#include "soc/uart_reg.h"
#include "soc/uart_struct.h"
#include "esp_err.h"
+#include "esp_intr_alloc.h"
#include "driver/periph_ctrl.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
UART_PARITY_ERR, /*!< UART RX parity event*/
UART_DATA_BREAK, /*!< UART TX data and break event*/
UART_EVENT_MAX, /*!< UART event max index*/
+ UART_PATTERN_DET, /*!< UART pattern detected */
} uart_event_type_t;
/**
size_t size; /*!< UART data size for UART_DATA event*/
} uart_event_t;
+typedef intr_handle_t uart_isr_handle_t;
+
/**
* @brief Set UART data bits.
*
* @param arg parameter for handler function
* @param intr_alloc_flags Flags used to allocate the interrupt. One or multiple (ORred)
* ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.
+ * @param handle Pointer to return handle. If non-NULL, a handle for the interrupt will
+ * be returned here.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
-esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags);
+esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle);
/**
* @brief Install UART driver.
*
* UART ISR handler will be attached to the same CPU core that this function is running on.
+ * Users should know that which CPU is running and then pick a INUM that is not used by system.
+ * We can find the information of INUM and interrupt level in soc.h.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
- * @param rx_buffer_size UART RX ring buffer size
+ * @param rx_buffer_size UART RX ring buffer size, rx_buffer_size should be greater than UART_FIFO_LEN.
* @param tx_buffer_size UART TX ring buffer size.
* If set to zero, driver will not use TX buffer, TX function will block task until all data have been sent out..
* @param queue_size UART event queue size/depth.
*/
esp_err_t uart_flush(uart_port_t uart_num);
+/**
+ * @brief UART get RX ring buffer cached data length
+ *
+ * @param uart_num UART port number.
+ * @param size Pointer of size_t to accept cached data length
+ *
+ * @return
+ * - ESP_OK Success
+ * - ESP_FAIL Parameter error
+ */
+esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size);
+
+/**
+ * @brief UART disable pattern detect function.
+ * Designed for applications like 'AT commands'.
+ * When the hardware detect a series of one same character, the interrupt will be triggered.
+ *
+ * @param uart_num UART port number.
+ *
+ * @return
+ * - ESP_OK Success
+ * - ESP_FAIL Parameter error
+ */
+esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num);
+
+/**
+ * @brief UART enable pattern detect function.
+ * Designed for applications like 'AT commands'.
+ * When the hardware detect a series of one same character, the interrupt will be triggered.
+ *
+ * @param uart_num UART port number.
+ * @param pattern_chr character of the pattern
+ * @param chr_num number of the character, 8bit value.
+ * @param chr_tout timeout of the interval between each pattern characters, 24bit value, unit is APB(80Mhz) clock cycle.
+ * @param post_idle idle time after the last pattern character, 24bit value, unit is APB(80Mhz) clock cycle.
+ * @param pre_idle idle time before the first pattern character, 24bit value, unit is APB(80Mhz) clock cycle.
+ *
+ * @return
+ * - ESP_OK Success
+ * - ESP_FAIL Parameter error
+ */
+esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle);
/***************************EXAMPLE**********************************
*
*
* @code{c}
* //1. Setup UART
* #include "freertos/queue.h"
+ * #define UART_INTR_NUM 17 //choose one interrupt number from soc.h
* //a. Set UART parameter
* int uart_num = 0; //uart port number
* uart_config_t uart_config = {
* //Set UART1 pins(TX: IO16, RX: IO17, RTS: IO18, CTS: IO19)
* uart_set_pin(uart_num, 16, 17, 18, 19);
* //Install UART driver( We don't need an event queue here)
- * uart_driver_install(uart_num, 1024 * 2, 1024*4, 10, NULL, 0);
+ * uart_driver_install(uart_num, 1024 * 2, 1024*4, 0, NULL, 0);
* uint8_t data[1000];
* while(1) {
* //Read data from UART
* ESP_LOGI(TAG,"data, len: %d", event.size);
* int len = uart_read_bytes(uart_num, dtmp, event.size, 10);
* ESP_LOGI(TAG, "uart read: %d", len);
- uart_write_bytes(uart_num, (const char*)dtmp, len);
* break;
* //Event of HW FIFO overflow detected
* case UART_FIFO_OVF:
QueueHandle_t xQueueUart; /*!< UART queue handler*/
intr_handle_t intr_handle; /*!< UART interrupt handle*/
//rx parameters
+ int rx_buffered_len; /*!< UART cached data length */
SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
int rx_buf_size; /*!< RX ring buffer size */
RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
return ESP_OK;
}
+esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
+{
+ UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
+ UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
+ UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
+ UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
+ UART[uart_num]->at_cmd_char.data = pattern_chr;
+ UART[uart_num]->at_cmd_char.char_num = chr_num;
+ UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
+ UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
+ UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
+ return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
+}
+
+esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
+{
+ return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
+}
+
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{
- uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
- return ESP_OK;
+ return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{
- uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
- return ESP_OK;
+ return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
{
- uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
- return ESP_OK;
+ return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
}
esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
return ESP_OK;
}
-esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags)
+esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
{
int ret;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
switch(uart_num) {
case UART_NUM_1:
- ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, &p_uart_obj[uart_num]->intr_handle);
+ ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
case UART_NUM_2:
- ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, &p_uart_obj[uart_num]->intr_handle);
+ ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
case UART_NUM_0:
default:
- ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, &p_uart_obj[uart_num]->intr_handle);
+ ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart->rx_buffer_full_flg = true;
uart_event.type = UART_BUFFER_FULL;
} else {
+ UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
+ p_uart->rx_buffered_len += p_uart->rx_stash_len;
+ UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_DATA;
}
if(HPTaskAwoken == pdTRUE) {
} else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
uart_reg->int_clr.brk_det = 1;
uart_event.type = UART_BREAK;
- } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M ) {
+ } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
uart_reg->int_clr.parity_err = 1;
uart_event.type = UART_FRAME_ERR;
- } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
+ } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
uart_reg->int_clr.frm_err = 1;
uart_event.type = UART_PARITY_ERR;
} else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
uart_reg->int_ena.tx_brk_idle_done = 0;
uart_reg->int_clr.tx_brk_idle_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
+ } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
+ uart_reg->int_clr.at_cmd_char_det = 1;
+ uart_event.type = UART_PATTERN_DET;
} else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_done = 0;
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
- }
- else {
+ } else {
uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
uart_event.type = UART_EVENT_MAX;
}
p_uart_obj[uart_num]->rx_cur_remain = size;
} else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return copy_len;
}
}
if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) {
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return copy_len;
}
+esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
+{
+ UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
+ UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
+ *size = p_uart_obj[uart_num]->rx_buffered_len;
+ return ESP_OK;
+}
+
esp_err_t uart_flush(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
//rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
- esp_intr_disable(p_uart->intr_handle);
+ uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
while(true) {
if(p_uart->rx_head_ptr) {
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
if(data == NULL) {
break;
}
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len -= size;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
+ if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
+ BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
+ if(res == pdTRUE) {
+ UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
+ UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+ p_uart_obj[uart_num]->rx_buffer_full_flg = false;
+ }
+ }
}
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
- esp_intr_enable(p_uart->intr_handle);
- xSemaphoreGive(p_uart->rx_mux);
-
- if(p_uart->tx_buf_size > 0) {
- xSemaphoreTake(p_uart->tx_mux, (portTickType)portMAX_DELAY);
- esp_intr_disable(p_uart->intr_handle);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->int_ena.txfifo_empty = 0;
- UART[uart_num]->int_clr.txfifo_empty = 1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- do {
- data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
- if(data == NULL) {
- break;
- }
- vRingbufferReturnItem(p_uart->rx_ring_buf, data);
- } while(1);
- p_uart->tx_brk_flg = 0;
- p_uart->tx_brk_len = 0;
- p_uart->tx_head = NULL;
- p_uart->tx_len_cur = 0;
- p_uart->tx_len_tot = 0;
- p_uart->tx_ptr = NULL;
- p_uart->tx_waiting_brk = 0;
- p_uart->tx_waiting_fifo = false;
- esp_intr_enable(p_uart->intr_handle);
- xSemaphoreGive(p_uart->tx_mux);
- }
uart_reset_fifo(uart_num);
+ uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
+ xSemaphoreGive(p_uart->rx_mux);
return ESP_OK;
}
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, void* uart_queue, int intr_alloc_flags)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_buffer_size > 0), "uart rx buffer length error", ESP_FAIL);
+ UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
if(p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
if(p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num]->tx_brk_flg = 0;
p_uart_obj[uart_num]->tx_brk_len = 0;
p_uart_obj[uart_num]->tx_waiting_brk = 0;
+ p_uart_obj[uart_num]->rx_buffered_len = 0;
if(uart_queue) {
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
ESP_LOGE(UART_TAG, "UART driver already installed");
return ESP_FAIL;
}
- uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags);
+ uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
| UART_RXFIFO_TOUT_INT_ENA_M
.. doxygenfunction:: uart_write_bytes_with_break
.. doxygenfunction:: uart_read_bytes
.. doxygenfunction:: uart_flush
-
+.. doxygenfunction:: uart_get_buffered_data_len
+.. doxygenfunction:: uart_disable_pattern_det_intr
+.. doxygenfunction:: uart_enable_pattern_det_intr
--- /dev/null
+#
+# This is a project Makefile. It is assumed the directory this Makefile resides in is a
+# project subdirectory.
+#
+
+PROJECT_NAME := uart
+
+include $(IDF_PATH)/make/project.mk
+
--- /dev/null
+#
+# Main Makefile. This is basically the same as a component makefile.
+#
--- /dev/null
+/* Uart Example
+
+ This example code is in the Public Domain (or CC0 licensed, at your option.)
+
+ Unless required by applicable law or agreed to in writing, this
+ software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+ CONDITIONS OF ANY KIND, either express or implied.
+*/
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include "freertos/FreeRTOS.h"
+#include "freertos/task.h"
+#include "esp_system.h"
+#include "nvs_flash.h"
+#include "driver/uart.h"
+#include "freertos/queue.h"
+#include "esp_log.h"
+#include "soc/uart_struct.h"
+static const char *TAG = "uart_example";
+
+/**
+ * Test code brief
+ * This example shows how to configure uart settings and install uart driver.
+ *
+ * uart_evt_test() is an example that read and write data on UART0, and handler some of the special events.
+ * - port: UART0
+ * - rx buffer: on
+ * - tx buffer: on
+ * - flow control: off
+ * - event queue: on
+ * - pin assignment: txd(default), rxd(default)
+ *
+ * uart_echo_test() is an example that read and write data on UART1, with hardware flow control turning on.
+ * - port: UART1
+ * - rx buffer: on
+ * - tx buffer: off
+ * - flow control: on
+ * - event queue: off
+ * - pin assignment: txd(io4), rxd(io5), rts(18), cts(19)
+ */
+
+#define BUF_SIZE (1024)
+#define ECHO_TEST_TXD (4)
+#define ECHO_TEST_RXD (5)
+#define ECHO_TEST_RTS (18)
+#define ECHO_TEST_CTS (19)
+
+QueueHandle_t uart0_queue;
+void uart_task(void *pvParameters)
+{
+ int uart_num = (int) pvParameters;
+ uart_event_t event;
+ size_t buffered_size;
+ uint8_t* dtmp = (uint8_t*) malloc(BUF_SIZE);
+ for(;;) {
+ //Waiting for UART event.
+ if(xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) {
+ ESP_LOGI(TAG, "uart[%d] event:", uart_num);
+ switch(event.type) {
+ //Event of UART receving data
+ /*We'd better handler data event fast, there would be much more data events than
+ other types of events. If we take too much time on data event, the queue might
+ be full.
+ in this example, we don't process data in event, but read data outside.*/
+ case UART_DATA:
+ uart_get_buffered_data_len(uart_num, &buffered_size);
+ ESP_LOGI(TAG, "data, len: %d; buffered len: %d", event.size, buffered_size);
+ break;
+ //Event of HW FIFO overflow detected
+ case UART_FIFO_OVF:
+ ESP_LOGI(TAG, "hw fifo overflow\n");
+ //If fifo overflow happened, you should consider adding flow control for your application.
+ //We can read data out out the buffer, or directly flush the rx buffer.
+ uart_flush(uart_num);
+ break;
+ //Event of UART ring buffer full
+ case UART_BUFFER_FULL:
+ ESP_LOGI(TAG, "ring buffer full\n");
+ //If buffer full happened, you should consider encreasing your buffer size
+ //We can read data out out the buffer, or directly flush the rx buffer.
+ uart_flush(uart_num);
+ break;
+ //Event of UART RX break detected
+ case UART_BREAK:
+ ESP_LOGI(TAG, "uart rx break\n");
+ break;
+ //Event of UART parity check error
+ case UART_PARITY_ERR:
+ ESP_LOGI(TAG, "uart parity error\n");
+ break;
+ //Event of UART frame error
+ case UART_FRAME_ERR:
+ ESP_LOGI(TAG, "uart frame error\n");
+ break;
+ //UART_PATTERN_DET
+ case UART_PATTERN_DET:
+ ESP_LOGI(TAG, "uart pattern detected\n");
+ break;
+ //Others
+ default:
+ ESP_LOGI(TAG, "uart event type: %d\n", event.type);
+ break;
+ }
+ }
+ }
+ free(dtmp);
+ dtmp = NULL;
+ vTaskDelete(NULL);
+}
+
+void uart_evt_test()
+{
+ int uart_num = UART_NUM_0;
+ uart_config_t uart_config = {
+ .baud_rate = 115200,
+ .data_bits = UART_DATA_8_BITS,
+ .parity = UART_PARITY_DISABLE,
+ .stop_bits = UART_STOP_BITS_1,
+ .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
+ .rx_flow_ctrl_thresh = 122,
+ };
+ //Set UART parameters
+ uart_param_config(uart_num, &uart_config);
+ //Set UART log level
+ esp_log_level_set(TAG, ESP_LOG_INFO);
+ //Install UART driver, and get the queue.
+ uart_driver_install(uart_num, BUF_SIZE * 2, BUF_SIZE * 2, 10, &uart0_queue, 0);
+ //Set UART pins,(-1: default pin, no change.)
+ //For UART0, we can just use the default pins.
+ //uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
+ //Set uart pattern detect function.
+ uart_enable_pattern_det_intr(uart_num, '+', 3, 10000, 10, 10);
+ //Create a task to handler UART event from ISR
+ xTaskCreate(uart_task, "uart_task", 2048, (void*)uart_num, 12, NULL);
+ //process data
+ uint8_t* data = (uint8_t*) malloc(BUF_SIZE);
+ do {
+ int len = uart_read_bytes(uart_num, data, BUF_SIZE, 100 / portTICK_RATE_MS);
+ if(len > 0) {
+ ESP_LOGI(TAG, "uart read : %d", len);
+ uart_write_bytes(uart_num, (const char*)data, len);
+ }
+ } while(1);
+}
+
+//an example of echo test with hardware flow control on UART1
+void uart_echo_test()
+{
+ int uart_num = UART_NUM_1;
+ uart_config_t uart_config = {
+ .baud_rate = 115200,
+ .data_bits = UART_DATA_8_BITS,
+ .parity = UART_PARITY_DISABLE,
+ .stop_bits = UART_STOP_BITS_1,
+ .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
+ .rx_flow_ctrl_thresh = 122,
+ };
+ //Configure UART1 parameters
+ uart_param_config(uart_num, &uart_config);
+ //Set UART1 pins(TX: IO4, RX: I05, RTS: IO18, CTS: IO19)
+ uart_set_pin(uart_num, ECHO_TEST_TXD, ECHO_TEST_RXD, ECHO_TEST_RTS, ECHO_TEST_CTS);
+ //Install UART driver( We don't need an event queue here)
+ //In this example we don't even use a buffer for sending data.
+ uart_driver_install(uart_num, BUF_SIZE * 2, 0, 0, NULL, 0);
+
+ uint8_t* data = (uint8_t*) malloc(BUF_SIZE);
+ while(1) {
+ //Read data from UART
+ int len = uart_read_bytes(uart_num, data, BUF_SIZE, 20 / portTICK_RATE_MS);
+ //Write data back to UART
+ uart_write_bytes(uart_num, (const char*) data, len);
+ }
+}
+
+void app_main()
+{
+ //A uart read/write example without event queue;
+ xTaskCreate(uart_echo_test, "uart_echo_test", 1024, NULL, 10, NULL);
+
+ //A uart example with event queue.
+ uart_evt_test();
+}