return ScalarValue;
}
- // Get the last scalar instruction we generated for V. If the value is
- // known to be uniform after vectorization, this corresponds to lane zero
- // of the last unroll iteration. Otherwise, the last instruction is the one
- // we created for the last vector lane of the last unroll iteration.
+ // Get the last scalar instruction we generated for V and Part. If the value
+ // is known to be uniform after vectorization, this corresponds to lane zero
+ // of the Part unroll iteration. Otherwise, the last instruction is the one
+ // we created for the last vector lane of the Part unroll iteration.
unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
auto *LastInst =
- cast<Instruction>(getOrCreateScalarValue(V, UF - 1, LastLane));
+ cast<Instruction>(VectorLoopValueMap.getScalarValue(V, Part, LastLane));
// Set the insert point after the last scalarized instruction. This ensures
// the insertelement sequence will directly follow the scalar definitions.
auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
- // Get the vectorized previous value.
+ // Get the vectorized previous value of the last part UF - 1. It appears last
+ // among all unrolled iterations, due to the order of their construction.
Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
// Set the insertion point after the previous value if it is an instruction.
; UNROLL-NO-IC-NEXT: [[TMP28:%.*]] = load i32, i32* {{.*}}
; UNROLL-NO-IC-NEXT: [[TMP29:%.*]] = load i32, i32* {{.*}}
; UNROLL-NO-IC-NEXT: [[TMP30:%.*]] = load i32, i32* {{.*}}
-; UNROLL-NO-IC-NEXT: [[TMP31:%.*]] = load i32, i32* {{.*}}
-; UNROLL-NO-IC-NEXT: [[TMP32:%.*]] = load i32, i32* {{.*}}
-; UNROLL-NO-IC-NEXT: [[TMP33:%.*]] = load i32, i32* {{.*}}
-; UNROLL-NO-IC-NEXT: [[TMP34:%.*]] = load i32, i32* {{.*}}
; UNROLL-NO-IC-NEXT: [[TMP35:%.*]] = insertelement <4 x i32> undef, i32 [[TMP27]], i32 0
; UNROLL-NO-IC-NEXT: [[TMP36:%.*]] = insertelement <4 x i32> [[TMP35]], i32 [[TMP28]], i32 1
; UNROLL-NO-IC-NEXT: [[TMP37:%.*]] = insertelement <4 x i32> [[TMP36]], i32 [[TMP29]], i32 2
; UNROLL-NO-IC-NEXT: [[TMP38:%.*]] = insertelement <4 x i32> [[TMP37]], i32 [[TMP30]], i32 3
+; UNROLL-NO-IC-NEXT: [[TMP31:%.*]] = load i32, i32* {{.*}}
+; UNROLL-NO-IC-NEXT: [[TMP32:%.*]] = load i32, i32* {{.*}}
+; UNROLL-NO-IC-NEXT: [[TMP33:%.*]] = load i32, i32* {{.*}}
+; UNROLL-NO-IC-NEXT: [[TMP34:%.*]] = load i32, i32* {{.*}}
; UNROLL-NO-IC-NEXT: [[TMP39:%.*]] = insertelement <4 x i32> undef, i32 [[TMP31]], i32 0
; UNROLL-NO-IC-NEXT: [[TMP40:%.*]] = insertelement <4 x i32> [[TMP39]], i32 [[TMP32]], i32 1
; UNROLL-NO-IC-NEXT: [[TMP41:%.*]] = insertelement <4 x i32> [[TMP40]], i32 [[TMP33]], i32 2
for.end:
ret i32 %val.phi
}
+
+; We vectorize this first order recurrence, with a set of insertelements for
+; each unrolled part. Make sure these insertelements are generated in-order,
+; because the shuffle of the first order recurrence will be added after the
+; insertelement of the last part UF - 1, assuming the latter appears after the
+; insertelements of all other parts.
+;
+; int PR33613(double *b, double j, int d) {
+; int a = 0;
+; for(int i = 0; i < 10240; i++, b+=25) {
+; double f = b[d]; // Scalarize to form insertelements
+; if (j * f)
+; a++;
+; j = f;
+; }
+; return a;
+; }
+;
+; UNROLL-NO-IC-LABEL: @PR33613(
+; UNROLL-NO-IC: vector.body:
+; UNROLL-NO-IC: [[VECTOR_RECUR:%.*]] = phi <4 x double>
+; UNROLL-NO-IC: shufflevector <4 x double> [[VECTOR_RECUR]], <4 x double> {{.*}}, <4 x i32> <i32 3, i32 4, i32 5, i32 6>
+; UNROLL-NO-IC-NEXT: shufflevector <4 x double> {{.*}}, <4 x double> {{.*}}, <4 x i32> <i32 3, i32 4, i32 5, i32 6>
+; UNROLL-NO-IC-NOT: insertelement <4 x double>
+; UNROLL-NO-IC: middle.block:
+;
+define i32 @PR33613(double* %b, double %j, i32 %d) {
+entry:
+ %idxprom = sext i32 %d to i64
+ br label %for.body
+
+for.cond.cleanup:
+ %a.1.lcssa = phi i32 [ %a.1, %for.body ]
+ ret i32 %a.1.lcssa
+
+for.body:
+ %b.addr.012 = phi double* [ %b, %entry ], [ %add.ptr, %for.body ]
+ %i.011 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
+ %a.010 = phi i32 [ 0, %entry ], [ %a.1, %for.body ]
+ %j.addr.09 = phi double [ %j, %entry ], [ %0, %for.body ]
+ %arrayidx = getelementptr inbounds double, double* %b.addr.012, i64 %idxprom
+ %0 = load double, double* %arrayidx, align 8
+ %mul = fmul double %j.addr.09, %0
+ %tobool = fcmp une double %mul, 0.000000e+00
+ %inc = zext i1 %tobool to i32
+ %a.1 = add nsw i32 %a.010, %inc
+ %inc1 = add nuw nsw i32 %i.011, 1
+ %add.ptr = getelementptr inbounds double, double* %b.addr.012, i64 25
+ %exitcond = icmp eq i32 %inc1, 10240
+ br i1 %exitcond, label %for.cond.cleanup, label %for.body
+}