--- /dev/null
+;
+; jchuff-avx2.asm - Huffman entropy encoding (AVX2)
+;
+; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
+; Copyright (C) 2015, Matthieu Darbois.
+;
+; Based on the x86 SIMD extension for IJG JPEG library
+; Copyright (C) 1999-2006, MIYASAKA Masaru.
+; For conditions of distribution and use, see copyright notice in jsimdext.inc
+;
+; This file should be assembled with NASM (Netwide Assembler),
+; can *not* be assembled with Microsoft's MASM or any compatible
+; assembler (including Borland's Turbo Assembler).
+; NASM is available from http://nasm.sourceforge.net/ or
+; http://sourceforge.net/project/showfiles.php?group_id=6208
+;
+; This file contains an AVX2 implementation for Huffman coding of one block.
+; The following code is based directly on jchuff.c; see jchuff.c for more
+; details.
+;
+; [TAB8]
+
+%include "jsimdext.inc"
+
+; --------------------------------------------------------------------------
+ SECTION SEG_CONST
+
+ alignz 32
+ global EXTN(jconst_huff_encode_one_block_avx2)
+
+; FIXME: How do we reuse the existing jpeg_nbits_table array from the SSE2
+; code?
+EXTN(jconst_huff_encode_one_block_avx2):
+
+%include "jpeg_nbits_table.inc"
+
+ alignz 32
+
+; --------------------------------------------------------------------------
+ SECTION SEG_TEXT
+ BITS 32
+
+; These macros perform the same task as the emit_bits() function in the
+; original libjpeg code. In addition to reducing overhead by explicitly
+; inlining the code, additional performance is achieved by taking into
+; account the size of the bit buffer and waiting until it is almost full
+; before emptying it. This mostly benefits 64-bit platforms, since 6
+; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
+
+%macro EMIT_BYTE 0
+ sub put_bits, 8 ; put_bits -= 8;
+ mov edx, put_buffer
+ mov ecx, put_bits
+ shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
+ mov byte [eax], dl ; *buffer++ = c;
+ add eax, 1
+ cmp dl, 0xFF ; need to stuff a zero byte?
+ jne %%.EMIT_BYTE_END
+ mov byte [eax], 0 ; *buffer++ = 0;
+ add eax, 1
+%%.EMIT_BYTE_END:
+%endmacro
+
+%macro PUT_BITS 1
+ add put_bits, ecx ; put_bits += size;
+ shl put_buffer, cl ; put_buffer = (put_buffer << size);
+ or put_buffer, %1
+%endmacro
+
+%macro CHECKBUF15 0
+ cmp put_bits, 16 ; if (put_bits > 31) {
+ jl %%.CHECKBUF15_END
+ mov eax, POINTER [esp+buffer]
+ EMIT_BYTE
+ EMIT_BYTE
+ mov POINTER [esp+buffer], eax
+%%.CHECKBUF15_END:
+%endmacro
+
+%macro EMIT_BITS 1
+ PUT_BITS %1
+ CHECKBUF15
+%endmacro
+
+%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
+ vpinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
+ vpinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
+ vpinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
+ vpinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
+ vpinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
+ vpinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
+ vpinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
+ vpinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
+ vpinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
+ vpinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
+ vpinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
+ vpinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
+ vpinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
+ vpinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
+ vpinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
+ vpinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
+ vpinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
+ vpinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
+ vpinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
+ vpinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
+ vpinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
+ vpinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
+ vpinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
+ vpinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
+ vpinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
+ vpinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
+ vpinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
+ vpinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
+ vpinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
+ vpinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
+ vpinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
+%if %1 != 32
+ vpinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
+%else
+ vpinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
+%endif
+%endmacro
+
+;
+; Encode a single block's worth of coefficients.
+;
+; GLOBAL(JOCTET*)
+; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
+; JCOEFPTR block, int last_dc_val,
+; c_derived_tbl *dctbl, c_derived_tbl *actbl)
+;
+
+; eax + 8 = working_state *state
+; eax + 12 = JOCTET *buffer
+; eax + 16 = JCOEFPTR block
+; eax + 20 = int last_dc_val
+; eax + 24 = c_derived_tbl *dctbl
+; eax + 28 = c_derived_tbl *actbl
+
+%define pad 6*SIZEOF_DWORD ; Align to 16 bytes
+%define t1 pad
+%define t2 t1+(DCTSIZE2*SIZEOF_WORD)
+%define block t2+(DCTSIZE2*SIZEOF_WORD)
+%define actbl block+SIZEOF_DWORD
+%define buffer actbl+SIZEOF_DWORD
+%define temp buffer+SIZEOF_DWORD
+%define temp2 temp+SIZEOF_DWORD
+%define temp3 temp2+SIZEOF_DWORD
+%define temp4 temp3+SIZEOF_DWORD
+%define temp5 temp4+SIZEOF_DWORD
+%define gotptr temp5+SIZEOF_DWORD ; void *gotptr
+%define put_buffer ebx
+%define put_bits edi
+
+ align 32
+ global EXTN(jsimd_huff_encode_one_block_avx2)
+
+EXTN(jsimd_huff_encode_one_block_avx2):
+ push ebp
+ mov eax,esp ; eax = original ebp
+ sub esp, byte 4
+ and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
+ mov [esp],eax
+ mov ebp,esp ; ebp = aligned ebp
+ sub esp, temp5+9*SIZEOF_DWORD-pad
+ push ebx
+ push ecx
+; push edx ; need not be preserved
+ push esi
+ push edi
+ push ebp
+
+ mov esi, POINTER [eax+8] ; (working_state *state)
+ mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer;
+ mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits;
+ push esi ; esi is now scratch
+
+ get_GOT edx ; get GOT address
+ movpic POINTER [esp+gotptr], edx ; save GOT address
+
+ mov ecx, POINTER [eax+28]
+ mov edx, POINTER [eax+16]
+ mov esi, POINTER [eax+12]
+ mov POINTER [esp+actbl], ecx
+ mov POINTER [esp+block], edx
+ mov POINTER [esp+buffer], esi
+
+ ; Encode the DC coefficient difference per section F.1.2.1
+ mov esi, POINTER [esp+block] ; block
+ movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
+ sub ecx, DWORD [eax+20]
+ mov esi, ecx
+
+ ; This is a well-known technique for obtaining the absolute value
+ ; without a branch. It is derived from an assembly language technique
+ ; presented in "How to Optimize for the Pentium Processors",
+ ; Copyright (c) 1996, 1997 by Agner Fog.
+ mov edx, ecx
+ sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
+ xor ecx, edx ; temp ^= temp3;
+ sub ecx, edx ; temp -= temp3;
+
+ ; For a negative input, want temp2 = bitwise complement of abs(input)
+ ; This code assumes we are on a two's complement machine
+ add esi, edx ; temp2 += temp3;
+ mov DWORD [esp+temp], esi ; backup temp2 in temp
+
+ ; Find the number of bits needed for the magnitude of the coefficient
+ movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
+ movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
+ mov DWORD [esp+temp2], edx ; backup nbits in temp2
+
+ ; Emit the Huffman-coded symbol for the number of bits
+ mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
+ mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
+ movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
+ EMIT_BITS eax ; EMIT_BITS(code, size)
+
+ mov ecx, DWORD [esp+temp2] ; restore nbits
+
+ ; Mask off any extra bits in code
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+
+ ; Emit that number of bits of the value, if positive,
+ ; or the complement of its magnitude, if negative.
+ EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
+
+ ; Prepare data
+ xor ecx, ecx
+ mov esi, POINTER [esp+block]
+ kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
+ 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
+ 27, 20, 13, 6, 7, 14, 21, 28, 35, \
+ xmm0, xmm1, xmm2, xmm3
+ kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
+ 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
+ 53, 60, 61, 54, 47, 55, 62, 63, 63, \
+ xmm4, xmm5, xmm6, xmm7
+
+ vperm2i128 ymm0, ymm0, ymm1, 0x20
+ vperm2i128 ymm1, ymm2, ymm3, 0x20
+ vperm2i128 ymm2, ymm4, ymm5, 0x20
+ vperm2i128 ymm3, ymm6, ymm7, 0x20
+
+ vpxor ymm4, ymm4, ymm4 ; __m128i neg = _mm_setzero_si128();
+ vpxor ymm5, ymm5, ymm5
+ vpxor ymm6, ymm6, ymm6
+ vpxor ymm7, ymm7, ymm7
+ vpcmpgtw ymm4, ymm4, ymm0 ; neg = _mm_cmpgt_epi16(neg, x1);
+ vpcmpgtw ymm5, ymm5, ymm1
+ vpcmpgtw ymm6, ymm6, ymm2
+ vpcmpgtw ymm7, ymm7, ymm3
+ vpaddw ymm0, ymm0, ymm4 ; x1 = _mm_add_epi16(x1, neg);
+ vpaddw ymm1, ymm1, ymm5
+ vpaddw ymm2, ymm2, ymm6
+ vpaddw ymm3, ymm3, ymm7
+ vpxor ymm0, ymm0, ymm4 ; x1 = _mm_xor_si128(x1, neg);
+ vpxor ymm1, ymm1, ymm5
+ vpxor ymm2, ymm2, ymm6
+ vpxor ymm3, ymm3, ymm7
+ vpxor ymm4, ymm4, ymm0 ; neg = _mm_xor_si128(neg, x1);
+ vpxor ymm5, ymm5, ymm1
+ vpxor ymm6, ymm6, ymm2
+ vpxor ymm7, ymm7, ymm3
+
+ vmovdqu YMMWORD [esp + t1 + 0 * SIZEOF_WORD], ymm0 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
+ vmovdqu YMMWORD [esp + t1 + 16 * SIZEOF_WORD], ymm1 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
+ vmovdqu YMMWORD [esp + t1 + 32 * SIZEOF_WORD], ymm2 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
+ vmovdqu YMMWORD [esp + t1 + 48 * SIZEOF_WORD], ymm3 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
+ vmovdqu YMMWORD [esp + t2 + 0 * SIZEOF_WORD], ymm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
+ vmovdqu YMMWORD [esp + t2 + 16 * SIZEOF_WORD], ymm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
+ vmovdqu YMMWORD [esp + t2 + 32 * SIZEOF_WORD], ymm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
+ vmovdqu YMMWORD [esp + t2 + 48 * SIZEOF_WORD], ymm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
+
+ vpxor ymm4, ymm4, ymm4
+ vpcmpeqw ymm0, ymm0, ymm4 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
+ vpcmpeqw ymm1, ymm1, ymm4 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
+ vpcmpeqw ymm2, ymm2, ymm4 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
+ vpcmpeqw ymm3, ymm3, ymm4 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
+
+ vperm2i128 ymm4, ymm0, ymm1, 0x20
+ vperm2i128 ymm5, ymm0, ymm1, 0x31
+ vpacksswb ymm0, ymm4, ymm5 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
+ vperm2i128 ymm4, ymm2, ymm3, 0x20
+ vperm2i128 ymm5, ymm2, ymm3, 0x31
+ vpacksswb ymm2, ymm4, ymm5 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
+
+ vpmovmskb edx, ymm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
+ not edx ; index = ~index;
+
+ lea esi, [esp+t1]
+ mov ebp, POINTER [esp+actbl] ; ebp = actbl
+
+.BLOOP:
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP
+ lea esi, [esi+ecx*2] ; k += r;
+ shr edx, cl ; index >>= r;
+ mov DWORD [esp+temp3], edx
+.BRLOOP:
+ cmp ecx, 16 ; while (r > 15) {
+ jl .ERLOOP
+ sub ecx, 16 ; r -= 16;
+ mov DWORD [esp+temp], ecx
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
+ mov ecx, DWORD [esp+temp]
+ jmp .BRLOOP
+.ERLOOP:
+ movsx eax, word [esi] ; temp = t1[k];
+ movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
+ movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
+ mov DWORD [esp+temp2], eax
+ ; Emit Huffman symbol for run length / number of bits
+ shl ecx, 4 ; temp3 = (r << 4) + nbits;
+ add ecx, eax
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
+ EMIT_BITS eax
+
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
+ ; Mask off any extra bits in code
+ mov ecx, DWORD [esp+temp2]
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits)
+ mov edx, DWORD [esp+temp3]
+ add esi, 2 ; ++k;
+ shr edx, 1 ; index >>= 1;
+
+ jmp .BLOOP
+.ELOOP:
+ vpmovmskb edx, ymm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 32;
+ not edx ; index = ~index;
+
+ lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
+ sub eax, esi
+ shr eax, 1
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP2
+ shr edx, cl ; index >>= r;
+ add ecx, eax
+ lea esi, [esi+ecx*2] ; k += r;
+ mov DWORD [esp+temp3], edx
+ jmp .BRLOOP2
+.BLOOP2:
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP2
+ lea esi, [esi+ecx*2] ; k += r;
+ shr edx, cl ; index >>= r;
+ mov DWORD [esp+temp3], edx
+.BRLOOP2:
+ cmp ecx, 16 ; while (r > 15) {
+ jl .ERLOOP2
+ sub ecx, 16 ; r -= 16;
+ mov DWORD [esp+temp], ecx
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
+ mov ecx, DWORD [esp+temp]
+ jmp .BRLOOP2
+.ERLOOP2:
+ movsx eax, word [esi] ; temp = t1[k];
+ bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
+ inc eax
+ mov DWORD [esp+temp2], eax
+ ; Emit Huffman symbol for run length / number of bits
+ shl ecx, 4 ; temp3 = (r << 4) + nbits;
+ add ecx, eax
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
+ EMIT_BITS eax
+
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
+ ; Mask off any extra bits in code
+ mov ecx, DWORD [esp+temp2]
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits)
+ mov edx, DWORD [esp+temp3]
+ add esi, 2 ; ++k;
+ shr edx, 1 ; index >>= 1;
+
+ jmp .BLOOP2
+.ELOOP2:
+ ; If the last coef(s) were zero, emit an end-of-block code
+ lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
+ cmp edx, esi ; if (r > 0) {
+ je .EFN
+ mov eax, INT [ebp] ; code = actbl->ehufco[0];
+ movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
+ EMIT_BITS eax
+.EFN:
+ mov eax, [esp+buffer]
+ pop esi
+ ; Save put_buffer & put_bits
+ mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
+ mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits;
+
+ vzeroupper
+ pop ebp
+ pop edi
+ pop esi
+; pop edx ; need not be preserved
+ pop ecx
+ pop ebx
+ mov esp,ebp ; esp <- aligned ebp
+ pop esp ; esp <- original ebp
+ pop ebp
+ ret
+
+; For some reason, the OS X linker does not honor the request to align the
+; segment unless we do this.
+ align 32