
+ int nextoff;
+
+ nextoff = inclusive ? off + 1 : off - 1;
+ cmpval = partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[nextoff],
+ boundinfo->kind[nextoff],
+ values, nvalues);
+ if (cmpval != 0)
+ break;
+
+ off = nextoff;
+ }
+
+ Assert(0 ==
+ partition_rbound_datum_cmp(partsupfunc,
+ partcollation,
+ boundinfo->datums[off],
+ boundinfo->kind[off],
+ values, nvalues));
+
+ maxoff = inclusive ? off + 1 : off;
+ }
+
+ /*
+ * The lookup value falls in the range between some bounds in
+ * boundinfo. 'off' would be the offset of the greatest bound
+ * that is <= lookup value, so add off + 1 to the result
+ * instead as the offset of the upper bound of the greatest
+ * partition that may contain lookup value. If the lookup
+ * value had exactly matched the bound, but it isn't
+ * inclusive, no need add the adjacent partition.
+ */
+ else if (!is_equal || inclusive)
+ maxoff = off + 1;
+ else
+ maxoff = off;
+ }
+ break;
+
+ default:
+ elog(ERROR, "invalid strategy number %d", opstrategy);
+ break;
+ }
+
+ /*
+ * Skip a gap and when doing so, check if the bound contains a finite
+ * value to decide if we need to add the default partition. If it's an
+ * infinite bound, we need not add the default partition, as having an
+ * infinite bound means the partition in question catches any values that
+ * would otherwise be in the default partition.
+ */
+ if (partindices[minoff] < 0)
+ {
+ int lastkey = nvalues - 1;
+
+ if (minoff >= 0 &&
+ minoff < boundinfo->ndatums &&
+ boundinfo->kind[minoff][lastkey] ==
+ PARTITION_RANGE_DATUM_VALUE)
+ result->scan_default = partition_bound_has_default(boundinfo);
+
+ minoff++;
+ }
+
+ /*
+ * Skip a gap. See the above comment about how we decide whether or or
+ * not to scan the default partition based whether the datum that will
+ * become the maximum datum is finite or not.
+ */
+ if (maxoff >= 1 && partindices[maxoff] < 0)
+ {
+ int lastkey = nvalues - 1;
+
+ if (maxoff >= 0 &&
+ maxoff <= boundinfo->ndatums &&
+ boundinfo->kind[maxoff - 1][lastkey] ==
+ PARTITION_RANGE_DATUM_VALUE)
+ result->scan_default = partition_bound_has_default(boundinfo);
+
+ maxoff--;
+ }
+
+ if (partition_bound_has_default(boundinfo))
+ {
+ /*
+ * There may exist a range of values unassigned to any non-default
+ * partition between the datums at minoff and maxoff. Add the default
+ * partition in that case.
+ */
+ for (i = minoff; i <= maxoff; i++)
+ {
+ if (partindices[i] < 0)
+ {
+ result->scan_default = true;
+ break;
+ }
+ }
+ }
+
+ Assert(minoff >= 0 && maxoff >= 0);
+ if (minoff <= maxoff)
+ result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
+
+ return result;
+}
+
+/*
+ * perform_pruning_base_step
+ * Determines the indexes of datums that satisfy conditions specified in
+ * 'opstep'.
+ *
+ * Result also contains whether special null-accepting and/or default
+ * partition need to be scanned.
+ */
+static PruneStepResult *
+perform_pruning_base_step(PartitionPruneContext *context,
+ PartitionPruneStepOp *opstep)
+{
+ ListCell *lc1,
+ *lc2;
+ int keyno,
+ nvalues;
+ Datum values[PARTITION_MAX_KEYS];
+ FmgrInfo partsupfunc[PARTITION_MAX_KEYS];
+
+ /*
+ * There better be the same number of expressions and compare functions.
+ */
+ Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));
+
+ nvalues = 0;
+ lc1 = list_head(opstep->exprs);
+ lc2 = list_head(opstep->cmpfns);
+
+ /*
+ * Generate the partition lookup key that will be used by one of the
+ * get_matching_*_bounds functions called below.
+ */
+ for (keyno = 0; keyno < context->partnatts; keyno++)
+ {
+ /*
+ * For hash partitioning, it is possible that values of some keys are
+ * not provided in operator clauses, but instead the planner found
+ * that they appeared in a IS NULL clause.
+ */
+ if (bms_is_member(keyno, opstep->nullkeys))
+ continue;
+
+ /*
+ * For range partitioning, we must only perform pruning with values
+ * for either all partition keys or a prefix thereof.
+ */
+ if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
+ break;
+
+ if (lc1 != NULL)
+ {
+ Expr *expr;
+ Datum datum;
+
+ expr = lfirst(lc1);
+ if (partkey_datum_from_expr(context, expr, &datum))
+ {
+ Oid cmpfn;
+
+ /*
+ * If we're going to need a different comparison function than
+ * the one cached in the PartitionKey, we'll need to look up
+ * the FmgrInfo.
+ */
+ cmpfn = lfirst_oid(lc2);
+ Assert(OidIsValid(cmpfn));
+ if (cmpfn != context->partsupfunc[keyno].fn_oid)
+ fmgr_info(cmpfn, &partsupfunc[keyno]);
+ else
+ fmgr_info_copy(&partsupfunc[keyno],
+ &context->partsupfunc[keyno],
+ CurrentMemoryContext);
+
+ values[keyno] = datum;
+ nvalues++;
+ }
+
+ lc1 = lnext(lc1);
+ lc2 = lnext(lc2);
+ }
+ }
+
+ switch (context->strategy)
+ {
+ case PARTITION_STRATEGY_HASH:
+ return get_matching_hash_bounds(context,
+ opstep->opstrategy,
+ values, nvalues,
+ partsupfunc,
+ opstep->nullkeys);
+
+ case PARTITION_STRATEGY_LIST:
+ return get_matching_list_bounds(context,
+ opstep->opstrategy,
+ values[0], nvalues,
+ &partsupfunc[0],
+ opstep->nullkeys);
+
+ case PARTITION_STRATEGY_RANGE:
+ return get_matching_range_bounds(context,
+ opstep->opstrategy,
+ values, nvalues,
+ partsupfunc,
+ opstep->nullkeys);
+
+ default:
+ elog(ERROR, "unexpected partition strategy: %d",
+ (int) context->strategy);
+ break;
+ }
+
+ return NULL;
+}
+
+/*
+ * perform_pruning_combine_step
+ * Determines the indexes of datums obtained by combining those given
+ * by the steps identified by cstep->source_stepids using the specified
+ * combination method
+ *
+ * Since cstep may refer to the result of earlier steps, we also receive
+ * step_results here.
+ */
+static PruneStepResult *
+perform_pruning_combine_step(PartitionPruneContext *context,
+ PartitionPruneStepCombine *cstep,
+ PruneStepResult **step_results)
+{
+ ListCell *lc1;
+ PruneStepResult *result = NULL;
+ bool firststep;
+
+ /*
+ * A combine step without any source steps is an indication to not perform
+ * any partition pruning, we just return all partitions.
+ */
+ result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
+ if (list_length(cstep->source_stepids) == 0)
+ {
+ PartitionBoundInfo boundinfo = context->boundinfo;
+
+ result->bound_offsets = bms_add_range(NULL, 0, boundinfo->ndatums - 1);
+ result->scan_default = partition_bound_has_default(boundinfo);
+ result->scan_null = partition_bound_accepts_nulls(boundinfo);
+ return result;
+ }
+
+ switch (cstep->combineOp)
+ {
+ case PARTPRUNE_COMBINE_UNION:
+ foreach(lc1, cstep->source_stepids)
+ {
+ int step_id = lfirst_int(lc1);
+ PruneStepResult *step_result;
+
+ /*
+ * step_results[step_id] must contain a valid result, which is
+ * confirmed by the fact that cstep's step_id is greater than
+ * step_id and the fact that results of the individual steps
+ * are evaluated in sequence of their step_ids.
+ */
+ if (step_id >= cstep->step.step_id)
+ elog(ERROR, "invalid pruning combine step argument");
+ step_result = step_results[step_id];
+ Assert(step_result != NULL);
+
+ /* Record any additional datum indexes from this step */
+ result->bound_offsets = bms_add_members(result->bound_offsets,
+ step_result->bound_offsets);
+
+ /* Update whether to scan null and default partitions. */
+ if (!result->scan_null)
+ result->scan_null = step_result->scan_null;
+ if (!result->scan_default)
+ result->scan_default = step_result->scan_default;
+ }
+ break;
+
+ case PARTPRUNE_COMBINE_INTERSECT:
+ firststep = true;
+ foreach(lc1, cstep->source_stepids)
+ {
+ int step_id = lfirst_int(lc1);
+ PruneStepResult *step_result;
+
+ if (step_id >= cstep->step.step_id)
+ elog(ERROR, "invalid pruning combine step argument");
+ step_result = step_results[step_id];
+ Assert(step_result != NULL);
+
+ if (firststep)
+ {
+ /* Copy step's result the first time. */
+ result->bound_offsets = step_result->bound_offsets;
+ result->scan_null = step_result->scan_null;
+ result->scan_default = step_result->scan_default;
+ firststep = false;
+ }
+ else
+ {
+ /* Record datum indexes common to both steps */
+ result->bound_offsets =
+ bms_int_members(result->bound_offsets,
+ step_result->bound_offsets);
+
+ /* Update whether to scan null and default partitions. */
+ if (result->scan_null)
+ result->scan_null = step_result->scan_null;
+ if (result->scan_default)
+ result->scan_default = step_result->scan_default;
+ }
+ }
+ break;
+
+ default:
+ elog(ERROR, "invalid pruning combine op: %d",
+ (int) cstep->combineOp);
+ }
+
+ return result;
+}
+
+/*
+ * match_boolean_partition_clause
+ *
+ * Sets *outconst to a Const containing true or false value and returns true if
+ * we're able to match the clause to the partition key as specially-shaped
+ * Boolean clause. Returns false otherwise with *outconst set to NULL.
+ */
+static bool
+match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
+ Expr **outconst)
+{
+ Expr *leftop;
+
+ *outconst = NULL;
+
+ if (!IsBooleanOpfamily(partopfamily))
+ return false;
+
+ if (IsA(clause, BooleanTest))
+ {
+ BooleanTest *btest = (BooleanTest *) clause;
+
+ /* Only IS [NOT] TRUE/FALSE are any good to us */
+ if (btest->booltesttype == IS_UNKNOWN ||
+ btest->booltesttype == IS_NOT_UNKNOWN)
+ return false;
+
+ leftop = btest->arg;
+ if (IsA(leftop, RelabelType))
+ leftop = ((RelabelType *) leftop)->arg;
+
+ if (equal(leftop, partkey))
+ *outconst = (btest->booltesttype == IS_TRUE ||
+ btest->booltesttype == IS_NOT_FALSE)
+ ? (Expr *) makeBoolConst(true, false)
+ : (Expr *) makeBoolConst(false, false);
+
+ if (*outconst)
+ return true;
+ }
+ else
+ {
+ bool is_not_clause = not_clause((Node *) clause);
+
+ leftop = is_not_clause ? get_notclausearg(clause) : clause;
+
+ if (IsA(leftop, RelabelType))
+ leftop = ((RelabelType *) leftop)->arg;
+
+ /* Compare to the partition key, and make up a clause ... */
+ if (equal(leftop, partkey))
+ *outconst = is_not_clause ?
+ (Expr *) makeBoolConst(false, false) :
+ (Expr *) makeBoolConst(true, false);
+ else if (equal(negate_clause((Node *) leftop), partkey))
+ *outconst = (Expr *) makeBoolConst(false, false);
+
+ if (*outconst)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * partkey_datum_from_expr
+ * Evaluate 'expr', set *value to the resulting Datum. Return true if
+ * evaluation was possible, otherwise false.
+ */
+static bool
+partkey_datum_from_expr(PartitionPruneContext *context,
+ Expr *expr, Datum *value)
+{
+ switch (nodeTag(expr))
+ {
+ case T_Const:
+ *value = ((Const *) expr)->constvalue;
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
(3 rows)
explain (costs off) select * from rlp where a <= 1;
- QUERY PLAN
----------------------------------------
+ QUERY PLAN
+--------------------------
Append
-> Seq Scan on rlp1
Filter: (a <= 1)
-> Seq Scan on rlp2
Filter: (a <= 1)
- -> Seq Scan on rlp_default_default
- Filter: (a <= 1)
-(7 rows)
+(5 rows)
explain (costs off) select * from rlp where a = 1;
QUERY PLAN
Filter: (a = '1'::bigint)
(3 rows)
-explain (costs off) select * from rlp where a = 1::numeric; /* only null can be pruned */
+explain (costs off) select * from rlp where a = 1::numeric; /* no pruning */
QUERY PLAN
-----------------------------------------------
Append
Filter: ((a)::numeric = '1'::numeric)
-> Seq Scan on rlp_default_30
Filter: ((a)::numeric = '1'::numeric)
+ -> Seq Scan on rlp_default_null
+ Filter: ((a)::numeric = '1'::numeric)
-> Seq Scan on rlp_default_default
Filter: ((a)::numeric = '1'::numeric)
-(29 rows)
+(31 rows)
explain (costs off) select * from rlp where a <= 10;
QUERY PLAN
Filter: ((a > 20) AND (a < 27))
-> Seq Scan on rlp4_default
Filter: ((a > 20) AND (a < 27))
-(7 rows)
+ -> Seq Scan on rlp_default_default
+ Filter: ((a > 20) AND (a < 27))
+(9 rows)
explain (costs off) select * from rlp where a = 29;
QUERY PLAN
Filter: ((c < 8) AND (a = 1) AND (abs(b) = 1))
-> Seq Scan on mc3p1
Filter: ((c < 8) AND (a = 1) AND (abs(b) = 1))
- -> Seq Scan on mc3p_default
- Filter: ((c < 8) AND (a = 1) AND (abs(b) = 1))
-(7 rows)
+(5 rows)
explain (costs off) select * from mc3p where a = 10 and abs(b) between 5 and 35;
QUERY PLAN
Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
-> Seq Scan on mc3p2
Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
+ -> Seq Scan on mc3p3
+ Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
-> Seq Scan on mc3p4
Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
-> Seq Scan on mc3p5
Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
-> Seq Scan on mc3p_default
Filter: ((a = 1) OR (abs(b) = 1) OR (c = 1))
-(17 rows)
+(19 rows)
explain (costs off) select * from mc3p where (a = 1 and abs(b) = 1) or (a = 10 and abs(b) = 10);
QUERY PLAN
(5 rows)
explain (costs off) select * from boolpart where a = false;
- QUERY PLAN
-------------------------------------
+ QUERY PLAN
+------------------------------
Append
-> Seq Scan on boolpart_f
Filter: (NOT a)
- -> Seq Scan on boolpart_default
- Filter: (NOT a)
-(5 rows)
+(3 rows)
explain (costs off) select * from boolpart where not a = false;
- QUERY PLAN
-------------------------------------
+ QUERY PLAN
+------------------------------
Append
-> Seq Scan on boolpart_t
Filter: a
- -> Seq Scan on boolpart_default
- Filter: a
-(5 rows)
+(3 rows)
explain (costs off) select * from boolpart where a is true or a is not true;
QUERY PLAN
Filter: ((a IS TRUE) OR (a IS NOT TRUE))
-> Seq Scan on boolpart_t
Filter: ((a IS TRUE) OR (a IS NOT TRUE))
- -> Seq Scan on boolpart_default
- Filter: ((a IS TRUE) OR (a IS NOT TRUE))
-(7 rows)
+(5 rows)
explain (costs off) select * from boolpart where a is not true;
- QUERY PLAN
-------------------------------------
+ QUERY PLAN
+---------------------------------
Append
-> Seq Scan on boolpart_f
Filter: (a IS NOT TRUE)
- -> Seq Scan on boolpart_t
- Filter: (a IS NOT TRUE)
- -> Seq Scan on boolpart_default
- Filter: (a IS NOT TRUE)
-(7 rows)
+(3 rows)
explain (costs off) select * from boolpart where a is not true and a is not false;
- QUERY PLAN
---------------------------------------------------------
- Append
- -> Seq Scan on boolpart_f
- Filter: ((a IS NOT TRUE) AND (a IS NOT FALSE))
- -> Seq Scan on boolpart_t
- Filter: ((a IS NOT TRUE) AND (a IS NOT FALSE))
- -> Seq Scan on boolpart_default
- Filter: ((a IS NOT TRUE) AND (a IS NOT FALSE))
-(7 rows)
+ QUERY PLAN
+--------------------------
+ Result
+ One-Time Filter: false
+(2 rows)
explain (costs off) select * from boolpart where a is unknown;
QUERY PLAN
Filter: (a IS NOT UNKNOWN)
(7 rows)
-drop table lp, coll_pruning, rlp, mc3p, mc2p, boolpart;
+--
+-- some more cases
+--
+--
+-- pruning for partitioned table appearing inside a sub-query
+--
+-- pruning won't work for mc3p, because some keys are Params
+explain (costs off) select * from mc2p t1, lateral (select count(*) from mc3p t2 where t2.a = t1.b and abs(t2.b) = 1 and t2.c = 1) s where t1.a = 1;
+ QUERY PLAN
+-----------------------------------------------------------------------
+ Nested Loop
+ -> Append
+ -> Seq Scan on mc2p1 t1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p2 t1_1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p_default t1_2
+ Filter: (a = 1)
+ -> Aggregate
+ -> Append
+ -> Seq Scan on mc3p0 t2
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p1 t2_1
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p2 t2_2
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p3 t2_3
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p4 t2_4
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p5 t2_5
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p6 t2_6
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p7 t2_7
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p_default t2_8
+ Filter: ((a = t1.b) AND (c = 1) AND (abs(b) = 1))
+(28 rows)
+
+-- pruning should work fine, because values for a prefix of keys (a, b) are
+-- available
+explain (costs off) select * from mc2p t1, lateral (select count(*) from mc3p t2 where t2.c = t1.b and abs(t2.b) = 1 and t2.a = 1) s where t1.a = 1;
+ QUERY PLAN
+-----------------------------------------------------------------------
+ Nested Loop
+ -> Append
+ -> Seq Scan on mc2p1 t1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p2 t1_1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p_default t1_2
+ Filter: (a = 1)
+ -> Aggregate
+ -> Append
+ -> Seq Scan on mc3p0 t2
+ Filter: ((c = t1.b) AND (a = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p1 t2_1
+ Filter: ((c = t1.b) AND (a = 1) AND (abs(b) = 1))
+ -> Seq Scan on mc3p_default t2_2
+ Filter: ((c = t1.b) AND (a = 1) AND (abs(b) = 1))
+(16 rows)
+
+-- also here, because values for all keys are provided
+explain (costs off) select * from mc2p t1, lateral (select count(*) from mc3p t2 where t2.a = 1 and abs(t2.b) = 1 and t2.c = 1) s where t1.a = 1;
+ QUERY PLAN
+--------------------------------------------------------------------
+ Nested Loop
+ -> Aggregate
+ -> Append
+ -> Seq Scan on mc3p1 t2
+ Filter: ((a = 1) AND (c = 1) AND (abs(b) = 1))
+ -> Append
+ -> Seq Scan on mc2p1 t1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p2 t1_1
+ Filter: (a = 1)
+ -> Seq Scan on mc2p_default t1_2
+ Filter: (a = 1)
+(12 rows)
+
+--
+-- pruning with clauses containing <> operator
+--
+-- doesn't prune range partitions
+create table rp (a int) partition by range (a);
+create table rp0 partition of rp for values from (minvalue) to (1);
+create table rp1 partition of rp for values from (1) to (2);
+create table rp2 partition of rp for values from (2) to (maxvalue);
+explain (costs off) select * from rp where a <> 1;
+ QUERY PLAN
+--------------------------
+ Append
+ -> Seq Scan on rp0
+ Filter: (a <> 1)
+ -> Seq Scan on rp1
+ Filter: (a <> 1)
+ -> Seq Scan on rp2
+ Filter: (a <> 1)
+(7 rows)
+
+explain (costs off) select * from rp where a <> 1 and a <> 2;
+ QUERY PLAN
+-----------------------------------------
+ Append
+ -> Seq Scan on rp0
+ Filter: ((a <> 1) AND (a <> 2))
+ -> Seq Scan on rp1
+ Filter: ((a <> 1) AND (a <> 2))
+ -> Seq Scan on rp2
+ Filter: ((a <> 1) AND (a <> 2))
+(7 rows)
+
+-- null partition should be eliminated due to strict <> clause.
+explain (costs off) select * from lp where a <> 'a';
+ QUERY PLAN
+------------------------------------
+ Append
+ -> Seq Scan on lp_ad
+ Filter: (a <> 'a'::bpchar)
+ -> Seq Scan on lp_bc
+ Filter: (a <> 'a'::bpchar)
+ -> Seq Scan on lp_ef
+ Filter: (a <> 'a'::bpchar)
+ -> Seq Scan on lp_g
+ Filter: (a <> 'a'::bpchar)
+ -> Seq Scan on lp_default
+ Filter: (a <> 'a'::bpchar)
+(11 rows)
+
+-- ensure we detect contradictions in clauses; a can't be NULL and NOT NULL.
+explain (costs off) select * from lp where a <> 'a' and a is null;
+ QUERY PLAN
+--------------------------
+ Result
+ One-Time Filter: false
+(2 rows)
+
+explain (costs off) select * from lp where (a <> 'a' and a <> 'd') or a is null;
+ QUERY PLAN
+------------------------------------------------------------------------------
+ Append
+ -> Seq Scan on lp_bc
+ Filter: (((a <> 'a'::bpchar) AND (a <> 'd'::bpchar)) OR (a IS NULL))
+ -> Seq Scan on lp_ef
+ Filter: (((a <> 'a'::bpchar) AND (a <> 'd'::bpchar)) OR (a IS NULL))
+ -> Seq Scan on lp_g
+ Filter: (((a <> 'a'::bpchar) AND (a <> 'd'::bpchar)) OR (a IS NULL))
+ -> Seq Scan on lp_null
+ Filter: (((a <> 'a'::bpchar) AND (a <> 'd'::bpchar)) OR (a IS NULL))
+ -> Seq Scan on lp_default
+ Filter: (((a <> 'a'::bpchar) AND (a <> 'd'::bpchar)) OR (a IS NULL))
+(11 rows)
+
+-- check that it also works for a partitioned table that's not root,
+-- which in this case are partitions of rlp that are themselves
+-- list-partitioned on b
+explain (costs off) select * from rlp where a = 15 and b <> 'ab' and b <> 'cd' and b <> 'xy' and b is not null;
+ QUERY PLAN
+------------------------------------------------------------------------------------------------------------------------------------------
+ Append
+ -> Seq Scan on rlp3efgh
+ Filter: ((b IS NOT NULL) AND ((b)::text <> 'ab'::text) AND ((b)::text <> 'cd'::text) AND ((b)::text <> 'xy'::text) AND (a = 15))
+ -> Seq Scan on rlp3_default
+ Filter: ((b IS NOT NULL) AND ((b)::text <> 'ab'::text) AND ((b)::text <> 'cd'::text) AND ((b)::text <> 'xy'::text) AND (a = 15))
+(5 rows)
+
+--
+-- different collations for different keys with same expression
+--
+create table coll_pruning_multi (a text) partition by range (substr(a, 1) collate "POSIX", substr(a, 1) collate "C");
+create table coll_pruning_multi1 partition of coll_pruning_multi for values from ('a', 'a') to ('a', 'e');
+create table coll_pruning_multi2 partition of coll_pruning_multi for values from ('a', 'e') to ('a', 'z');
+create table coll_pruning_multi3 partition of coll_pruning_multi for values from ('b', 'a') to ('b', 'e');
+-- no pruning, because no value for the leading key
+explain (costs off) select * from coll_pruning_multi where substr(a, 1) = 'e' collate "C";
+ QUERY PLAN
+--------------------------------------------------------
+ Append
+ -> Seq Scan on coll_pruning_multi1
+ Filter: (substr(a, 1) = 'e'::text COLLATE "C")
+ -> Seq Scan on coll_pruning_multi2
+ Filter: (substr(a, 1) = 'e'::text COLLATE "C")
+ -> Seq Scan on coll_pruning_multi3
+ Filter: (substr(a, 1) = 'e'::text COLLATE "C")
+(7 rows)
+
+-- pruning, with a value provided for the leading key
+explain (costs off) select * from coll_pruning_multi where substr(a, 1) = 'a' collate "POSIX";
+ QUERY PLAN
+------------------------------------------------------------
+ Append
+ -> Seq Scan on coll_pruning_multi1
+ Filter: (substr(a, 1) = 'a'::text COLLATE "POSIX")
+ -> Seq Scan on coll_pruning_multi2
+ Filter: (substr(a, 1) = 'a'::text COLLATE "POSIX")
+(5 rows)
+
+-- pruning, with values provided for both keys
+explain (costs off) select * from coll_pruning_multi where substr(a, 1) = 'e' collate "C" and substr(a, 1) = 'a' collate "POSIX";
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
+ Append
+ -> Seq Scan on coll_pruning_multi2
+ Filter: ((substr(a, 1) = 'e'::text COLLATE "C") AND (substr(a, 1) = 'a'::text COLLATE "POSIX"))
+(3 rows)
+
+--
+-- LIKE operators don't prune
+--
+create table like_op_noprune (a text) partition by list (a);
+create table like_op_noprune1 partition of like_op_noprune for values in ('ABC');
+create table like_op_noprune2 partition of like_op_noprune for values in ('BCD');
+explain (costs off) select * from like_op_noprune where a like '%BC';
+ QUERY PLAN
+------------------------------------
+ Append
+ -> Seq Scan on like_op_noprune1
+ Filter: (a ~~ '%BC'::text)
+ -> Seq Scan on like_op_noprune2
+ Filter: (a ~~ '%BC'::text)
+(5 rows)
+
+--
+-- tests wherein clause value requires a cross-type comparison function
+--
+create table lparted_by_int2 (a smallint) partition by list (a);
+create table lparted_by_int2_1 partition of lparted_by_int2 for values in (1);
+create table lparted_by_int2_16384 partition of lparted_by_int2 for values in (16384);
+explain (costs off) select * from lparted_by_int2 where a = 100000000000000;
+ QUERY PLAN
+--------------------------
+ Result
+ One-Time Filter: false
+(2 rows)
+
+create table rparted_by_int2 (a smallint) partition by range (a);
+create table rparted_by_int2_1 partition of rparted_by_int2 for values from (1) to (10);
+create table rparted_by_int2_16384 partition of rparted_by_int2 for values from (10) to (16384);
+-- all partitions pruned
+explain (costs off) select * from rparted_by_int2 where a > 100000000000000;
+ QUERY PLAN
+--------------------------
+ Result
+ One-Time Filter: false
+(2 rows)
+
+create table rparted_by_int2_maxvalue partition of rparted_by_int2 for values from (16384) to (maxvalue);
+-- all partitions but rparted_by_int2_maxvalue pruned
+explain (costs off) select * from rparted_by_int2 where a > 100000000000000;
+ QUERY PLAN
+-------------------------------------------------
+ Append
+ -> Seq Scan on rparted_by_int2_maxvalue
+ Filter: (a > '100000000000000'::bigint)
+(3 rows)
+
+drop table lp, coll_pruning, rlp, mc3p, mc2p, boolpart, rp, coll_pruning_multi, like_op_noprune, lparted_by_int2, rparted_by_int2;
+-- hash partitioning
+create table hp (a int, b text) partition by hash (a, b);
+create table hp0 partition of hp for values with (modulus 4, remainder 0);
+create table hp3 partition of hp for values with (modulus 4, remainder 3);
+create table hp1 partition of hp for values with (modulus 4, remainder 1);
+create table hp2 partition of hp for values with (modulus 4, remainder 2);
+insert into hp values (null, null);
+insert into hp values (1, null);
+insert into hp values (1, 'xxx');
+insert into hp values (null, 'xxx');
+insert into hp values (10, 'xxx');
+insert into hp values (10, 'yyy');
+select tableoid::regclass, * from hp order by 1;
+ tableoid | a | b
+----------+----+-----
+ hp0 | |
+ hp0 | 1 |
+ hp0 | 1 | xxx
+ hp3 | 10 | yyy
+ hp1 | | xxx
+ hp2 | 10 | xxx
+(6 rows)
+
+-- partial keys won't prune, nor would non-equality conditions
+explain (costs off) select * from hp where a = 1;
+ QUERY PLAN
+-------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: (a = 1)
+ -> Seq Scan on hp1
+ Filter: (a = 1)
+ -> Seq Scan on hp2
+ Filter: (a = 1)
+ -> Seq Scan on hp3
+ Filter: (a = 1)
+(9 rows)
+
+explain (costs off) select * from hp where b = 'xxx';
+ QUERY PLAN
+-----------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: (b = 'xxx'::text)
+ -> Seq Scan on hp1
+ Filter: (b = 'xxx'::text)
+ -> Seq Scan on hp2
+ Filter: (b = 'xxx'::text)
+ -> Seq Scan on hp3
+ Filter: (b = 'xxx'::text)
+(9 rows)
+
+explain (costs off) select * from hp where a is null;
+ QUERY PLAN
+-----------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: (a IS NULL)
+ -> Seq Scan on hp1
+ Filter: (a IS NULL)
+ -> Seq Scan on hp2
+ Filter: (a IS NULL)
+ -> Seq Scan on hp3
+ Filter: (a IS NULL)
+(9 rows)
+
+explain (costs off) select * from hp where b is null;
+ QUERY PLAN
+-----------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: (b IS NULL)
+ -> Seq Scan on hp1
+ Filter: (b IS NULL)
+ -> Seq Scan on hp2
+ Filter: (b IS NULL)
+ -> Seq Scan on hp3
+ Filter: (b IS NULL)
+(9 rows)
+
+explain (costs off) select * from hp where a < 1 and b = 'xxx';
+ QUERY PLAN
+-------------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((a < 1) AND (b = 'xxx'::text))
+ -> Seq Scan on hp1
+ Filter: ((a < 1) AND (b = 'xxx'::text))
+ -> Seq Scan on hp2
+ Filter: ((a < 1) AND (b = 'xxx'::text))
+ -> Seq Scan on hp3
+ Filter: ((a < 1) AND (b = 'xxx'::text))
+(9 rows)
+
+explain (costs off) select * from hp where a <> 1 and b = 'yyy';
+ QUERY PLAN
+--------------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((a <> 1) AND (b = 'yyy'::text))
+ -> Seq Scan on hp1
+ Filter: ((a <> 1) AND (b = 'yyy'::text))
+ -> Seq Scan on hp2
+ Filter: ((a <> 1) AND (b = 'yyy'::text))
+ -> Seq Scan on hp3
+ Filter: ((a <> 1) AND (b = 'yyy'::text))
+(9 rows)
+
+-- pruning should work if non-null values are provided for all the keys
+explain (costs off) select * from hp where a is null and b is null;
+ QUERY PLAN
+-----------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((a IS NULL) AND (b IS NULL))
+(3 rows)
+
+explain (costs off) select * from hp where a = 1 and b is null;
+ QUERY PLAN
+-------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((b IS NULL) AND (a = 1))
+(3 rows)
+
+explain (costs off) select * from hp where a = 1 and b = 'xxx';
+ QUERY PLAN
+-------------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((a = 1) AND (b = 'xxx'::text))
+(3 rows)
+
+explain (costs off) select * from hp where a is null and b = 'xxx';
+ QUERY PLAN
+-----------------------------------------------------
+ Append
+ -> Seq Scan on hp1
+ Filter: ((a IS NULL) AND (b = 'xxx'::text))
+(3 rows)
+
+explain (costs off) select * from hp where a = 10 and b = 'xxx';
+ QUERY PLAN
+--------------------------------------------------
+ Append
+ -> Seq Scan on hp2
+ Filter: ((a = 10) AND (b = 'xxx'::text))
+(3 rows)
+
+explain (costs off) select * from hp where a = 10 and b = 'yyy';
+ QUERY PLAN
+--------------------------------------------------
+ Append
+ -> Seq Scan on hp3
+ Filter: ((a = 10) AND (b = 'yyy'::text))
+(3 rows)
+
+explain (costs off) select * from hp where (a = 10 and b = 'yyy') or (a = 10 and b = 'xxx') or (a is null and b is null);
+ QUERY PLAN
+-------------------------------------------------------------------------------------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: (((a = 10) AND (b = 'yyy'::text)) OR ((a = 10) AND (b = 'xxx'::text)) OR ((a IS NULL) AND (b IS NULL)))
+ -> Seq Scan on hp2
+ Filter: (((a = 10) AND (b = 'yyy'::text)) OR ((a = 10) AND (b = 'xxx'::text)) OR ((a IS NULL) AND (b IS NULL)))
+ -> Seq Scan on hp3
+ Filter: (((a = 10) AND (b = 'yyy'::text)) OR ((a = 10) AND (b = 'xxx'::text)) OR ((a IS NULL) AND (b IS NULL)))
+(7 rows)
+
+-- hash partitiong pruning doesn't occur with <> operator clauses
+explain (costs off) select * from hp where a <> 1 and b <> 'xxx';
+ QUERY PLAN
+---------------------------------------------------
+ Append
+ -> Seq Scan on hp0
+ Filter: ((a <> 1) AND (b <> 'xxx'::text))
+ -> Seq Scan on hp1
+ Filter: ((a <> 1) AND (b <> 'xxx'::text))
+ -> Seq Scan on hp2
+ Filter: ((a <> 1) AND (b <> 'xxx'::text))
+ -> Seq Scan on hp3
+ Filter: ((a <> 1) AND (b <> 'xxx'::text))
+(9 rows)
+
+drop table hp;