+#if defined(_MSC_VER) && _MSC_VER < 1300
+#pragma optimize("", off)
+#endif
+
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
-** version 3.7.0.1. By combining all the individual C code files into this
+** version 3.7.3. By combining all the individual C code files into this
** single large file, the entire code can be compiled as a one translation
** unit. This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately. Performance improvements
# define SQLITE_MAX_VARIABLE_NUMBER 999
#endif
-/* Maximum page size. The upper bound on this value is 32768. This a limit
-** imposed by the necessity of storing the value in a 2-byte unsigned integer
-** and the fact that the page size must be a power of 2.
+/* Maximum page size. The upper bound on this value is 65536. This a limit
+** imposed by the use of 16-bit offsets within each page.
**
-** If this limit is changed, then the compiled library is technically
-** incompatible with an SQLite library compiled with a different limit. If
-** a process operating on a database with a page-size of 65536 bytes
-** crashes, then an instance of SQLite compiled with the default page-size
-** limit will not be able to rollback the aborted transaction. This could
-** lead to database corruption.
+** Earlier versions of SQLite allowed the user to change this value at
+** compile time. This is no longer permitted, on the grounds that it creates
+** a library that is technically incompatible with an SQLite library
+** compiled with a different limit. If a process operating on a database
+** with a page-size of 65536 bytes crashes, then an instance of SQLite
+** compiled with the default page-size limit will not be able to rollback
+** the aborted transaction. This could lead to database corruption.
*/
-#ifndef SQLITE_MAX_PAGE_SIZE
-# define SQLITE_MAX_PAGE_SIZE 32768
+#ifdef SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_PAGE_SIZE
#endif
+#define SQLITE_MAX_PAGE_SIZE 65536
/*
#endif
/*
-** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
+** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
+** 0 means mutexes are permanently disable and the library is never
+** threadsafe. 1 means the library is serialized which is the highest
+** level of threadsafety. 2 means the libary is multithreaded - multiple
+** threads can use SQLite as long as no two threads try to use the same
+** database connection at the same time.
+**
** Older versions of SQLite used an optional THREADSAFE macro.
-** We support that for legacy
+** We support that for legacy.
*/
#if !defined(SQLITE_THREADSAFE)
#if defined(THREADSAFE)
# define SQLITE_THREADSAFE THREADSAFE
#else
-# define SQLITE_THREADSAFE 1
+# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
#endif
#endif
**
** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">Fossil configuration management
-** system</a>. ^The SQLITE_SOURCE_ID macro evalutes to
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
** a string which identifies a particular check-in of SQLite
** within its configuration management system. ^The SQLITE_SOURCE_ID
** string contains the date and time of the check-in (UTC) and an SHA1
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
-#define SQLITE_VERSION "3.7.0.1"
-#define SQLITE_VERSION_NUMBER 3007000
-#define SQLITE_SOURCE_ID "2010-08-04 12:31:11 042a1abb030a0711386add7eb6e10832cc8b0f57"
+#define SQLITE_VERSION "3.7.3"
+#define SQLITE_VERSION_NUMBER 3007003
+#define SQLITE_SOURCE_ID "2010-10-08 02:34:02 2677848087c9c090efb17c1893e77d6136a9111d"
/*
** CAPI3REF: Run-Time Library Version Numbers
** compile time. ^The SQLITE_ prefix may be omitted from the
** option name passed to sqlite3_compileoption_used().
**
-** ^The sqlite3_compileoption_get() function allows interating
+** ^The sqlite3_compileoption_get() function allows iterating
** over the list of options that were defined at compile time by
** returning the N-th compile time option string. ^If N is out of range,
** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
** sqlite3_compileoption_get().
**
** ^Support for the diagnostic functions sqlite3_compileoption_used()
-** and sqlite3_compileoption_get() may be omitted by specifing the
+** and sqlite3_compileoption_get() may be omitted by specifying the
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
**
** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
-** successfullly destroyed and all associated resources are deallocated.
+** successfully destroyed and all associated resources are deallocated.
**
** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with
** is often close. The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.
+**
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
*/
#define SQLITE_FCNTL_LOCKSTATE 1
#define SQLITE_GET_LOCKPROXYFILE 2
#define SQLITE_SET_LOCKPROXYFILE 3
#define SQLITE_LAST_ERRNO 4
#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
/*
** CAPI3REF: Mutex Handle
** The zName field holds the name of the VFS module. The name must
** be unique across all VFS modules.
**
-** SQLite will guarantee that the zFilename parameter to xOpen
+** ^SQLite guarantees that the zFilename parameter to xOpen
** is either a NULL pointer or string obtained
-** from xFullPathname(). SQLite further guarantees that
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 10 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
** the string will be valid and unchanged until xClose() is
** called. Because of the previous sentence,
** the [sqlite3_file] can safely store a pointer to the
** filename if it needs to remember the filename for some reason.
-** If the zFilename parameter is xOpen is a NULL pointer then xOpen
-** must invent its own temporary name for the file. Whenever the
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
** xFilename parameter is NULL it will also be the case that the
** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
**
** If xOpen() opens a file read-only then it sets *pOutFlags to
** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
**
-** SQLite will also add one of the following flags to the xOpen()
+** ^(SQLite will also add one of the following flags to the xOpen()
** call, depending on the object being opened:
**
** <ul>
** <li> [SQLITE_OPEN_TRANSIENT_DB]
** <li> [SQLITE_OPEN_SUBJOURNAL]
** <li> [SQLITE_OPEN_MASTER_JOURNAL]
-** </ul>
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
**
** The file I/O implementation can use the object type flags to
** change the way it deals with files. For example, an application
** </ul>
**
** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
**
-** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
** with the [SQLITE_OPEN_CREATE] flag, which are both directly
** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
** It is <i>not</i> used to indicate the file should be opened
** for exclusive access.
**
-** At least szOsFile bytes of memory are allocated by SQLite
+** ^At least szOsFile bytes of memory are allocated by SQLite
** to hold the [sqlite3_file] structure passed as the third
** argument to xOpen. The xOpen method does not have to
** allocate the structure; it should just fill it in. Note that
** element will be valid after xOpen returns regardless of the success
** or failure of the xOpen call.
**
-** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
** to test whether a file is at least readable. The file can be a
** directory.
**
-** SQLite will always allocate at least mxPathname+1 bytes for the
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
** output buffer xFullPathname. The exact size of the output buffer
** is also passed as a parameter to both methods. If the output buffer
** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
** of good-quality randomness into zOut. The return value is
** the actual number of bytes of randomness obtained.
** The xSleep() method causes the calling thread to sleep for at
-** least the number of microseconds given. The xCurrentTime()
+** least the number of microseconds given. ^The xCurrentTime()
** method returns a Julian Day Number for the current date and time as
** a floating point value.
-** The xCurrentTimeInt64() method returns, as an integer, the Julian
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
** Day Number multipled by 86400000 (the number of milliseconds in
** a 24-hour day).
** ^SQLite will use the xCurrentTimeInt64() method to get the current
** <ul>
** <li> [sqlite3_memory_used()]
** <li> [sqlite3_memory_highwater()]
-** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_soft_heap_limit64()]
** <li> [sqlite3_status()]
** </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** aligned memory buffer from which the scrach allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N). The sz
-** argument must be a multiple of 16. The sz parameter should be a few bytes
-** larger than the actual scratch space required due to internal overhead.
+** argument must be a multiple of 16.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
-** ^SQLite will use no more than one scratch buffer per thread. So
-** N should be set to the expected maximum number of threads. ^SQLite will
-** never require a scratch buffer that is more than 6 times the database
-** page size. ^If SQLite needs needs additional scratch memory beyond
-** what is provided by this configuration option, then
+** ^SQLite will use no more than two scratch buffers per thread. So
+** N should be set to twice the expected maximum number of threads.
+** ^SQLite will never require a scratch buffer that is more than 6
+** times the database page size. ^If SQLite needs needs additional
+** scratch memory beyond what is provided by this configuration option, then
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>
**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
** memory needs for the first N pages that it adds to cache. ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
-** ^The implementation might use one or more of the N buffers to hold
-** memory accounting information. The pointer in the first argument must
+** The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** or equal to the product of the second and third arguments. The buffer
** must be aligned to an 8-byte boundary. ^If the second argument to
** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
-** rounded down to the next smaller
-** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
**
** </dl>
*/
/*
** CAPI3REF: Convenience Routines For Running Queries
**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface. A result table records the
** complete query results from one or more queries.
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
-** As an example of the result table format, suppose a query result
+** ^(As an example of the result table format, suppose a query result
** is as follows:
**
** <blockquote><pre>
** azResult[5] = "28";
** azResult[6] = "Cindy";
** azResult[7] = "21";
-** </pre></blockquote>
+** </pre></blockquote>)^
**
** ^The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
** pointer given in its 3rd parameter.
**
** After the application has finished with the result from sqlite3_get_table(),
-** it should pass the result table pointer to sqlite3_free_table() in order to
+** it must pass the result table pointer to sqlite3_free_table() in order to
** release the memory that was malloced. Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly. Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
-** ^(The sqlite3_get_table() interface is implemented as a wrapper around
+** The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite. It uses only the public
** interface defined here. As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].)^
+** [sqlite3_errmsg()].
*/
SQLITE_API int sqlite3_get_table(
sqlite3 *db, /* An open database */
** is not freed.
**
** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
-** is always aligned to at least an 8 byte boundary.
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** ^The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes. ^The profile callback contains
** the original statement text and an estimate of wall-clock time
-** of how long that statement took to run.
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. The
+** sqlite3_profile() function is considered experimental and is
+** subject to change in future versions of SQLite.
*/
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
/*
** CAPI3REF: Query Progress Callbacks
**
-** ^This routine configures a callback function - the
-** progress callback - that is invoked periodically during long
-** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
+** database connection D. An example use for this
** interface is to keep a GUI updated during a large query.
**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
** ^If the progress callback returns non-zero, the operation is
** interrupted. This feature can be used to implement a
** "Cancel" button on a GUI progress dialog box.
**
-** The progress handler must not do anything that will modify
+** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
-** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
+** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_PRIVATECACHE] flags,
** then the behavior is undefined.
**
** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** [database connection] whose limit is to be set or queried. The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited. The third parameter is the
-** new limit for that construct. The function returns the old limit.)^
+** new limit for that construct.)^
**
** ^If the new limit is a negative number, the limit is unchanged.
-** ^(For the limit category of SQLITE_LIMIT_XYZ there is a
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
** [limits | hard upper bound]
-** set by a compile-time C preprocessor macro named
-** [limits | SQLITE_MAX_XYZ].
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
** (The "_LIMIT_" in the name is changed to "_MAX_".))^
** ^Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper bound.
**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
** Run-time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources. An example application might be a
**
** <dl>
** ^(<dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any string or BLOB or table row.<dd>)^
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
**
** ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
-** used to implement an SQL statement.</dd>)^
+** used to implement an SQL statement. This limit is not currently
+** enforced, though that might be added in some future release of
+** SQLite.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>)^
** [GLOB] operators.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
-** <dd>The maximum number of variables in an SQL statement that can
-** be bound.</dd>)^
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
**
** ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>)^
** <li>
** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. ^If the schema has changed in
-** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
-** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
-** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return.
+** statement and try to run it again.
** </li>
**
** <li>
** </li>
**
** <li>
-** ^If the value of a [parameter | host parameter] in the WHERE clause might
-** change the query plan for a statement, then the statement may be
-** automatically recompiled (as if there had been a schema change) on the first
-** [sqlite3_step()] call following any change to the
-** [sqlite3_bind_text | bindings] of the [parameter].
+** ^If the specific value bound to [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT2] compile-time option is enabled.
+** the
** </li>
** </ol>
*/
** then there is no distinction between protected and unprotected
** sqlite3_value objects and they can be used interchangeably. However,
** for maximum code portability it is recommended that applications
-** still make the distinction between between protected and unprotected
+** still make the distinction between protected and unprotected
** sqlite3_value objects even when not strictly required.
**
** ^The sqlite3_value objects that are passed as parameters into the
** </ul>
**
** In the templates above, NNN represents an integer literal,
-** and VVV represents an alphanumeric identifer.)^ ^The values of these
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
+**
+** See also: [sqlite3_data_count()]
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
/*
** CAPI3REF: Number of columns in a result set
**
-** ^The sqlite3_data_count(P) the number of columns in the
-** of the result set of [prepared statement] P.
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+**
+** See also: [sqlite3_column_count()]
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
** ^If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
** the number of bytes in that string.
-** ^The value returned does not include the zero terminator at the end
-** of the string. ^For clarity: the value returned is the number of
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
** bytes in the string, not the number of characters.
**
** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated. ^The return
-** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
-** pointer, possibly even a NULL pointer.
-**
-** ^The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
-** ^The zero terminator is not included in this count.
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
**
** ^The object returned by [sqlite3_column_value()] is an
** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
** used in the table for brevity and because they are familiar to most
** C programmers.
**
-** ^Note that when type conversions occur, pointers returned by prior
+** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
** sqlite3_column_text16() may be invalidated.
-** ^(Type conversions and pointer invalidations might occur
+** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
** sqlite3_column_text() is called. The content must be converted
** to UTF-8.</li>
-** </ul>)^
+** </ul>
**
** ^Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer points to will have been modified. Other kinds
+** that the prior pointer references will have been modified. Other kinds
** of conversion are done in place when it is possible, but sometimes they
** are not possible and in those cases prior pointers are invalidated.
**
-** ^(The safest and easiest to remember policy is to invoke these routines
+** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
** <ul>
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>)^
+** </ul>
**
** In other words, you should call sqlite3_column_text(),
** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
-** ^If the statement was executed successfully or not executed at all, then
-** SQLITE_OK is returned. ^If execution of the statement failed then an
-** [error code] or [extended error code] is returned.
-**
-** ^This routine can be called at any point during the execution of the
-** [prepared statement]. ^If the virtual machine has not
-** completed execution when this routine is called, that is like
-** encountering an error or an [sqlite3_interrupt | interrupt].
-** ^Incomplete updates may be rolled back and transactions canceled,
-** depending on the circumstances, and the
-** [error code] returned will be [SQLITE_ABORT].
+** ^If the most recent evaluation of the statement encountered no errors or
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
-** ^These two functions (collectively known as "function creation routines")
+** ^These functions (collectively known as "function creation routines")
** are used to add SQL functions or aggregates or to redefine the behavior
-** of existing SQL functions or aggregates. The only difference between the
-** two is that the second parameter, the name of the (scalar) function or
-** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
-** for sqlite3_create_function16().
+** of existing SQL functions or aggregates. The only differences between
+** these routines are the text encoding expected for
+** the the second parameter (the name of the function being created)
+** and the presence or absence of a destructor callback for
+** the application data pointer.
**
** ^The first parameter is the [database connection] to which the SQL
** function is to be added. ^If an application uses more than one database
** connection then application-defined SQL functions must be added
** to each database connection separately.
**
-** The second parameter is the name of the SQL function to be created or
-** redefined. ^The length of the name is limited to 255 bytes, exclusive of
-** the zero-terminator. Note that the name length limit is in bytes, not
-** characters. ^Any attempt to create a function with a longer name
-** will result in [SQLITE_ERROR] being returned.
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
**
** ^The third parameter (nArg)
** is the number of arguments that the SQL function or
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
-** The fourth parameter, eTextRep, specifies what
+** ^The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters. Any SQL function implementation should be able to work
-** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** its parameters. Every SQL function implementation must be able to work
+** with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
** more efficient with one encoding than another. ^An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** ^(The fifth parameter is an arbitrary pointer. The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
-** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
+** ^The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
** aggregate. ^A scalar SQL function requires an implementation of the xFunc
-** callback only; NULL pointers should be passed as the xStep and xFinal
+** callback only; NULL pointers must be passed as the xStep and xFinal
** parameters. ^An aggregate SQL function requires an implementation of xStep
-** and xFinal and NULL should be passed for xFunc. ^To delete an existing
-** SQL function or aggregate, pass NULL for all three function callbacks.
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL poiners for all three function
+** callbacks.
+**
+** ^If the tenth parameter to sqlite3_create_function_v2() is not NULL,
+** then it is invoked when the function is deleted, either by being
+** overloaded or when the database connection closes.
+** ^When the destructure callback of the tenth parameter is invoked, it
+** is passed a single argument which is a copy of the pointer which was
+** the fifth parameter to sqlite3_create_function_v2().
**
** ^It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** between UTF8 and UTF16.
**
** ^Built-in functions may be overloaded by new application-defined functions.
-** ^The first application-defined function with a given name overrides all
-** built-in functions in the same [database connection] with the same name.
-** ^Subsequent application-defined functions of the same name only override
-** prior application-defined functions that are an exact match for the
-** number of parameters and preferred encoding.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces. However, such calls must not
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
/*
** CAPI3REF: Text Encodings
/*
** CAPI3REF: Obtain Aggregate Function Context
**
-** Implementions of aggregate SQL functions use this
+** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
** ^The first time the sqlite3_aggregate_context(C,N) routine is called
/*
** CAPI3REF: Define New Collating Sequences
**
-** These functions are used to add new collation sequences to the
-** [database connection] specified as the first argument.
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
**
-** ^The name of the new collation sequence is specified as a UTF-8 string
+** ^The name of the collation is a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string for sqlite3_create_collation16(). ^In all cases
-** the name is passed as the second function argument.
-**
-** ^The third argument may be one of the constants [SQLITE_UTF8],
-** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
-** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian, or UTF-16 big-endian, respectively. ^The
-** third argument might also be [SQLITE_UTF16] to indicate that the routine
-** expects pointers to be UTF-16 strings in the native byte order, or the
-** argument can be [SQLITE_UTF16_ALIGNED] if the
-** the routine expects pointers to 16-bit word aligned strings
-** of UTF-16 in the native byte order.
-**
-** A pointer to the user supplied routine must be passed as the fifth
-** argument. ^If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore).
-** ^Each time the application supplied function is invoked, it is passed
-** as its first parameter a copy of the void* passed as the fourth argument
-** to sqlite3_create_collation() or sqlite3_create_collation16().
-**
-** ^The remaining arguments to the application-supplied routine are two strings,
-** each represented by a (length, data) pair and encoded in the encoding
-** that was passed as the third argument when the collation sequence was
-** registered. The application defined collation routine should
-** return negative, zero or positive if the first string is less than,
-** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCallback.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is a application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCallback, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCallback argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The collating function must return an
+** integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must alway return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A<B THEN B>A.
+** <li> If A<B and B<C then A<C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
**
** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** except that it takes an extra argument which is a destructor for
-** the collation. ^The destructor is called when the collation is
-** destroyed and is passed a copy of the fourth parameter void* pointer
-** of the sqlite3_create_collation_v2().
-** ^Collations are destroyed when they are overridden by later calls to the
-** collation creation functions or when the [database connection] is closed
-** using [sqlite3_close()].
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
**
** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
sqlite3*,
const char *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int sqlite3_create_collation_v2(
sqlite3*,
const char *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDestroy)(void*)
);
sqlite3*,
const void *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*)
);
/*
** CAPI3REF: Suspend Execution For A Short Time
**
-** ^The sqlite3_sleep() function causes the current thread to suspend execution
+** The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
-** ^If the operating system does not support sleep requests with
+** If the operating system does not support sleep requests with
** millisecond time resolution, then the time will be rounded up to
-** the nearest second. ^The number of milliseconds of sleep actually
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** ^SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object.
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
*/
SQLITE_API int sqlite3_sleep(int);
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
*/
SQLITE_API int sqlite3_release_memory(int);
/*
** CAPI3REF: Impose A Limit On Heap Size
**
-** ^The sqlite3_soft_heap_limit() interface places a "soft" limit
-** on the amount of heap memory that may be allocated by SQLite.
-** ^If an internal allocation is requested that would exceed the
-** soft heap limit, [sqlite3_release_memory()] is invoked one or
-** more times to free up some space before the allocation is performed.
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
**
-** ^The limit is called "soft" because if [sqlite3_release_memory()]
-** cannot free sufficient memory to prevent the limit from being exceeded,
-** the memory is allocated anyway and the current operation proceeds.
+** ^The return value from sqlite3_soft_heap_limit64() is the size of
+** the soft heap limit prior to the call. ^If the argument N is negative
+** then no change is made to the soft heap limit. Hence, the current
+** size of the soft heap limit can be determined by invoking
+** sqlite3_soft_heap_limit64() with a negative argument.
**
-** ^A negative or zero value for N means that there is no soft heap limit and
-** [sqlite3_release_memory()] will only be called when memory is exhausted.
-** ^The default value for the soft heap limit is zero.
+** ^If the argument N is zero then the soft heap limit is disabled.
**
-** ^(SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot be honored, execution will
-** continue without error or notification.)^ This is why the limit is
-** called a "soft" limit. It is advisory only.
+** ^(The soft heap limit is not enforced in the current implementation
+** if one or more of following conditions are true:
**
-** Prior to SQLite version 3.5.0, this routine only constrained the memory
-** allocated by a single thread - the same thread in which this routine
-** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
-** applied to all threads. The value specified for the soft heap limit
-** is an upper bound on the total memory allocation for all threads. In
-** version 3.5.0 there is no mechanism for limiting the heap usage for
-** individual threads.
+** <ul>
+** <li> The soft heap limit is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specifed using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** Beginning with SQLite version 3.7.3, the soft heap limit is enforced
+** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT]
+** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT],
+** the soft heap limit is enforced on every memory allocation. Without
+** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced
+** when memory is allocated by the page cache. Testing suggests that because
+** the page cache is the predominate memory user in SQLite, most
+** applications will achieve adequate soft heap limit enforcement without
+** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** The circumstances under which SQLite will enforce the soft heap limit may
+** changes in future releases of SQLite.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
*/
-SQLITE_API void sqlite3_soft_heap_limit(int);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
/*
** CAPI3REF: Extract Metadata About A Column Of A Table
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-** CAPI3REF: Automatically Load An Extensions
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked SQLite extension
+** that is to be automatically loaded into all new database connections.
+**
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects and integer result as if the signature of the
+** entry point where as follows:
**
-** ^This API can be invoked at program startup in order to register
-** one or more statically linked extensions that will be available
-** to all new [database connections].
+** <blockquote><pre>
+** int xEntryPoint(
+** sqlite3 *db,
+** const char **pzErrMsg,
+** const struct sqlite3_api_routines *pThunk
+** );
+** </pre></blockquote>)^
**
-** ^(This routine stores a pointer to the extension entry point
-** in an array that is obtained from [sqlite3_malloc()]. That memory
-** is deallocated by [sqlite3_reset_auto_extension()].)^
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
**
-** ^This function registers an extension entry point that is
-** automatically invoked whenever a new [database connection]
-** is opened using [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()].
-** ^Duplicate extensions are detected so calling this routine
-** multiple times with the same extension is harmless.
-** ^Automatic extensions apply across all threads.
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
+**
+** See also: [sqlite3_reset_auto_extension()].
*/
SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
/*
** CAPI3REF: Reset Automatic Extension Loading
**
-** ^(This function disables all previously registered automatic
-** extensions. It undoes the effect of all prior
-** [sqlite3_auto_extension()] calls.)^
-**
-** ^This function disables automatic extensions in all threads.
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void sqlite3_reset_auto_extension(void);
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
-** The sqlite3_index_info structure and its substructures is used to
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
** pass information into and receive the reply from the [xBestIndex]
** method of a [virtual table module]. The fields under **Inputs** are the
** inputs to xBestIndex and are read-only. xBestIndex inserts its
**
** ^(The aConstraint[] array records WHERE clause constraints of the form:
**
-** <pre>column OP expr</pre>
+** <blockquote>column OP expr</blockquote>
**
** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is
-** stored in aConstraint[].op.)^ ^(The index of the column is stored in
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.)^
int orderByConsumed; /* True if output is already ordered */
double estimatedCost; /* Estimated cost of using this index */
};
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros defined the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the wHERE clause of
+** a query that uses a [virtual table].
+*/
#define SQLITE_INDEX_CONSTRAINT_EQ 2
#define SQLITE_INDEX_CONSTRAINT_GT 4
#define SQLITE_INDEX_CONSTRAINT_LE 8
**
** ^The xMutexInit method defined by this structure is invoked as
** part of system initialization by the sqlite3_initialize() function.
-** ^The xMutexInit routine is calle by SQLite exactly once for each
+** ^The xMutexInit routine is called by SQLite exactly once for each
** effective call to [sqlite3_initialize()].
**
** ^The xMutexEnd method defined by this structure is invoked as
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe. ^It must be harmless to
-** invoke xMutexInit() mutiple times within the same process and without
+** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd(). Second and subsequent calls to
** xMutexInit() must be no-ops.
**
#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
#define SQLITE_TESTCTRL_ISKEYWORD 16
#define SQLITE_TESTCTRL_PGHDRSZ 17
-#define SQLITE_TESTCTRL_LAST 17
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 18
+#define SQLITE_TESTCTRL_LAST 18
/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
-** about the preformance of SQLite, and optionally to reset various
+** about the performance of SQLite, and optionally to reset various
** highwater marks. ^The first argument is an integer code for
** the specific parameter to measure. ^(Recognized integer codes
** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^
** ^(Other parameters record only the highwater mark and not the current
** value. For these latter parameters nothing is written into *pCurrent.)^
**
-** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** ^The sqlite3_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic. This routine can be
** *pHighwater parameter to [sqlite3_status()] is of interest.
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
+** ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations.</dd>)^
+**
** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
** <dd>This parameter returns the number of pages used out of the
** [pagecache memory allocator] that was configured using
**
** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of page cache
-** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
** buffer and where forced to overflow to [sqlite3_malloc()]. The
** returned value includes allocations that overflowed because they
** where too large (they were larger than the "sz" parameter to
**
** ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of scratch memory
-** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH]
** buffer and where forced to overflow to [sqlite3_malloc()]. The values
** returned include overflows because the requested allocation was too
** larger (that is, because the requested allocation was larger than the
#define SQLITE_STATUS_PARSER_STACK 6
#define SQLITE_STATUS_PAGECACHE_SIZE 7
#define SQLITE_STATUS_SCRATCH_SIZE 8
+#define SQLITE_STATUS_MALLOC_COUNT 9
/*
** CAPI3REF: Database Connection Status
** database connection object to be interrogated. ^The second argument
** is an integer constant, taken from the set of
** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros, that
-** determiness the parameter to interrogate. The set of
+** determines the parameter to interrogate. The set of
** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros is likely
** to grow in future releases of SQLite.
**
** the resetFlg is true, then the highest instantaneous value is
** reset back down to the current value.
**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>)^
**
-** <dt>SQLITE_DBSTATUS_CACHE_USED</dt>
-** <dd>^This parameter returns the approximate number of of bytes of heap
-** memory used by all pager caches associated with the database connection.
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
** </dd>
** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
#define SQLITE_DBSTATUS_CACHE_USED 1
-#define SQLITE_DBSTATUS_MAX 1 /* Largest defined DBSTATUS */
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_MAX 3 /* Largest defined DBSTATUS */
/*
**
** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an
-** instance of the sqlite3_pcache_methods structure.)^ The majority of the
-** heap memory used by SQLite is used by the page cache to cache data read
-** from, or ready to be written to, the database file. By implementing a
-** custom page cache using this API, an application can control more
-** precisely the amount of memory consumed by SQLite, the way in which
+** instance of the sqlite3_pcache_methods structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
** that memory is allocated and released, and the policies used to
** determine exactly which parts of a database file are cached and for
** how long.
**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
** ^(The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config]. Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.)^
**
-** ^The xInit() method is called once for each call to [sqlite3_initialize()]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
** (usually only once during the lifetime of the process). ^(The xInit()
** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^
-** ^The xInit() method can set up up global structures and/or any mutexes
+** The intent of the xInit() method is to set up global data structures
** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
**
-** ^The xShutdown() method is called from within [sqlite3_shutdown()],
-** if the application invokes this API. It can be used to clean up
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
**
-** ^SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
-** the xInit method, so the xInit method need not be threadsafe. ^The
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either. All other methods must be threadsafe
** in multithreaded applications.
** ^SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
-** ^The xCreate() method is used to construct a new cache instance. SQLite
-** will typically create one cache instance for each open database file,
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
** though this is not guaranteed. ^The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache. ^szPage will not be a power of two. ^szPage
** will the page size of the database file that is to be cached plus an
-** increment (here called "R") of about 100 or 200. ^SQLite will use the
+** increment (here called "R") of about 100 or 200. SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk. The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** ^R is constant for a particular build of SQLite. ^The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
-** false if it is used for an in-memory database. ^The cache implementation
+** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
-** ^In other words, a cache created with bPurgeable set to false will
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
** never contain any unpinned pages.
**
** ^(The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
-** the SQLite "[PRAGMA cache_size]" command.)^ ^As with the bPurgeable
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
** parameter, the implementation is not required to do anything with this
** value; it is advisory only.
**
-** ^The xPagecount() method should return the number of pages currently
-** stored in the cache.
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
**
-** ^The xFetch() method is used to fetch a page and return a pointer to it.
-** ^A 'page', in this context, is a buffer of szPage bytes aligned at an
-** 8-byte boundary. ^The page to be fetched is determined by the key. ^The
-** mimimum key value is 1. After it has been retrieved using xFetch, the page
+** The xFetch() method locates a page in the cache and returns a pointer to
+** the page, or a NULL pointer.
+** A "page", in this context, means a buffer of szPage bytes aligned at an
+** 8-byte boundary. The page to be fetched is determined by the key. ^The
+** mimimum key value is 1. After it has been retrieved using xFetch, the page
** is considered to be "pinned".
**
-** ^If the requested page is already in the page cache, then the page cache
+** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
-** intact. ^(If the requested page is not already in the cache, then the
-** behavior of the cache implementation is determined by the value of the
-** createFlag parameter passed to xFetch, according to the following table:
+** intact. If the requested page is not already in the cache, then the
+** behavior of the cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache
** Otherwise return NULL.
** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
** NULL if allocating a new page is effectively impossible.
-** </table>)^
+** </table>
**
-** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If
-** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the to xFetch() calls, SQLite may
** attempt to unpin one or more cache pages by spilling the content of
-** pinned pages to disk and synching the operating system disk cache. After
-** attempting to unpin pages, the xFetch() method will be invoked again with
-** a createFlag of 2.
+** pinned pages to disk and synching the operating system disk cache.
**
** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
-** as its second argument. ^(If the third parameter, discard, is non-zero,
-** then the page should be evicted from the cache. In this case SQLite
-** assumes that the next time the page is retrieved from the cache using
-** the xFetch() method, it will be zeroed.)^ ^If the discard parameter is
-** zero, then the page is considered to be unpinned. ^The cache implementation
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
** may choose to evict unpinned pages at any time.
**
-** ^(The cache is not required to perform any reference counting. A single
+** The cache must not perform any reference counting. A single
** call to xUnpin() unpins the page regardless of the number of prior calls
-** to xFetch().)^
+** to xFetch().
**
-** ^The xRekey() method is used to change the key value associated with the
-** page passed as the second argument from oldKey to newKey. ^If the cache
-** previously contains an entry associated with newKey, it should be
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
** discarded. ^Any prior cache entry associated with newKey is guaranteed not
** to be pinned.
**
-** ^When SQLite calls the xTruncate() method, the cache must discard all
+** When SQLite calls the xTruncate() method, the cache must discard all
** existing cache entries with page numbers (keys) greater than or equal
-** to the value of the iLimit parameter passed to xTruncate(). ^If any
+** to the value of the iLimit parameter passed to xTruncate(). If any
** of these pages are pinned, they are implicitly unpinned, meaning that
** they can be safely discarded.
**
**
** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed
-** up and the total number of pages in the source databae file.
+** up and the total number of pages in the source database file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** blocked connection already has a registered unlock-notify callback,
** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
** called with a NULL pointer as its second argument, then any existing
-** unlock-notify callback is cancelled. ^The blocked connections
+** unlock-notify callback is canceled. ^The blocked connections
** unlock-notify callback may also be canceled by closing the blocked
** connection using [sqlite3_close()].
**
**
** ^The [sqlite3_strnicmp()] API allows applications and extensions to
** compare the contents of two buffers containing UTF-8 strings in a
-** case-indendent fashion, using the same definition of case independence
+** case-independent fashion, using the same definition of case independence
** that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
#endif
#endif
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#if 0
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ double *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+
/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
+typedef struct FuncDestructor FuncDestructor;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
** NOTE: These values must match the corresponding PAGER_ values in
** pager.h.
*/
-#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
+#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
-#define BTREE_MEMORY 4 /* In-memory DB. No argument */
-#define BTREE_READONLY 8 /* Open the database in read-only mode */
-#define BTREE_READWRITE 16 /* Open for both reading and writing */
-#define BTREE_CREATE 32 /* Create the database if it does not exist */
+#define BTREE_MEMORY 4 /* This is an in-memory DB */
+#define BTREE_SINGLE 8 /* The file contains at most 1 b-tree */
+#define BTREE_UNORDERED 16 /* Use of a hash implementation is OK */
SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
-** of the following flags:
+** of the flags shown below.
+**
+** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
+** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
+** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With
+** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
+** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL
+** indices.)
*/
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
-#define BTREE_ZERODATA 2 /* Table has keys only - no data */
-#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
+#define BTREE_BLOBKEY 2 /* Table has keys only - no data */
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*);
SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
#endif
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*);
+#endif
+
/*
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures. So make the
int nOp; /* Elements in aOp[] */
int nMem; /* Number of memory cells required */
int nCsr; /* Number of cursors required */
- int nRef; /* Number of pointers to this structure */
void *token; /* id that may be used to recursive triggers */
+ SubProgram *pNext; /* Next sub-program already visited */
};
/*
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
-SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int);
SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
+#endif
+
#ifndef NDEBUG
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
*/
#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
+#define PAGER_MEMORY 0x0004 /* In-memory database */
/*
** Valid values for the second argument to sqlite3PagerLockingMode().
/* Functions used to configure a Pager object. */
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
-SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*, int);
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
/* Functions used to manage pager transactions and savepoints. */
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*);
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*);
SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*);
SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
#define sqlite3_mutex_enter(X)
#define sqlite3_mutex_try(X) SQLITE_OK
#define sqlite3_mutex_leave(X)
-#define sqlite3_mutex_held(X) 1
-#define sqlite3_mutex_notheld(X) 1
+#define sqlite3_mutex_held(X) ((void)(X),1)
+#define sqlite3_mutex_notheld(X) ((void)(X),1)
#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
#define sqlite3MutexInit() SQLITE_OK
#define sqlite3MutexEnd()
/*
** An instance of the following structure stores a database schema.
-**
-** If there are no virtual tables configured in this schema, the
-** Schema.db variable is set to NULL. After the first virtual table
-** has been added, it is set to point to the database connection
-** used to create the connection. Once a virtual table has been
-** added to the Schema structure and the Schema.db variable populated,
-** only that database connection may use the Schema to prepare
-** statements.
*/
struct Schema {
int schema_cookie; /* Database schema version number for this file */
u8 enc; /* Text encoding used by this database */
u16 flags; /* Flags associated with this schema */
int cache_size; /* Number of pages to use in the cache */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3 *db; /* "Owner" connection. See comment above */
-#endif
};
/*
int nStatement; /* Number of nested statement-transactions */
u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
i64 nDeferredCons; /* Net deferred constraints this transaction. */
+ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
/* The following variables are all protected by the STATIC_MASTER
void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
char *zName; /* SQL name of the function. */
FuncDef *pHash; /* Next with a different name but the same hash */
+ FuncDestructor *pDestructor; /* Reference counted destructor function */
+};
+
+/*
+** This structure encapsulates a user-function destructor callback (as
+** configured using create_function_v2()) and a reference counter. When
+** create_function_v2() is called to create a function with a destructor,
+** a single object of this type is allocated. FuncDestructor.nRef is set to
+** the number of FuncDef objects created (either 1 or 3, depending on whether
+** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
+** member of each of the new FuncDef objects is set to point to the allocated
+** FuncDestructor.
+**
+** Thereafter, when one of the FuncDef objects is deleted, the reference
+** count on this object is decremented. When it reaches 0, the destructor
+** is invoked and the FuncDestructor structure freed.
+*/
+struct FuncDestructor {
+ int nRef;
+ void (*xDestroy)(void *);
+ void *pUserData;
};
/*
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
{nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
- SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
{nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
- pArg, 0, xFunc, 0, 0, #zName, 0}
+ pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
- {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
+ {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
{nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
- SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
+ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
/*
** All current savepoints are stored in a linked list starting at
** of a SELECT statement.
*/
struct Table {
- sqlite3 *dbMem; /* DB connection used for lookaside allocations. */
char *zName; /* Name of the table or view */
int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
int nCol; /* Number of columns in this table */
Column *aCol; /* Information about each column */
Index *pIndex; /* List of SQL indexes on this table. */
int tnum; /* Root BTree node for this table (see note above) */
+ unsigned nRowEst; /* Estimated rows in table - from sqlite_stat1 table */
Select *pSelect; /* NULL for tables. Points to definition if a view. */
u16 nRef; /* Number of pointers to this Table */
u8 tabFlags; /* Mask of TF_* values */
*/
struct KeyInfo {
sqlite3 *db; /* The database connection */
- u8 enc; /* Text encoding - one of the TEXT_Utf* values */
+ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
u16 nField; /* Number of entries in aColl[] */
- u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
+ u8 *aSortOrder; /* Sort order for each column. May be NULL */
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
};
int nAlloc; /* Amount of space allocated in zText */
int mxAlloc; /* Maximum allowed string length */
u8 mallocFailed; /* Becomes true if any memory allocation fails */
- u8 useMalloc; /* True if zText is enlargeable using realloc */
+ u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */
u8 tooBig; /* Becomes true if string size exceeds limits */
};
** Internal function prototypes
*/
SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
-SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
SQLITE_PRIVATE int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp
SQLITE_PRIVATE void sqlite3PageFree(void*);
SQLITE_PRIVATE void sqlite3MemSetDefault(void);
SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
-SQLITE_PRIVATE int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void);
/*
** On systems with ample stack space and that support alloca(), make
#endif
SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
-SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
-SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse*,int,int);
SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
#endif
SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
-SQLITE_PRIVATE int sqlite3BtreeFactory(sqlite3 *db, const char *zFilename,
- int omitJournal, int nCache, int flags, Btree **ppBtree);
SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
-SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8);
SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
-SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8**);
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
-SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
+SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
-SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
+SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
-SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index*);
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
void (*)(sqlite3_context*,int,sqlite3_value **),
- void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
+ void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
+ FuncDestructor *pDestructor
+);
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
# define sqlite3VtabUnlock(X)
# define sqlite3VtabUnlockList(X)
#else
-SQLITE_PRIVATE void sqlite3VtabClear(Table*);
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*);
SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **);
SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
#define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
-SQLITE_PRIVATE void sqlite3FkDelete(Table*);
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*);
#else
- #define sqlite3FkDelete(a)
+ #define sqlite3FkDelete(a,b)
#endif
** sqlite3MemdebugHasType() returns true if any of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
** sqlite3MemdebugHasType() is intended for use inside assert() statements.
-** For example:
**
-** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+** sqlite3MemdebugNoType() returns true if none of the bits in its second
+** argument match the type set by the previous sqlite3MemdebugSetType().
**
** Perhaps the most important point is the difference between MEMTYPE_HEAP
-** and MEMTYPE_DB. If an allocation is MEMTYPE_DB, that means it might have
-** been allocated by lookaside, except the allocation was too large or
-** lookaside was already full. It is important to verify that allocations
-** that might have been satisfied by lookaside are not passed back to
-** non-lookaside free() routines. Asserts such as the example above are
-** placed on the non-lookaside free() routines to verify this constraint.
+** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
+** it might have been allocated by lookaside, except the allocation was
+** too large or lookaside was already full. It is important to verify
+** that allocations that might have been satisfied by lookaside are not
+** passed back to non-lookaside free() routines. Asserts such as the
+** example above are placed on the non-lookaside free() routines to verify
+** this constraint.
**
** All of this is no-op for a production build. It only comes into
** play when the SQLITE_MEMDEBUG compile-time option is used.
#ifdef SQLITE_MEMDEBUG
SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8);
SQLITE_PRIVATE int sqlite3MemdebugHasType(void*,u8);
+SQLITE_PRIVATE int sqlite3MemdebugNoType(void*,u8);
#else
# define sqlite3MemdebugSetType(X,Y) /* no-op */
# define sqlite3MemdebugHasType(X,Y) 1
+# define sqlite3MemdebugNoType(X,Y) 1
#endif
-#define MEMTYPE_HEAP 0x01 /* General heap allocations */
-#define MEMTYPE_DB 0x02 /* Associated with a database connection */
-#define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
-#define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
+#define MEMTYPE_HEAP 0x01 /* General heap allocations */
+#define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */
+#define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
+#define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
+#define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */
#endif /* _SQLITEINT_H_ */
** This module implements the sqlite3_status() interface and related
** functionality.
*/
-
+/************** Include vdbeInt.h in the middle of status.c ******************/
+/************** Begin file vdbeInt.h *****************************************/
/*
-** Variables in which to record status information.
-*/
-typedef struct sqlite3StatType sqlite3StatType;
-static SQLITE_WSD struct sqlite3StatType {
- int nowValue[9]; /* Current value */
- int mxValue[9]; /* Maximum value */
-} sqlite3Stat = { {0,}, {0,} };
-
-
-/* The "wsdStat" macro will resolve to the status information
-** state vector. If writable static data is unsupported on the target,
-** we have to locate the state vector at run-time. In the more common
-** case where writable static data is supported, wsdStat can refer directly
-** to the "sqlite3Stat" state vector declared above.
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
*/
-#ifdef SQLITE_OMIT_WSD
-# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
-# define wsdStat x[0]
-#else
-# define wsdStatInit
-# define wsdStat sqlite3Stat
-#endif
+#ifndef _VDBEINT_H_
+#define _VDBEINT_H_
/*
-** Return the current value of a status parameter.
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
*/
-SQLITE_PRIVATE int sqlite3StatusValue(int op){
- wsdStatInit;
- assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
- return wsdStat.nowValue[op];
-}
+typedef struct VdbeOp Op;
/*
-** Add N to the value of a status record. It is assumed that the
-** caller holds appropriate locks.
+** Boolean values
*/
-SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
- wsdStatInit;
- assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
- wsdStat.nowValue[op] += N;
- if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
- wsdStat.mxValue[op] = wsdStat.nowValue[op];
- }
-}
+typedef unsigned char Bool;
/*
-** Set the value of a status to X.
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+**
+** If the VdbeCursor.isTriggerRow flag is set it means that this cursor is
+** really a single row that represents the NEW or OLD pseudo-table of
+** a row trigger. The data for the row is stored in VdbeCursor.pData and
+** the rowid is in VdbeCursor.iKey.
*/
-SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
- wsdStatInit;
- assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
- wsdStat.nowValue[op] = X;
- if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
- wsdStat.mxValue[op] = wsdStat.nowValue[op];
- }
-}
+struct VdbeCursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int iDb; /* Index of cursor database in db->aDb[] (or -1) */
+ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
+ Bool zeroed; /* True if zeroed out and ready for reuse */
+ Bool rowidIsValid; /* True if lastRowid is valid */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
+ Bool isTable; /* True if a table requiring integer keys */
+ Bool isIndex; /* True if an index containing keys only - no data */
+ Bool isOrdered; /* True if the underlying table is BTREE_UNORDERED */
+ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
+ Btree *pBt; /* Separate file holding temporary table */
+ int pseudoTableReg; /* Register holding pseudotable content. */
+ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
+ int nField; /* Number of fields in the header */
+ i64 seqCount; /* Sequence counter */
+ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
+ const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
+
+ /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or
+ ** OP_IsUnique opcode on this cursor. */
+ int seekResult;
+
+ /* Cached information about the header for the data record that the
+ ** cursor is currently pointing to. Only valid if cacheStatus matches
+ ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
+ ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
+ ** the cache is out of date.
+ **
+ ** aRow might point to (ephemeral) data for the current row, or it might
+ ** be NULL.
+ */
+ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
+ int payloadSize; /* Total number of bytes in the record */
+ u32 *aType; /* Type values for all entries in the record */
+ u32 *aOffset; /* Cached offsets to the start of each columns data */
+ u8 *aRow; /* Data for the current row, if all on one page */
+};
+typedef struct VdbeCursor VdbeCursor;
/*
-** Query status information.
+** When a sub-program is executed (OP_Program), a structure of this type
+** is allocated to store the current value of the program counter, as
+** well as the current memory cell array and various other frame specific
+** values stored in the Vdbe struct. When the sub-program is finished,
+** these values are copied back to the Vdbe from the VdbeFrame structure,
+** restoring the state of the VM to as it was before the sub-program
+** began executing.
**
-** This implementation assumes that reading or writing an aligned
-** 32-bit integer is an atomic operation. If that assumption is not true,
-** then this routine is not threadsafe.
+** Frames are stored in a linked list headed at Vdbe.pParent. Vdbe.pParent
+** is the parent of the current frame, or zero if the current frame
+** is the main Vdbe program.
*/
-SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
- wsdStatInit;
- if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
- return SQLITE_MISUSE_BKPT;
- }
- *pCurrent = wsdStat.nowValue[op];
- *pHighwater = wsdStat.mxValue[op];
- if( resetFlag ){
- wsdStat.mxValue[op] = wsdStat.nowValue[op];
- }
- return SQLITE_OK;
-}
+typedef struct VdbeFrame VdbeFrame;
+struct VdbeFrame {
+ Vdbe *v; /* VM this frame belongs to */
+ int pc; /* Program Counter */
+ Op *aOp; /* Program instructions */
+ int nOp; /* Size of aOp array */
+ Mem *aMem; /* Array of memory cells */
+ int nMem; /* Number of entries in aMem */
+ VdbeCursor **apCsr; /* Element of Vdbe cursors */
+ u16 nCursor; /* Number of entries in apCsr */
+ void *token; /* Copy of SubProgram.token */
+ int nChildMem; /* Number of memory cells for child frame */
+ int nChildCsr; /* Number of cursors for child frame */
+ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
+ int nChange; /* Statement changes (Vdbe.nChanges) */
+ VdbeFrame *pParent; /* Parent of this frame */
+};
+
+#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
/*
-** Query status information for a single database connection
+** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
-SQLITE_API int sqlite3_db_status(
- sqlite3 *db, /* The database connection whose status is desired */
- int op, /* Status verb */
- int *pCurrent, /* Write current value here */
- int *pHighwater, /* Write high-water mark here */
- int resetFlag /* Reset high-water mark if true */
-){
- switch( op ){
- case SQLITE_DBSTATUS_LOOKASIDE_USED: {
- *pCurrent = db->lookaside.nOut;
- *pHighwater = db->lookaside.mxOut;
- if( resetFlag ){
- db->lookaside.mxOut = db->lookaside.nOut;
- }
- break;
- }
-
- /*
- ** Return an approximation for the amount of memory currently used
- ** by all pagers associated with the given database connection. The
- ** highwater mark is meaningless and is returned as zero.
- */
- case SQLITE_DBSTATUS_CACHE_USED: {
- int totalUsed = 0;
- int i;
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- Pager *pPager = sqlite3BtreePager(pBt);
- totalUsed += sqlite3PagerMemUsed(pPager);
- }
- }
- *pCurrent = totalUsed;
- *pHighwater = 0;
- break;
- }
- default: {
- return SQLITE_ERROR;
- }
- }
- return SQLITE_OK;
-}
+#define CACHE_STALE 0
-/************** End of status.c **********************************************/
-/************** Begin file date.c ********************************************/
/*
-** 2003 October 31
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement date and time
-** functions for SQLite.
-**
-** There is only one exported symbol in this file - the function
-** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
-** All other code has file scope.
-**
-** SQLite processes all times and dates as Julian Day numbers. The
-** dates and times are stored as the number of days since noon
-** in Greenwich on November 24, 4714 B.C. according to the Gregorian
-** calendar system.
-**
-** 1970-01-01 00:00:00 is JD 2440587.5
-** 2000-01-01 00:00:00 is JD 2451544.5
+** Internally, the vdbe manipulates nearly all SQL values as Mem
+** structures. Each Mem struct may cache multiple representations (string,
+** integer etc.) of the same value. A value (and therefore Mem structure)
+** has the following properties:
**
-** This implemention requires years to be expressed as a 4-digit number
-** which means that only dates between 0000-01-01 and 9999-12-31 can
-** be represented, even though julian day numbers allow a much wider
-** range of dates.
+** Each value has a manifest type. The manifest type of the value stored
+** in a Mem struct is returned by the MemType(Mem*) macro. The type is
+** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
+** SQLITE_BLOB.
+*/
+struct Mem {
+ union {
+ i64 i; /* Integer value. */
+ int nZero; /* Used when bit MEM_Zero is set in flags */
+ FuncDef *pDef; /* Used only when flags==MEM_Agg */
+ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
+ VdbeFrame *pFrame; /* Used when flags==MEM_Frame */
+ } u;
+ double r; /* Real value */
+ sqlite3 *db; /* The associated database connection */
+ char *z; /* String or BLOB value */
+ int n; /* Number of characters in string value, excluding '\0' */
+ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
+ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
+ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
+#ifdef SQLITE_DEBUG
+ Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */
+ void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */
+#endif
+ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
+ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
+};
+
+/* One or more of the following flags are set to indicate the validOK
+** representations of the value stored in the Mem struct.
**
-** The Gregorian calendar system is used for all dates and times,
-** even those that predate the Gregorian calendar. Historians usually
-** use the Julian calendar for dates prior to 1582-10-15 and for some
-** dates afterwards, depending on locale. Beware of this difference.
+** If the MEM_Null flag is set, then the value is an SQL NULL value.
+** No other flags may be set in this case.
**
-** The conversion algorithms are implemented based on descriptions
-** in the following text:
+** If the MEM_Str flag is set then Mem.z points at a string representation.
+** Usually this is encoded in the same unicode encoding as the main
+** database (see below for exceptions). If the MEM_Term flag is also
+** set, then the string is nul terminated. The MEM_Int and MEM_Real
+** flags may coexist with the MEM_Str flag.
**
-** Jean Meeus
-** Astronomical Algorithms, 2nd Edition, 1998
-** ISBM 0-943396-61-1
-** Willmann-Bell, Inc
-** Richmond, Virginia (USA)
+** Multiple of these values can appear in Mem.flags. But only one
+** at a time can appear in Mem.type.
*/
-#include <time.h>
+#define MEM_Null 0x0001 /* Value is NULL */
+#define MEM_Str 0x0002 /* Value is a string */
+#define MEM_Int 0x0004 /* Value is an integer */
+#define MEM_Real 0x0008 /* Value is a real number */
+#define MEM_Blob 0x0010 /* Value is a BLOB */
+#define MEM_RowSet 0x0020 /* Value is a RowSet object */
+#define MEM_Frame 0x0040 /* Value is a VdbeFrame object */
+#define MEM_Invalid 0x0080 /* Value is undefined */
+#define MEM_TypeMask 0x00ff /* Mask of type bits */
-#ifndef SQLITE_OMIT_DATETIME_FUNCS
+/* Whenever Mem contains a valid string or blob representation, one of
+** the following flags must be set to determine the memory management
+** policy for Mem.z. The MEM_Term flag tells us whether or not the
+** string is \000 or \u0000 terminated
+*/
+#define MEM_Term 0x0200 /* String rep is nul terminated */
+#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
+#define MEM_Static 0x0800 /* Mem.z points to a static string */
+#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
+#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
+#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
+#ifdef SQLITE_OMIT_INCRBLOB
+ #undef MEM_Zero
+ #define MEM_Zero 0x0000
+#endif
/*
-** On recent Windows platforms, the localtime_s() function is available
-** as part of the "Secure CRT". It is essentially equivalent to
-** localtime_r() available under most POSIX platforms, except that the
-** order of the parameters is reversed.
-**
-** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
-**
-** If the user has not indicated to use localtime_r() or localtime_s()
-** already, check for an MSVC build environment that provides
-** localtime_s().
+** Clear any existing type flags from a Mem and replace them with f
*/
-#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
- defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
-#define HAVE_LOCALTIME_S 1
-#endif
+#define MemSetTypeFlag(p, f) \
+ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
/*
-** A structure for holding a single date and time.
+** Return true if a memory cell is not marked as invalid. This macro
+** is for use inside assert() statements only.
*/
-typedef struct DateTime DateTime;
-struct DateTime {
- sqlite3_int64 iJD; /* The julian day number times 86400000 */
- int Y, M, D; /* Year, month, and day */
- int h, m; /* Hour and minutes */
- int tz; /* Timezone offset in minutes */
- double s; /* Seconds */
- char validYMD; /* True (1) if Y,M,D are valid */
- char validHMS; /* True (1) if h,m,s are valid */
- char validJD; /* True (1) if iJD is valid */
- char validTZ; /* True (1) if tz is valid */
-};
+#ifdef SQLITE_DEBUG
+#define memIsValid(M) ((M)->flags & MEM_Invalid)==0
+#endif
+/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
+** additional information about auxiliary information bound to arguments
+** of the function. This is used to implement the sqlite3_get_auxdata()
+** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
+** that can be associated with a constant argument to a function. This
+** allows functions such as "regexp" to compile their constant regular
+** expression argument once and reused the compiled code for multiple
+** invocations.
+*/
+struct VdbeFunc {
+ FuncDef *pFunc; /* The definition of the function */
+ int nAux; /* Number of entries allocated for apAux[] */
+ struct AuxData {
+ void *pAux; /* Aux data for the i-th argument */
+ void (*xDelete)(void *); /* Destructor for the aux data */
+ } apAux[1]; /* One slot for each function argument */
+};
+
/*
-** Convert zDate into one or more integers. Additional arguments
-** come in groups of 5 as follows:
-**
-** N number of digits in the integer
-** min minimum allowed value of the integer
-** max maximum allowed value of the integer
-** nextC first character after the integer
-** pVal where to write the integers value.
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
**
-** Conversions continue until one with nextC==0 is encountered.
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbeInt.h because it uses substructures
+** (Mem) which are only defined there.
+*/
+struct sqlite3_context {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
+ Mem s; /* The return value is stored here */
+ Mem *pMem; /* Memory cell used to store aggregate context */
+ int isError; /* Error code returned by the function. */
+ CollSeq *pColl; /* Collating sequence */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
+** is really a pointer to an instance of this structure.
+**
+** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
+** any virtual table method invocations made by the vdbe program. It is
+** set to 2 for xDestroy method calls and 1 for all other methods. This
+** variable is used for two purposes: to allow xDestroy methods to execute
+** "DROP TABLE" statements and to prevent some nasty side effects of
+** malloc failure when SQLite is invoked recursively by a virtual table
+** method function.
+*/
+struct Vdbe {
+ sqlite3 *db; /* The database connection that owns this statement */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ Mem **apArg; /* Arguments to currently executing user function */
+ Mem *aColName; /* Column names to return */
+ Mem *pResultSet; /* Pointer to an array of results */
+ u16 nResColumn; /* Number of columns in one row of the result set */
+ u16 nCursor; /* Number of slots in apCsr[] */
+ VdbeCursor **apCsr; /* One element of this array for each open cursor */
+ u8 errorAction; /* Recovery action to do in case of an error */
+ u8 okVar; /* True if azVar[] has been initialized */
+ ynVar nVar; /* Number of entries in aVar[] */
+ Mem *aVar; /* Values for the OP_Variable opcode. */
+ char **azVar; /* Name of variables */
+ u32 magic; /* Magic number for sanity checking */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ u32 cacheCtr; /* VdbeCursor row cache generation counter */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ char *zErrMsg; /* Error message written here */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+ u8 changeCntOn; /* True to update the change-counter */
+ u8 expired; /* True if the VM needs to be recompiled */
+ u8 runOnlyOnce; /* Automatically expire on reset */
+ u8 minWriteFileFormat; /* Minimum file format for writable database files */
+ u8 inVtabMethod; /* See comments above */
+ u8 usesStmtJournal; /* True if uses a statement journal */
+ u8 readOnly; /* True for read-only statements */
+ u8 isPrepareV2; /* True if prepared with prepare_v2() */
+ int nChange; /* Number of db changes made since last reset */
+ int btreeMask; /* Bitmask of db->aDb[] entries referenced */
+ i64 startTime; /* Time when query started - used for profiling */
+ BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
+ int aCounter[3]; /* Counters used by sqlite3_stmt_status() */
+ char *zSql; /* Text of the SQL statement that generated this */
+ void *pFree; /* Free this when deleting the vdbe */
+ i64 nFkConstraint; /* Number of imm. FK constraints this VM */
+ i64 nStmtDefCons; /* Number of def. constraints when stmt started */
+ int iStatement; /* Statement number (or 0 if has not opened stmt) */
+#ifdef SQLITE_DEBUG
+ FILE *trace; /* Write an execution trace here, if not NULL */
+#endif
+ VdbeFrame *pFrame; /* Parent frame */
+ int nFrame; /* Number of frames in pFrame list */
+ u32 expmask; /* Binding to these vars invalidates VM */
+ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** Function prototypes
+*/
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
+void sqliteVdbePopStack(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
+#endif
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
+
+int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
+SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
+#else
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
+SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
+SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*);
+#endif
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
+#else
+# define sqlite3VdbeCheckFk(p,i) 0
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p);
+#else
+# define sqlite3VdbeMutexArrayEnter(p)
+#endif
+
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
+#else
+ #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
+#endif
+
+#endif /* !defined(_VDBEINT_H_) */
+
+/************** End of vdbeInt.h *********************************************/
+/************** Continuing where we left off in status.c *********************/
+
+/*
+** Variables in which to record status information.
+*/
+typedef struct sqlite3StatType sqlite3StatType;
+static SQLITE_WSD struct sqlite3StatType {
+ int nowValue[10]; /* Current value */
+ int mxValue[10]; /* Maximum value */
+} sqlite3Stat = { {0,}, {0,} };
+
+
+/* The "wsdStat" macro will resolve to the status information
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Stat" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
+# define wsdStat x[0]
+#else
+# define wsdStatInit
+# define wsdStat sqlite3Stat
+#endif
+
+/*
+** Return the current value of a status parameter.
+*/
+SQLITE_PRIVATE int sqlite3StatusValue(int op){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ return wsdStat.nowValue[op];
+}
+
+/*
+** Add N to the value of a status record. It is assumed that the
+** caller holds appropriate locks.
+*/
+SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] += N;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
+
+/*
+** Set the value of a status to X.
+*/
+SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] = X;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
+
+/*
+** Query status information.
+**
+** This implementation assumes that reading or writing an aligned
+** 32-bit integer is an atomic operation. If that assumption is not true,
+** then this routine is not threadsafe.
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
+ wsdStatInit;
+ if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ *pCurrent = wsdStat.nowValue[op];
+ *pHighwater = wsdStat.mxValue[op];
+ if( resetFlag ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Query status information for a single database connection
+*/
+SQLITE_API int sqlite3_db_status(
+ sqlite3 *db, /* The database connection whose status is desired */
+ int op, /* Status verb */
+ int *pCurrent, /* Write current value here */
+ int *pHighwater, /* Write high-water mark here */
+ int resetFlag /* Reset high-water mark if true */
+){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_mutex_enter(db->mutex);
+ switch( op ){
+ case SQLITE_DBSTATUS_LOOKASIDE_USED: {
+ *pCurrent = db->lookaside.nOut;
+ *pHighwater = db->lookaside.mxOut;
+ if( resetFlag ){
+ db->lookaside.mxOut = db->lookaside.nOut;
+ }
+ break;
+ }
+
+ /*
+ ** Return an approximation for the amount of memory currently used
+ ** by all pagers associated with the given database connection. The
+ ** highwater mark is meaningless and is returned as zero.
+ */
+ case SQLITE_DBSTATUS_CACHE_USED: {
+ int totalUsed = 0;
+ int i;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ totalUsed += sqlite3PagerMemUsed(pPager);
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ *pCurrent = totalUsed;
+ *pHighwater = 0;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store the schema for all databases (main, temp, and any ATTACHed
+ ** databases. *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_SCHEMA_USED: {
+ int i; /* Used to iterate through schemas */
+ int nByte = 0; /* Used to accumulate return value */
+
+ db->pnBytesFreed = &nByte;
+ for(i=0; i<db->nDb; i++){
+ Schema *pSchema = db->aDb[i].pSchema;
+ if( ALWAYS(pSchema!=0) ){
+ HashElem *p;
+
+ nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
+ pSchema->tblHash.count
+ + pSchema->trigHash.count
+ + pSchema->idxHash.count
+ + pSchema->fkeyHash.count
+ );
+ nByte += sqlite3MallocSize(pSchema->tblHash.ht);
+ nByte += sqlite3MallocSize(pSchema->trigHash.ht);
+ nByte += sqlite3MallocSize(pSchema->idxHash.ht);
+ nByte += sqlite3MallocSize(pSchema->fkeyHash.ht);
+
+ for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
+ }
+ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
+ }
+ }
+ }
+ db->pnBytesFreed = 0;
+
+ *pHighwater = 0;
+ *pCurrent = nByte;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store all prepared statements.
+ ** *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_STMT_USED: {
+ struct Vdbe *pVdbe; /* Used to iterate through VMs */
+ int nByte = 0; /* Used to accumulate return value */
+
+ db->pnBytesFreed = &nByte;
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
+ sqlite3VdbeDeleteObject(db, pVdbe);
+ }
+ db->pnBytesFreed = 0;
+
+ *pHighwater = 0;
+ *pCurrent = nByte;
+
+ break;
+ }
+
+ default: {
+ rc = SQLITE_ERROR;
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of status.c **********************************************/
+/************** Begin file date.c ********************************************/
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** SQLite processes all times and dates as Julian Day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implemention requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the Julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBM 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
+ defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True (1) if Y,M,D are valid */
+ char validHMS; /* True (1) if h,m,s are valid */
+ char validJD; /* True (1) if iJD is valid */
+ char validTZ; /* True (1) if tz is valid */
+};
+
+
+/*
+** Convert zDate into one or more integers. Additional arguments
+** come in groups of 5 as follows:
+**
+** N number of digits in the integer
+** min minimum allowed value of the integer
+** max maximum allowed value of the integer
+** nextC first character after the integer
+** pVal where to write the integers value.
+**
+** Conversions continue until one with nextC==0 is encountered.
** The function returns the number of successful conversions.
*/
static int getDigits(const char *zDate, ...){
return cnt;
}
-/*
-** Read text from z[] and convert into a floating point number. Return
-** the number of digits converted.
-*/
-#define getValue sqlite3AtoF
-
/*
** Parse a timezone extension on the end of a date-time.
** The extension is of the form:
const char *zDate,
DateTime *p
){
- int isRealNum; /* Return from sqlite3IsNumber(). Not used */
+ double r;
if( parseYyyyMmDd(zDate,p)==0 ){
return 0;
}else if( parseHhMmSs(zDate, p)==0 ){
}else if( sqlite3StrICmp(zDate,"now")==0){
setDateTimeToCurrent(context, p);
return 0;
- }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){
- double r;
- getValue(zDate, &r);
+ }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
p->validJD = 1;
return 0;
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
** date is already on the appropriate weekday, this is a no-op.
*/
- if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
- && (n=(int)r)==r && n>=0 && r<7 ){
+ if( strncmp(z, "weekday ", 8)==0
+ && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
+ && (n=(int)r)==r && n>=0 && r<7 ){
sqlite3_int64 Z;
computeYMD_HMS(p);
p->validTZ = 0;
case '8':
case '9': {
double rRounder;
- n = getValue(z, &r);
- assert( n>=1 );
+ for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
+ if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
+ rc = 1;
+ break;
+ }
if( z[n]==':' ){
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
** specified number of hours, minutes, seconds, and fractional seconds
}
SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
int rc;
+ /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
+ ** method to get the current date and time if that method is available
+ ** (if iVersion is 2 or greater and the function pointer is not NULL) and
+ ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
+ ** unavailable.
+ */
if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
}else{
static void *sqlite3MemRealloc(void *pPrior, int nByte){
sqlite3_int64 *p = (sqlite3_int64*)pPrior;
assert( pPrior!=0 && nByte>0 );
- nByte = ROUND8(nByte);
+ assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */
p--;
p = realloc(p, nByte+8 );
if( p ){
struct MemBlockHdr *pOldHdr;
void *pNew;
assert( mem.disallow==0 );
+ assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */
pOldHdr = sqlite3MemsysGetHeader(pPrior);
pNew = sqlite3MemMalloc(nByte);
if( pNew ){
** Set the "type" of an allocation.
*/
SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){
- if( p ){
+ if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
struct MemBlockHdr *pHdr;
pHdr = sqlite3MemsysGetHeader(p);
assert( pHdr->iForeGuard==FOREGUARD );
*/
SQLITE_PRIVATE int sqlite3MemdebugHasType(void *p, u8 eType){
int rc = 1;
- if( p ){
+ if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
struct MemBlockHdr *pHdr;
pHdr = sqlite3MemsysGetHeader(p);
assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
- assert( (pHdr->eType & (pHdr->eType-1))==0 ); /* Only one type bit set */
if( (pHdr->eType&eType)==0 ){
- void **pBt;
- pBt = (void**)pHdr;
- pBt -= pHdr->nBacktraceSlots;
- backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(stderr));
- fprintf(stderr, "\n");
rc = 0;
}
}
return rc;
}
-
+
+/*
+** Return TRUE if the mask of type in eType matches no bits of the type of the
+** allocation p. Also return true if p==NULL.
+**
+** This routine is designed for use within an assert() statement, to
+** verify the type of an allocation. For example:
+**
+** assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
+*/
+SQLITE_PRIVATE int sqlite3MemdebugNoType(void *p, u8 eType){
+ int rc = 1;
+ if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
+ if( (pHdr->eType&eType)!=0 ){
+ rc = 0;
+ }
+ }
+ return rc;
+}
/*
** Set the number of backtrace levels kept for each allocation.
int nOld;
void *p;
assert( pPrior!=0 );
- assert( (nBytes&(nBytes-1))==0 );
+ assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
assert( nBytes>=0 );
if( nBytes==0 ){
return 0;
*/
pthread_mutex_lock(&p->mutex);
#if SQLITE_MUTEX_NREF
+ assert( p->nRef>0 || p->owner==0 );
p->owner = pthread_self();
p->nRef++;
#endif
assert( pthreadMutexHeld(p) );
#if SQLITE_MUTEX_NREF
p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
#endif
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
*/
static void winMutexFree(sqlite3_mutex *p){
assert( p );
- assert( p->nRef==0 );
+ assert( p->nRef==0 && p->owner==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
DeleteCriticalSection(&p->mutex);
sqlite3_free(p);
#endif
EnterCriticalSection(&p->mutex);
#ifdef SQLITE_DEBUG
+ assert( p->nRef>0 || p->owner==0 );
p->owner = tid;
p->nRef++;
if( p->trace ){
assert( p->nRef>0 );
assert( p->owner==tid );
p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
LeaveCriticalSection(&p->mutex);
** Memory allocation functions used throughout sqlite.
*/
-/*
-** This routine runs when the memory allocator sees that the
-** total memory allocation is about to exceed the soft heap
-** limit.
-*/
-static void softHeapLimitEnforcer(
- void *NotUsed,
- sqlite3_int64 NotUsed2,
- int allocSize
-){
- UNUSED_PARAMETER2(NotUsed, NotUsed2);
- sqlite3_release_memory(allocSize);
-}
-
-/*
-** Set the soft heap-size limit for the library. Passing a zero or
-** negative value indicates no limit.
-*/
-SQLITE_API void sqlite3_soft_heap_limit(int n){
- sqlite3_uint64 iLimit;
- int overage;
- if( n<0 ){
- iLimit = 0;
- }else{
- iLimit = n;
- }
-#ifndef SQLITE_OMIT_AUTOINIT
- sqlite3_initialize();
-#endif
- if( iLimit>0 ){
- sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
- }else{
- sqlite3MemoryAlarm(0, 0, 0);
- }
- overage = (int)(sqlite3_memory_used() - (i64)n);
- if( overage>0 ){
- sqlite3_release_memory(overage);
- }
-}
-
/*
** Attempt to release up to n bytes of non-essential memory currently
** held by SQLite. An example of non-essential memory is memory used to
*/
SQLITE_API int sqlite3_release_memory(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- int nRet = 0;
- nRet += sqlite3PcacheReleaseMemory(n-nRet);
- return nRet;
+ return sqlite3PcacheReleaseMemory(n);
#else
+ /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
+ ** is a no-op returning zero if SQLite is not compiled with
+ ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
UNUSED_PARAMETER(n);
- return SQLITE_OK;
+ return 0;
#endif
}
+/*
+** An instance of the following object records the location of
+** each unused scratch buffer.
+*/
+typedef struct ScratchFreeslot {
+ struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
+} ScratchFreeslot;
+
/*
** State information local to the memory allocation subsystem.
*/
static SQLITE_WSD struct Mem0Global {
- /* Number of free pages for scratch and page-cache memory */
- u32 nScratchFree;
- u32 nPageFree;
-
sqlite3_mutex *mutex; /* Mutex to serialize access */
/*
void *alarmArg;
/*
- ** Pointers to the end of sqlite3GlobalConfig.pScratch and
- ** sqlite3GlobalConfig.pPage to a block of memory that records
- ** which pages are available.
+ ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
+ ** (so that a range test can be used to determine if an allocation
+ ** being freed came from pScratch) and a pointer to the list of
+ ** unused scratch allocations.
*/
- u32 *aScratchFree;
- u32 *aPageFree;
+ void *pScratchEnd;
+ ScratchFreeslot *pScratchFree;
+ u32 nScratchFree;
+
+ /*
+ ** True if heap is nearly "full" where "full" is defined by the
+ ** sqlite3_soft_heap_limit() setting.
+ */
+ int nearlyFull;
} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
#define mem0 GLOBAL(struct Mem0Global, mem0)
+/*
+** This routine runs when the memory allocator sees that the
+** total memory allocation is about to exceed the soft heap
+** limit.
+*/
+static void softHeapLimitEnforcer(
+ void *NotUsed,
+ sqlite3_int64 NotUsed2,
+ int allocSize
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_release_memory(allocSize);
+}
+
+/*
+** Change the alarm callback
+*/
+static int sqlite3MemoryAlarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ int nUsed;
+ sqlite3_mutex_enter(mem0.mutex);
+ mem0.alarmCallback = xCallback;
+ mem0.alarmArg = pArg;
+ mem0.alarmThreshold = iThreshold;
+ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
+ sqlite3_mutex_leave(mem0.mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. Internal/core SQLite code
+** should call sqlite3MemoryAlarm.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
+}
+#endif
+
+/*
+** Set the soft heap-size limit for the library. Passing a zero or
+** negative value indicates no limit.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
+ sqlite3_int64 priorLimit;
+ sqlite3_int64 excess;
+#ifndef SQLITE_OMIT_AUTOINIT
+ sqlite3_initialize();
+#endif
+ sqlite3_mutex_enter(mem0.mutex);
+ priorLimit = mem0.alarmThreshold;
+ sqlite3_mutex_leave(mem0.mutex);
+ if( n<0 ) return priorLimit;
+ if( n>0 ){
+ sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
+ }else{
+ sqlite3MemoryAlarm(0, 0, 0);
+ }
+ excess = sqlite3_memory_used() - n;
+ if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
+ return priorLimit;
+}
+SQLITE_API void sqlite3_soft_heap_limit(int n){
+ if( n<0 ) n = 0;
+ sqlite3_soft_heap_limit64(n);
+}
+
/*
** Initialize the memory allocation subsystem.
*/
mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
}
if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
- && sqlite3GlobalConfig.nScratch>=0 ){
- int i;
- sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4);
- mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
- [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
- for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
- mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
+ && sqlite3GlobalConfig.nScratch>0 ){
+ int i, n, sz;
+ ScratchFreeslot *pSlot;
+ sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
+ sqlite3GlobalConfig.szScratch = sz;
+ pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
+ n = sqlite3GlobalConfig.nScratch;
+ mem0.pScratchFree = pSlot;
+ mem0.nScratchFree = n;
+ for(i=0; i<n-1; i++){
+ pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
+ pSlot = pSlot->pNext;
+ }
+ pSlot->pNext = 0;
+ mem0.pScratchEnd = (void*)&pSlot[1];
}else{
+ mem0.pScratchEnd = 0;
sqlite3GlobalConfig.pScratch = 0;
sqlite3GlobalConfig.szScratch = 0;
+ sqlite3GlobalConfig.nScratch = 0;
}
- if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
- && sqlite3GlobalConfig.nPage>=1 ){
- int i;
- int overhead;
- int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage);
- int n = sqlite3GlobalConfig.nPage;
- overhead = (4*n + sz - 1)/sz;
- sqlite3GlobalConfig.nPage -= overhead;
- mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
- [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
- for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
- mem0.nPageFree = sqlite3GlobalConfig.nPage;
- }else{
+ if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
+ || sqlite3GlobalConfig.nPage<1 ){
sqlite3GlobalConfig.pPage = 0;
sqlite3GlobalConfig.szPage = 0;
+ sqlite3GlobalConfig.nPage = 0;
}
return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
}
+/*
+** Return true if the heap is currently under memory pressure - in other
+** words if the amount of heap used is close to the limit set by
+** sqlite3_soft_heap_limit().
+*/
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){
+ return mem0.nearlyFull;
+}
+
/*
** Deinitialize the memory allocation subsystem.
*/
return res;
}
-/*
-** Change the alarm callback
-*/
-SQLITE_PRIVATE int sqlite3MemoryAlarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- sqlite3_mutex_enter(mem0.mutex);
- mem0.alarmCallback = xCallback;
- mem0.alarmArg = pArg;
- mem0.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem0.mutex);
- return SQLITE_OK;
-}
-
-#ifndef SQLITE_OMIT_DEPRECATED
-/*
-** Deprecated external interface. Internal/core SQLite code
-** should call sqlite3MemoryAlarm.
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
-}
-#endif
-
/*
** Trigger the alarm
*/
if( mem0.alarmCallback!=0 ){
int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
if( nUsed+nFull >= mem0.alarmThreshold ){
+ mem0.nearlyFull = 1;
sqlite3MallocAlarm(nFull);
+ }else{
+ mem0.nearlyFull = 0;
}
}
p = sqlite3GlobalConfig.m.xMalloc(nFull);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if( p==0 && mem0.alarmCallback ){
sqlite3MallocAlarm(nFull);
p = sqlite3GlobalConfig.m.xMalloc(nFull);
}
+#endif
if( p ){
nFull = sqlite3MallocSize(p);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
+ sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
}
*pp = p;
return nFull;
*/
SQLITE_PRIVATE void *sqlite3Malloc(int n){
void *p;
- if( n<=0 || n>=0x7fffff00 ){
+ if( n<=0 /* IMP: R-65312-04917 */
+ || n>=0x7fffff00
+ ){
/* A memory allocation of a number of bytes which is near the maximum
** signed integer value might cause an integer overflow inside of the
** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
}else{
p = sqlite3GlobalConfig.m.xMalloc(n);
}
+ assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */
return p;
}
void *p;
assert( n>0 );
-#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
- /* Verify that no more than two scratch allocation per thread
- ** is outstanding at one time. (This is only checked in the
- ** single-threaded case since checking in the multi-threaded case
- ** would be much more complicated.) */
- assert( scratchAllocOut<=1 );
-#endif
-
- if( sqlite3GlobalConfig.szScratch<n ){
- goto scratch_overflow;
- }else{
- sqlite3_mutex_enter(mem0.mutex);
- if( mem0.nScratchFree==0 ){
+ sqlite3_mutex_enter(mem0.mutex);
+ if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
+ p = mem0.pScratchFree;
+ mem0.pScratchFree = mem0.pScratchFree->pNext;
+ mem0.nScratchFree--;
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ n = mallocWithAlarm(n, &p);
+ if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
sqlite3_mutex_leave(mem0.mutex);
- goto scratch_overflow;
}else{
- int i;
- i = mem0.aScratchFree[--mem0.nScratchFree];
- i *= sqlite3GlobalConfig.szScratch;
- sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
- sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
sqlite3_mutex_leave(mem0.mutex);
- p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
- assert( (((u8*)p - (u8*)0) & 7)==0 );
+ p = sqlite3GlobalConfig.m.xMalloc(n);
}
+ sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
}
-#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
- scratchAllocOut = p!=0;
-#endif
+ assert( sqlite3_mutex_notheld(mem0.mutex) );
- return p;
-scratch_overflow:
- if( sqlite3GlobalConfig.bMemstat ){
- sqlite3_mutex_enter(mem0.mutex);
- sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
- n = mallocWithAlarm(n, &p);
- if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
- sqlite3_mutex_leave(mem0.mutex);
- }else{
- p = sqlite3GlobalConfig.m.xMalloc(n);
- }
- sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
- scratchAllocOut = p!=0;
+ /* Verify that no more than two scratch allocations per thread
+ ** are outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut<=1 );
+ if( p ) scratchAllocOut++;
#endif
- return p;
+
+ return p;
}
SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
if( p ){
- if( sqlite3GlobalConfig.pScratch==0
- || p<sqlite3GlobalConfig.pScratch
- || p>=(void*)mem0.aScratchFree ){
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ /* Verify that no more than two scratch allocation per thread
+ ** is outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
+ scratchAllocOut--;
+#endif
+
+ if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
+ /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
+ ScratchFreeslot *pSlot;
+ pSlot = (ScratchFreeslot*)p;
+ sqlite3_mutex_enter(mem0.mutex);
+ pSlot->pNext = mem0.pScratchFree;
+ mem0.pScratchFree = pSlot;
+ mem0.nScratchFree++;
+ assert( mem0.nScratchFree<=sqlite3GlobalConfig.nScratch );
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ /* Release memory back to the heap */
assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
+ assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
if( sqlite3GlobalConfig.bMemstat ){
int iSize = sqlite3MallocSize(p);
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+ sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
sqlite3GlobalConfig.m.xFree(p);
sqlite3_mutex_leave(mem0.mutex);
}else{
sqlite3GlobalConfig.m.xFree(p);
}
- }else{
- int i;
- i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
- i /= sqlite3GlobalConfig.szScratch;
- assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
- sqlite3_mutex_enter(mem0.mutex);
- assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
- mem0.aScratchFree[mem0.nScratchFree++] = i;
- sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
- sqlite3_mutex_leave(mem0.mutex);
-
-#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
- /* Verify that no more than two scratch allocation per thread
- ** is outstanding at one time. (This is only checked in the
- ** single-threaded case since checking in the multi-threaded case
- ** would be much more complicated.) */
- assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
- scratchAllocOut = 0;
-#endif
-
}
}
}
*/
#ifndef SQLITE_OMIT_LOOKASIDE
static int isLookaside(sqlite3 *db, void *p){
- return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
+ return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
}
#else
#define isLookaside(A,B) 0
*/
SQLITE_PRIVATE int sqlite3MallocSize(void *p){
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
return sqlite3GlobalConfig.m.xSize(p);
}
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
assert( db==0 || sqlite3_mutex_held(db->mutex) );
- if( isLookaside(db, p) ){
+ if( db && isLookaside(db, p) ){
return db->lookaside.sz;
}else{
- assert( sqlite3MemdebugHasType(p,
- db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
+ assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
return sqlite3GlobalConfig.m.xSize(p);
}
}
** Free memory previously obtained from sqlite3Malloc().
*/
SQLITE_API void sqlite3_free(void *p){
- if( p==0 ) return;
+ if( p==0 ) return; /* IMP: R-49053-54554 */
+ assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
if( sqlite3GlobalConfig.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
+ sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
sqlite3GlobalConfig.m.xFree(p);
sqlite3_mutex_leave(mem0.mutex);
}else{
*/
SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
assert( db==0 || sqlite3_mutex_held(db->mutex) );
- if( isLookaside(db, p) ){
- LookasideSlot *pBuf = (LookasideSlot*)p;
- pBuf->pNext = db->lookaside.pFree;
- db->lookaside.pFree = pBuf;
- db->lookaside.nOut--;
- }else{
- assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) );
- sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
- sqlite3_free(p);
+ if( db ){
+ if( db->pnBytesFreed ){
+ *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
+ return;
+ }
+ if( isLookaside(db, p) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ db->lookaside.nOut--;
+ return;
+ }
}
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
+ assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ sqlite3_free(p);
}
/*
int nOld, nNew;
void *pNew;
if( pOld==0 ){
- return sqlite3Malloc(nBytes);
+ return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
}
if( nBytes<=0 ){
- sqlite3_free(pOld);
+ sqlite3_free(pOld); /* IMP: R-31593-10574 */
return 0;
}
if( nBytes>=0x7fffff00 ){
return 0;
}
nOld = sqlite3MallocSize(pOld);
+ /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
+ ** argument to xRealloc is always a value returned by a prior call to
+ ** xRoundup. */
nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
if( nOld==nNew ){
pNew = pOld;
sqlite3MallocAlarm(nNew-nOld);
}
assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
if( pNew==0 && mem0.alarmCallback ){
sqlite3MallocAlarm(nBytes);
}else{
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
}
+ assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
return pNew;
}
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){
void *p;
assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ assert( db==0 || db->pnBytesFreed==0 );
#ifndef SQLITE_OMIT_LOOKASIDE
if( db ){
LookasideSlot *pBuf;
if( !p && db ){
db->mallocFailed = 1;
}
- sqlite3MemdebugSetType(p,
- (db && db->lookaside.bEnabled) ? MEMTYPE_DB : MEMTYPE_HEAP);
+ sqlite3MemdebugSetType(p, MEMTYPE_DB |
+ ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
return p;
}
sqlite3DbFree(db, p);
}
}else{
- assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
pNew = sqlite3_realloc(p, n);
if( !pNew ){
+ sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
db->mallocFailed = 1;
}
- sqlite3MemdebugSetType(pNew,
- db->lookaside.bEnabled ? MEMTYPE_DB : MEMTYPE_HEAP);
+ sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
+ (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
}
}
return pNew;
}else{
p->nAlloc = (int)szNew;
}
- zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
+ if( p->useMalloc==1 ){
+ zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
+ }else{
+ zNew = sqlite3_malloc(p->nAlloc);
+ }
if( zNew ){
memcpy(zNew, p->zText, p->nChar);
sqlite3StrAccumReset(p);
if( p->zText ){
p->zText[p->nChar] = 0;
if( p->useMalloc && p->zText==p->zBase ){
- p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
+ if( p->useMalloc==1 ){
+ p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
+ }else{
+ p->zText = sqlite3_malloc(p->nChar+1);
+ }
if( p->zText ){
memcpy(p->zText, p->zBase, p->nChar+1);
}else{
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
if( p->zText!=p->zBase ){
- sqlite3DbFree(p->db, p->zText);
+ if( p->useMalloc==1 ){
+ sqlite3DbFree(p->db, p->zText);
+ }else{
+ sqlite3_free(p->zText);
+ }
}
p->zText = 0;
}
if( sqlite3_initialize() ) return 0;
#endif
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
+ acc.useMalloc = 2;
sqlite3VXPrintf(&acc, 0, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
return z;
** 0xfe 0xff big-endian utf-16 follows
**
*/
-/************** Include vdbeInt.h in the middle of utf.c *********************/
-/************** Begin file vdbeInt.h *****************************************/
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for information that is private to the
-** VDBE. This information used to all be at the top of the single
-** source code file "vdbe.c". When that file became too big (over
-** 6000 lines long) it was split up into several smaller files and
-** this header information was factored out.
-*/
-#ifndef _VDBEINT_H_
-#define _VDBEINT_H_
-
-/*
-** SQL is translated into a sequence of instructions to be
-** executed by a virtual machine. Each instruction is an instance
-** of the following structure.
-*/
-typedef struct VdbeOp Op;
-
-/*
-** Boolean values
-*/
-typedef unsigned char Bool;
-
-/*
-** A cursor is a pointer into a single BTree within a database file.
-** The cursor can seek to a BTree entry with a particular key, or
-** loop over all entries of the Btree. You can also insert new BTree
-** entries or retrieve the key or data from the entry that the cursor
-** is currently pointing to.
-**
-** Every cursor that the virtual machine has open is represented by an
-** instance of the following structure.
-**
-** If the VdbeCursor.isTriggerRow flag is set it means that this cursor is
-** really a single row that represents the NEW or OLD pseudo-table of
-** a row trigger. The data for the row is stored in VdbeCursor.pData and
-** the rowid is in VdbeCursor.iKey.
-*/
-struct VdbeCursor {
- BtCursor *pCursor; /* The cursor structure of the backend */
- int iDb; /* Index of cursor database in db->aDb[] (or -1) */
- i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
- Bool zeroed; /* True if zeroed out and ready for reuse */
- Bool rowidIsValid; /* True if lastRowid is valid */
- Bool atFirst; /* True if pointing to first entry */
- Bool useRandomRowid; /* Generate new record numbers semi-randomly */
- Bool nullRow; /* True if pointing to a row with no data */
- Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
- Bool isTable; /* True if a table requiring integer keys */
- Bool isIndex; /* True if an index containing keys only - no data */
- i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
- Btree *pBt; /* Separate file holding temporary table */
- int pseudoTableReg; /* Register holding pseudotable content. */
- KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
- int nField; /* Number of fields in the header */
- i64 seqCount; /* Sequence counter */
- sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
- const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
-
- /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or
- ** OP_IsUnique opcode on this cursor. */
- int seekResult;
-
- /* Cached information about the header for the data record that the
- ** cursor is currently pointing to. Only valid if cacheStatus matches
- ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
- ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
- ** the cache is out of date.
- **
- ** aRow might point to (ephemeral) data for the current row, or it might
- ** be NULL.
- */
- u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
- int payloadSize; /* Total number of bytes in the record */
- u32 *aType; /* Type values for all entries in the record */
- u32 *aOffset; /* Cached offsets to the start of each columns data */
- u8 *aRow; /* Data for the current row, if all on one page */
-};
-typedef struct VdbeCursor VdbeCursor;
-
-/*
-** When a sub-program is executed (OP_Program), a structure of this type
-** is allocated to store the current value of the program counter, as
-** well as the current memory cell array and various other frame specific
-** values stored in the Vdbe struct. When the sub-program is finished,
-** these values are copied back to the Vdbe from the VdbeFrame structure,
-** restoring the state of the VM to as it was before the sub-program
-** began executing.
-**
-** Frames are stored in a linked list headed at Vdbe.pParent. Vdbe.pParent
-** is the parent of the current frame, or zero if the current frame
-** is the main Vdbe program.
-*/
-typedef struct VdbeFrame VdbeFrame;
-struct VdbeFrame {
- Vdbe *v; /* VM this frame belongs to */
- int pc; /* Program Counter */
- Op *aOp; /* Program instructions */
- int nOp; /* Size of aOp array */
- Mem *aMem; /* Array of memory cells */
- int nMem; /* Number of entries in aMem */
- VdbeCursor **apCsr; /* Element of Vdbe cursors */
- u16 nCursor; /* Number of entries in apCsr */
- void *token; /* Copy of SubProgram.token */
- int nChildMem; /* Number of memory cells for child frame */
- int nChildCsr; /* Number of cursors for child frame */
- i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
- int nChange; /* Statement changes (Vdbe.nChanges) */
- VdbeFrame *pParent; /* Parent of this frame */
-};
-
-#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
-
-/*
-** A value for VdbeCursor.cacheValid that means the cache is always invalid.
-*/
-#define CACHE_STALE 0
-
-/*
-** Internally, the vdbe manipulates nearly all SQL values as Mem
-** structures. Each Mem struct may cache multiple representations (string,
-** integer etc.) of the same value. A value (and therefore Mem structure)
-** has the following properties:
-**
-** Each value has a manifest type. The manifest type of the value stored
-** in a Mem struct is returned by the MemType(Mem*) macro. The type is
-** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
-** SQLITE_BLOB.
-*/
-struct Mem {
- union {
- i64 i; /* Integer value. */
- int nZero; /* Used when bit MEM_Zero is set in flags */
- FuncDef *pDef; /* Used only when flags==MEM_Agg */
- RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
- VdbeFrame *pFrame; /* Used when flags==MEM_Frame */
- } u;
- double r; /* Real value */
- sqlite3 *db; /* The associated database connection */
- char *z; /* String or BLOB value */
- int n; /* Number of characters in string value, excluding '\0' */
- u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
- u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
- u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
- void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
- char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
-};
-
-/* One or more of the following flags are set to indicate the validOK
-** representations of the value stored in the Mem struct.
-**
-** If the MEM_Null flag is set, then the value is an SQL NULL value.
-** No other flags may be set in this case.
-**
-** If the MEM_Str flag is set then Mem.z points at a string representation.
-** Usually this is encoded in the same unicode encoding as the main
-** database (see below for exceptions). If the MEM_Term flag is also
-** set, then the string is nul terminated. The MEM_Int and MEM_Real
-** flags may coexist with the MEM_Str flag.
-**
-** Multiple of these values can appear in Mem.flags. But only one
-** at a time can appear in Mem.type.
-*/
-#define MEM_Null 0x0001 /* Value is NULL */
-#define MEM_Str 0x0002 /* Value is a string */
-#define MEM_Int 0x0004 /* Value is an integer */
-#define MEM_Real 0x0008 /* Value is a real number */
-#define MEM_Blob 0x0010 /* Value is a BLOB */
-#define MEM_RowSet 0x0020 /* Value is a RowSet object */
-#define MEM_Frame 0x0040 /* Value is a VdbeFrame object */
-#define MEM_TypeMask 0x00ff /* Mask of type bits */
-
-/* Whenever Mem contains a valid string or blob representation, one of
-** the following flags must be set to determine the memory management
-** policy for Mem.z. The MEM_Term flag tells us whether or not the
-** string is \000 or \u0000 terminated
-*/
-#define MEM_Term 0x0200 /* String rep is nul terminated */
-#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
-#define MEM_Static 0x0800 /* Mem.z points to a static string */
-#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
-#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
-#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
-
-#ifdef SQLITE_OMIT_INCRBLOB
- #undef MEM_Zero
- #define MEM_Zero 0x0000
-#endif
-
-
-/*
-** Clear any existing type flags from a Mem and replace them with f
-*/
-#define MemSetTypeFlag(p, f) \
- ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
-
-
-/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
-** additional information about auxiliary information bound to arguments
-** of the function. This is used to implement the sqlite3_get_auxdata()
-** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
-** that can be associated with a constant argument to a function. This
-** allows functions such as "regexp" to compile their constant regular
-** expression argument once and reused the compiled code for multiple
-** invocations.
-*/
-struct VdbeFunc {
- FuncDef *pFunc; /* The definition of the function */
- int nAux; /* Number of entries allocated for apAux[] */
- struct AuxData {
- void *pAux; /* Aux data for the i-th argument */
- void (*xDelete)(void *); /* Destructor for the aux data */
- } apAux[1]; /* One slot for each function argument */
-};
-
-/*
-** The "context" argument for a installable function. A pointer to an
-** instance of this structure is the first argument to the routines used
-** implement the SQL functions.
-**
-** There is a typedef for this structure in sqlite.h. So all routines,
-** even the public interface to SQLite, can use a pointer to this structure.
-** But this file is the only place where the internal details of this
-** structure are known.
-**
-** This structure is defined inside of vdbeInt.h because it uses substructures
-** (Mem) which are only defined there.
-*/
-struct sqlite3_context {
- FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
- VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
- Mem s; /* The return value is stored here */
- Mem *pMem; /* Memory cell used to store aggregate context */
- int isError; /* Error code returned by the function. */
- CollSeq *pColl; /* Collating sequence */
-};
-
-/*
-** A Set structure is used for quick testing to see if a value
-** is part of a small set. Sets are used to implement code like
-** this:
-** x.y IN ('hi','hoo','hum')
-*/
-typedef struct Set Set;
-struct Set {
- Hash hash; /* A set is just a hash table */
- HashElem *prev; /* Previously accessed hash elemen */
-};
-
-/*
-** An instance of the virtual machine. This structure contains the complete
-** state of the virtual machine.
-**
-** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
-** is really a pointer to an instance of this structure.
-**
-** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
-** any virtual table method invocations made by the vdbe program. It is
-** set to 2 for xDestroy method calls and 1 for all other methods. This
-** variable is used for two purposes: to allow xDestroy methods to execute
-** "DROP TABLE" statements and to prevent some nasty side effects of
-** malloc failure when SQLite is invoked recursively by a virtual table
-** method function.
-*/
-struct Vdbe {
- sqlite3 *db; /* The database connection that owns this statement */
- Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
- int nOp; /* Number of instructions in the program */
- int nOpAlloc; /* Number of slots allocated for aOp[] */
- Op *aOp; /* Space to hold the virtual machine's program */
- int nLabel; /* Number of labels used */
- int nLabelAlloc; /* Number of slots allocated in aLabel[] */
- int *aLabel; /* Space to hold the labels */
- Mem **apArg; /* Arguments to currently executing user function */
- Mem *aColName; /* Column names to return */
- Mem *pResultSet; /* Pointer to an array of results */
- u16 nResColumn; /* Number of columns in one row of the result set */
- u16 nCursor; /* Number of slots in apCsr[] */
- VdbeCursor **apCsr; /* One element of this array for each open cursor */
- u8 errorAction; /* Recovery action to do in case of an error */
- u8 okVar; /* True if azVar[] has been initialized */
- ynVar nVar; /* Number of entries in aVar[] */
- Mem *aVar; /* Values for the OP_Variable opcode. */
- char **azVar; /* Name of variables */
- u32 magic; /* Magic number for sanity checking */
- int nMem; /* Number of memory locations currently allocated */
- Mem *aMem; /* The memory locations */
- u32 cacheCtr; /* VdbeCursor row cache generation counter */
- int pc; /* The program counter */
- int rc; /* Value to return */
- char *zErrMsg; /* Error message written here */
- u8 explain; /* True if EXPLAIN present on SQL command */
- u8 changeCntOn; /* True to update the change-counter */
- u8 expired; /* True if the VM needs to be recompiled */
- u8 runOnlyOnce; /* Automatically expire on reset */
- u8 minWriteFileFormat; /* Minimum file format for writable database files */
- u8 inVtabMethod; /* See comments above */
- u8 usesStmtJournal; /* True if uses a statement journal */
- u8 readOnly; /* True for read-only statements */
- u8 isPrepareV2; /* True if prepared with prepare_v2() */
- int nChange; /* Number of db changes made since last reset */
- int btreeMask; /* Bitmask of db->aDb[] entries referenced */
- i64 startTime; /* Time when query started - used for profiling */
- BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
- int aCounter[3]; /* Counters used by sqlite3_stmt_status() */
- char *zSql; /* Text of the SQL statement that generated this */
- void *pFree; /* Free this when deleting the vdbe */
- i64 nFkConstraint; /* Number of imm. FK constraints this VM */
- i64 nStmtDefCons; /* Number of def. constraints when stmt started */
- int iStatement; /* Statement number (or 0 if has not opened stmt) */
-#ifdef SQLITE_DEBUG
- FILE *trace; /* Write an execution trace here, if not NULL */
-#endif
- VdbeFrame *pFrame; /* Parent frame */
- int nFrame; /* Number of frames in pFrame list */
- u32 expmask; /* Binding to these vars invalidates VM */
-};
-
-/*
-** The following are allowed values for Vdbe.magic
-*/
-#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
-#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
-#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
-#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
-
-/*
-** Function prototypes
-*/
-SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
-void sqliteVdbePopStack(Vdbe*,int);
-SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
-#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
-SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
-#endif
-SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
-SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
-SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
-SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
-SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
-
-int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
-SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
-SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
-SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
-SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
-SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
-SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
-SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
-#else
-SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
-#endif
-SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
-SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
-SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
-SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
-SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
-SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
-SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
-SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
-SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
-SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
-SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
-SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
-SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem);
-
-#ifndef SQLITE_OMIT_FOREIGN_KEY
-SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
-#else
-# define sqlite3VdbeCheckFk(p,i) 0
-#endif
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p);
-#else
-# define sqlite3VdbeMutexArrayEnter(p)
-#endif
-
-SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
-#endif
-SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
-
-#ifndef SQLITE_OMIT_INCRBLOB
-SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
-#else
- #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
-#endif
-
-#endif /* !defined(_VDBEINT_H_) */
-
-/************** End of vdbeInt.h *********************************************/
-/************** Continuing where we left off in utf.c ************************/
#ifndef SQLITE_AMALGAMATION
/*
/*
** Some systems have stricmp(). Others have strcasecmp(). Because
** there is no consistency, we will define our own.
+**
+** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
+** applications and extensions to compare the contents of two buffers
+** containing UTF-8 strings in a case-independent fashion, using the same
+** definition of case independence that SQLite uses internally when
+** comparing identifiers.
*/
SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
register unsigned char *a, *b;
}
/*
-** Return TRUE if z is a pure numeric string. Return FALSE and leave
-** *realnum unchanged if the string contains any character which is not
-** part of a number.
+** The string z[] is an text representation of a real number.
+** Convert this string to a double and write it into *pResult.
**
-** If the string is pure numeric, set *realnum to TRUE if the string
-** contains the '.' character or an "E+000" style exponentiation suffix.
-** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
-** false does not mean that the number can be successfully converted into
-** an integer - it might be too big.
+** The string z[] is length bytes in length (bytes, not characters) and
+** uses the encoding enc. The string is not necessarily zero-terminated.
**
-** An empty string is considered non-numeric.
-*/
-SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
- int incr = (enc==SQLITE_UTF8?1:2);
- if( enc==SQLITE_UTF16BE ) z++;
- if( *z=='-' || *z=='+' ) z += incr;
- if( !sqlite3Isdigit(*z) ){
- return 0;
- }
- z += incr;
- *realnum = 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( *z=='.' ){
- z += incr;
- if( !sqlite3Isdigit(*z) ) return 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
- *realnum = 1;
- }
- if( *z=='e' || *z=='E' ){
- z += incr;
- if( *z=='+' || *z=='-' ) z += incr;
- if( !sqlite3Isdigit(*z) ) return 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
- *realnum = 1;
- }
-#endif
- return *z==0;
-}
-
-/*
-** The string z[] is an ASCII representation of a real number.
-** Convert this string to a double.
+** Return TRUE if the result is a valid real number (or integer) and FALSE
+** if the string is empty or contains extraneous text. Valid numbers
+** are in one of these formats:
+**
+** [+-]digits[E[+-]digits]
+** [+-]digits.[digits][E[+-]digits]
+** [+-].digits[E[+-]digits]
**
-** This routine assumes that z[] really is a valid number. If it
-** is not, the result is undefined.
+** Leading and trailing whitespace is ignored for the purpose of determining
+** validity.
**
-** This routine is used instead of the library atof() function because
-** the library atof() might want to use "," as the decimal point instead
-** of "." depending on how locale is set. But that would cause problems
-** for SQL. So this routine always uses "." regardless of locale.
+** If some prefix of the input string is a valid number, this routine
+** returns FALSE but it still converts the prefix and writes the result
+** into *pResult.
*/
-SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
#ifndef SQLITE_OMIT_FLOATING_POINT
- const char *zBegin = z;
+ int incr = (enc==SQLITE_UTF8?1:2);
+ const char *zEnd = z + length;
/* sign * significand * (10 ^ (esign * exponent)) */
- int sign = 1; /* sign of significand */
- i64 s = 0; /* significand */
- int d = 0; /* adjust exponent for shifting decimal point */
- int esign = 1; /* sign of exponent */
- int e = 0; /* exponent */
+ int sign = 1; /* sign of significand */
+ i64 s = 0; /* significand */
+ int d = 0; /* adjust exponent for shifting decimal point */
+ int esign = 1; /* sign of exponent */
+ int e = 0; /* exponent */
+ int eValid = 1; /* True exponent is either not used or is well-formed */
double result;
int nDigits = 0;
+ *pResult = 0.0; /* Default return value, in case of an error */
+
+ if( enc==SQLITE_UTF16BE ) z++;
+
/* skip leading spaces */
- while( sqlite3Isspace(*z) ) z++;
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+ if( z>=zEnd ) return 0;
+
/* get sign of significand */
if( *z=='-' ){
sign = -1;
- z++;
+ z+=incr;
}else if( *z=='+' ){
- z++;
+ z+=incr;
}
+
/* skip leading zeroes */
- while( z[0]=='0' ) z++, nDigits++;
+ while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
/* copy max significant digits to significand */
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
+ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
s = s*10 + (*z - '0');
- z++, nDigits++;
+ z+=incr, nDigits++;
}
+
/* skip non-significant significand digits
** (increase exponent by d to shift decimal left) */
- while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
+ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
+ if( z>=zEnd ) goto do_atof_calc;
/* if decimal point is present */
if( *z=='.' ){
- z++;
+ z+=incr;
/* copy digits from after decimal to significand
** (decrease exponent by d to shift decimal right) */
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
+ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
s = s*10 + (*z - '0');
- z++, nDigits++, d--;
+ z+=incr, nDigits++, d--;
}
/* skip non-significant digits */
- while( sqlite3Isdigit(*z) ) z++, nDigits++;
+ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
}
+ if( z>=zEnd ) goto do_atof_calc;
/* if exponent is present */
if( *z=='e' || *z=='E' ){
- z++;
+ z+=incr;
+ eValid = 0;
+ if( z>=zEnd ) goto do_atof_calc;
/* get sign of exponent */
if( *z=='-' ){
esign = -1;
- z++;
+ z+=incr;
}else if( *z=='+' ){
- z++;
+ z+=incr;
}
/* copy digits to exponent */
- while( sqlite3Isdigit(*z) ){
+ while( z<zEnd && sqlite3Isdigit(*z) ){
e = e*10 + (*z - '0');
- z++;
+ z+=incr;
+ eValid = 1;
}
}
+ /* skip trailing spaces */
+ if( nDigits && eValid ){
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+ }
+
+do_atof_calc:
/* adjust exponent by d, and update sign */
e = (e*esign) + d;
if( e<0 ) {
/* store the result */
*pResult = result;
- /* return number of characters used */
- return (int)(z - zBegin);
+ /* return true if number and no extra non-whitespace chracters after */
+ return z>=zEnd && nDigits>0 && eValid;
#else
- return sqlite3Atoi64(z, pResult);
+ return !sqlite3Atoi64(z, pResult, length, enc);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}
** Compare the 19-character string zNum against the text representation
** value 2^63: 9223372036854775808. Return negative, zero, or positive
** if zNum is less than, equal to, or greater than the string.
+** Note that zNum must contain exactly 19 characters.
**
** Unlike memcmp() this routine is guaranteed to return the difference
** in the values of the last digit if the only difference is in the
** last digit. So, for example,
**
-** compare2pow63("9223372036854775800")
+** compare2pow63("9223372036854775800", 1)
**
** will return -8.
*/
-static int compare2pow63(const char *zNum){
- int c;
- c = memcmp(zNum,"922337203685477580",18)*10;
+static int compare2pow63(const char *zNum, int incr){
+ int c = 0;
+ int i;
+ /* 012345678901234567 */
+ const char *pow63 = "922337203685477580";
+ for(i=0; c==0 && i<18; i++){
+ c = (zNum[i*incr]-pow63[i])*10;
+ }
if( c==0 ){
- c = zNum[18] - '8';
+ c = zNum[18*incr] - '8';
testcase( c==(-1) );
testcase( c==0 );
testcase( c==(+1) );
/*
-** Return TRUE if zNum is a 64-bit signed integer and write
-** the value of the integer into *pNum. If zNum is not an integer
-** or is an integer that is too large to be expressed with 64 bits,
-** then return false.
+** Convert zNum to a 64-bit signed integer and write
+** the value of the integer into *pNum.
+** If zNum is exactly 9223372036854665808, return 2.
+** This is a special case as the context will determine
+** if it is too big (used as a negative).
+** If zNum is not an integer or is an integer that
+** is too large to be expressed with 64 bits,
+** then return 1. Otherwise return 0.
**
-** When this routine was originally written it dealt with only
-** 32-bit numbers. At that time, it was much faster than the
-** atoi() library routine in RedHat 7.2.
+** length is the number of bytes in the string (bytes, not characters).
+** The string is not necessarily zero-terminated. The encoding is
+** given by enc.
*/
-SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
+SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
+ int incr = (enc==SQLITE_UTF8?1:2);
i64 v = 0;
- int neg;
- int i, c;
+ int neg = 0; /* assume positive */
+ int i;
+ int c = 0;
const char *zStart;
- while( sqlite3Isspace(*zNum) ) zNum++;
+ const char *zEnd = zNum + length;
+ if( enc==SQLITE_UTF16BE ) zNum++;
+ while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
+ if( zNum>=zEnd ) goto do_atoi_calc;
if( *zNum=='-' ){
neg = 1;
- zNum++;
+ zNum+=incr;
}else if( *zNum=='+' ){
- neg = 0;
- zNum++;
- }else{
- neg = 0;
+ zNum+=incr;
}
+do_atoi_calc:
zStart = zNum;
- while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
+ while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
+ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
v = v*10 + c - '0';
}
*pNum = neg ? -v : v;
testcase( i==18 );
testcase( i==19 );
testcase( i==20 );
- if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
+ if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
/* zNum is empty or contains non-numeric text or is longer
- ** than 19 digits (thus guaranting that it is too large) */
- return 0;
- }else if( i<19 ){
- /* Less than 19 digits, so we know that it fits in 64 bits */
+ ** than 19 digits (thus guaranteeing that it is too large) */
return 1;
+ }else if( i<19*incr ){
+ /* Less than 19 digits, so we know that it fits in 64 bits */
+ return 0;
}else{
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
** or 9223372036854775808 if negative. Note that 9223372036854665808
- ** is 2^63. */
- return compare2pow63(zNum)<neg;
- }
-}
-
-/*
-** The string zNum represents an unsigned integer. The zNum string
-** consists of one or more digit characters and is terminated by
-** a zero character. Any stray characters in zNum result in undefined
-** behavior.
-**
-** If the unsigned integer that zNum represents will fit in a
-** 64-bit signed integer, return TRUE. Otherwise return FALSE.
-**
-** If the negFlag parameter is true, that means that zNum really represents
-** a negative number. (The leading "-" is omitted from zNum.) This
-** parameter is needed to determine a boundary case. A string
-** of "9223373036854775808" returns false if negFlag is false or true
-** if negFlag is true.
-**
-** Leading zeros are ignored.
-*/
-SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
- int i;
- int neg = 0;
-
- assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
-
- if( negFlag ) neg = 1-neg;
- while( *zNum=='0' ){
- zNum++; /* Skip leading zeros. Ticket #2454 */
- }
- for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
- testcase( i==18 );
- testcase( i==19 );
- testcase( i==20 );
- if( i<19 ){
- /* Guaranteed to fit if less than 19 digits */
- return 1;
- }else if( i>19 ){
- /* Guaranteed to be too big if greater than 19 digits */
- return 0;
- }else{
- /* Compare against 2^63. */
- return compare2pow63(zNum)<neg;
+ ** is 2^63. Return 1 if to large */
+ c=compare2pow63(zNum, incr);
+ if( c==0 && neg==0 ) return 2; /* too big, exactly 9223372036854665808 */
+ return c<neg ? 0 : 1;
}
}
int fileFlags; /* Miscellanous flags */
const char *zPath; /* Name of the file */
unixShm *pShm; /* Shared memory segment information */
+ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
#if SQLITE_ENABLE_LOCKING_STYLE
int openFlags; /* The flags specified at open() */
#endif
}
SimulateIOError(( wrote=(-1), amt=1 ));
SimulateDiskfullError(( wrote=0, amt=1 ));
+
if( amt>0 ){
if( wrote<0 ){
/* lastErrno set by seekAndWrite */
return SQLITE_FULL;
}
}
+
return SQLITE_OK;
}
** Truncate an open file to a specified size
*/
static int unixTruncate(sqlite3_file *id, i64 nByte){
+ unixFile *pFile = (unixFile *)id;
int rc;
- assert( id );
+ assert( pFile );
SimulateIOError( return SQLITE_IOERR_TRUNCATE );
- rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+ rc = ftruncate(pFile->h, (off_t)nByte);
if( rc ){
- ((unixFile*)id)->lastErrno = errno;
+ pFile->lastErrno = errno;
return SQLITE_IOERR_TRUNCATE;
}else{
#ifndef NDEBUG
** when restoring a database using the backup API from a zero-length
** source.
*/
- if( ((unixFile*)id)->inNormalWrite && nByte==0 ){
- ((unixFile*)id)->transCntrChng = 1;
+ if( pFile->inNormalWrite && nByte==0 ){
+ pFile->transCntrChng = 1;
}
#endif
static int proxyFileControl(sqlite3_file*,int,void*);
#endif
+/*
+** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
+** file-control operation.
+**
+** If the user has configured a chunk-size for this file, it could be
+** that the file needs to be extended at this point. Otherwise, the
+** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.
+*/
+static int fcntlSizeHint(unixFile *pFile, i64 nByte){
+ if( pFile->szChunk ){
+ i64 nSize; /* Required file size */
+ struct stat buf; /* Used to hold return values of fstat() */
+
+ if( fstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
+
+ nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
+ if( nSize>(i64)buf.st_size ){
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
+ if( posix_fallocate(pFile->h, buf.st_size, nSize-buf.st_size) ){
+ return SQLITE_IOERR_WRITE;
+ }
+#else
+ /* If the OS does not have posix_fallocate(), fake it. First use
+ ** ftruncate() to set the file size, then write a single byte to
+ ** the last byte in each block within the extended region. This
+ ** is the same technique used by glibc to implement posix_fallocate()
+ ** on systems that do not have a real fallocate() system call.
+ */
+ int nBlk = buf.st_blksize; /* File-system block size */
+ i64 iWrite; /* Next offset to write to */
+ int nWrite; /* Return value from seekAndWrite() */
+
+ if( ftruncate(pFile->h, nSize) ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR_TRUNCATE;
+ }
+ iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
+ do {
+ nWrite = seekAndWrite(pFile, iWrite, "", 1);
+ iWrite += nBlk;
+ } while( nWrite==1 && iWrite<nSize );
+ if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
+#endif
+ }
+ }
+
+ return SQLITE_OK;
+}
/*
** Information and control of an open file handle.
*(int*)pArg = ((unixFile*)id)->lastErrno;
return SQLITE_OK;
}
- case SQLITE_FCNTL_SIZE_HINT: {
-#if 0 /* No performance advantage seen on Linux */
- sqlite3_int64 szFile = *(sqlite3_int64*)pArg;
- unixFile *pFile = (unixFile*)id;
- ftruncate(pFile->h, szFile);
-#endif
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ ((unixFile*)id)->szChunk = *(int *)pArg;
return SQLITE_OK;
}
+ case SQLITE_FCNTL_SIZE_HINT: {
+ return fcntlSizeHint((unixFile *)id, *(i64 *)pArg);
+ }
#ifndef NDEBUG
/* The pager calls this method to signal that it has done
** a rollback and that the database is therefore unchanged and
pShmNode->apRegion = apNew;
while(pShmNode->nRegion<=iRegion){
void *pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE,
- MAP_SHARED, pShmNode->h, iRegion*szRegion
+ MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
);
if( pMem==MAP_FAILED ){
rc = SQLITE_IOERR;
*/
UNUSED_PARAMETER(isDelete);
+ /* Usually the path zFilename should not be a relative pathname. The
+ ** exception is when opening the proxy "conch" file in builds that
+ ** include the special Apple locking styles.
+ */
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+ assert( zFilename==0 || zFilename[0]=='/'
+ || pVfs->pAppData==(void*)&autolockIoFinder );
+#else
+ assert( zFilename==0 || zFilename[0]=='/' );
+#endif
+
OSTRACE(("OPEN %-3d %s\n", h, zFilename));
pNew->h = h;
pNew->dirfd = dirfd;
pNew->fileFlags = 0;
- assert( zFilename==0 || zFilename[0]=='/' ); /* Never a relative pathname */
pNew->zPath = zFilename;
#if OS_VXWORKS
assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
memset(pHostID, 0, PROXY_HOSTIDLEN);
+#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
+ && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
if( gethostuuid(pHostID, &timeout) ){
int err = errno;
if( pError ){
}
return SQLITE_IOERR;
}
+#endif
#ifdef SQLITE_TEST
/* simulate multiple hosts by creating unique hostid file paths */
if( sqlite3_hostid_num != 0){
pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
sqlite3_free(pCtx->conchFile);
}
- sqlite3_free(pCtx->lockProxyPath);
+ sqlite3DbFree(0, pCtx->lockProxyPath);
sqlite3_free(pCtx->conchFilePath);
sqlite3_free(pCtx);
}
if( rc ) return rc;
sqlite3_free(conchFile);
}
- sqlite3_free(pCtx->lockProxyPath);
+ sqlite3DbFree(0, pCtx->lockProxyPath);
sqlite3_free(pCtx->conchFilePath);
- sqlite3_free(pCtx->dbPath);
+ sqlite3DbFree(0, pCtx->dbPath);
/* restore the original locking context and pMethod then close it */
pFile->lockingContext = pCtx->oldLockingContext;
pFile->pMethod = pCtx->pOldMethod;
DWORD sectorSize; /* Sector size of the device file is on */
winShm *pShm; /* Instance of shared memory on this file */
const char *zPath; /* Full pathname of this file */
+ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
#if SQLITE_OS_WINCE
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
HANDLE hMutex; /* Mutex used to control access to shared lock */
** by the sqlite3_io_methods object.
******************************************************************************/
+/*
+** Some microsoft compilers lack this definition.
+*/
+#ifndef INVALID_SET_FILE_POINTER
+# define INVALID_SET_FILE_POINTER ((DWORD)-1)
+#endif
+
+/*
+** Move the current position of the file handle passed as the first
+** argument to offset iOffset within the file. If successful, return 0.
+** Otherwise, set pFile->lastErrno and return non-zero.
+*/
+static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){
+ LONG upperBits; /* Most sig. 32 bits of new offset */
+ LONG lowerBits; /* Least sig. 32 bits of new offset */
+ DWORD dwRet; /* Value returned by SetFilePointer() */
+
+ upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
+ lowerBits = (LONG)(iOffset & 0xffffffff);
+
+ /* API oddity: If successful, SetFilePointer() returns a dword
+ ** containing the lower 32-bits of the new file-offset. Or, if it fails,
+ ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
+ ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
+ ** whether an error has actually occured, it is also necessary to call
+ ** GetLastError().
+ */
+ dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){
+ pFile->lastErrno = GetLastError();
+ return 1;
+ }
+
+ return 0;
+}
+
/*
** Close a file.
**
return rc ? SQLITE_OK : SQLITE_IOERR;
}
-/*
-** Some microsoft compilers lack this definition.
-*/
-#ifndef INVALID_SET_FILE_POINTER
-# define INVALID_SET_FILE_POINTER ((DWORD)-1)
-#endif
-
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
int amt, /* Number of bytes to read */
sqlite3_int64 offset /* Begin reading at this offset */
){
- LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
- LONG lowerBits = (LONG)(offset & 0xffffffff);
- DWORD rc;
- winFile *pFile = (winFile*)id;
- DWORD error;
- DWORD got;
+ winFile *pFile = (winFile*)id; /* file handle */
+ DWORD nRead; /* Number of bytes actually read from file */
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_READ);
OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype));
- rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
- pFile->lastErrno = error;
+
+ if( seekWinFile(pFile, offset) ){
return SQLITE_FULL;
}
- if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
+ if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
pFile->lastErrno = GetLastError();
return SQLITE_IOERR_READ;
}
- if( got==(DWORD)amt ){
- return SQLITE_OK;
- }else{
+ if( nRead<(DWORD)amt ){
/* Unread parts of the buffer must be zero-filled */
- memset(&((char*)pBuf)[got], 0, amt-got);
+ memset(&((char*)pBuf)[nRead], 0, amt-nRead);
return SQLITE_IOERR_SHORT_READ;
}
+
+ return SQLITE_OK;
}
/*
** or some other error code on failure.
*/
static int winWrite(
- sqlite3_file *id, /* File to write into */
- const void *pBuf, /* The bytes to be written */
- int amt, /* Number of bytes to write */
- sqlite3_int64 offset /* Offset into the file to begin writing at */
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
){
- LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
- LONG lowerBits = (LONG)(offset & 0xffffffff);
- DWORD rc;
- winFile *pFile = (winFile*)id;
- DWORD error;
- DWORD wrote = 0;
+ int rc; /* True if error has occured, else false */
+ winFile *pFile = (winFile*)id; /* File handle */
- assert( id!=0 );
+ assert( amt>0 );
+ assert( pFile );
SimulateIOError(return SQLITE_IOERR_WRITE);
SimulateDiskfullError(return SQLITE_FULL);
+
OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype));
- rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
- pFile->lastErrno = error;
- if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){
- return SQLITE_FULL;
- }else{
- return SQLITE_IOERR_WRITE;
+
+ rc = seekWinFile(pFile, offset);
+ if( rc==0 ){
+ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
+ int nRem = amt; /* Number of bytes yet to be written */
+ DWORD nWrite; /* Bytes written by each WriteFile() call */
+
+ while( nRem>0 && WriteFile(pFile->h, aRem, nRem, &nWrite, 0) && nWrite>0 ){
+ aRem += nWrite;
+ nRem -= nWrite;
+ }
+ if( nRem>0 ){
+ pFile->lastErrno = GetLastError();
+ rc = 1;
}
}
- assert( amt>0 );
- while(
- amt>0
- && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
- && wrote>0
- ){
- amt -= wrote;
- pBuf = &((char*)pBuf)[wrote];
- }
- if( !rc || amt>(int)wrote ){
- pFile->lastErrno = GetLastError();
+
+ if( rc ){
if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){
return SQLITE_FULL;
- }else{
- return SQLITE_IOERR_WRITE;
}
+ return SQLITE_IOERR_WRITE;
}
return SQLITE_OK;
}
** Truncate an open file to a specified size
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
- LONG upperBits = (LONG)((nByte>>32) & 0x7fffffff);
- LONG lowerBits = (LONG)(nByte & 0xffffffff);
- DWORD dwRet;
- winFile *pFile = (winFile*)id;
- DWORD error;
- int rc = SQLITE_OK;
+ winFile *pFile = (winFile*)id; /* File handle object */
+ int rc = SQLITE_OK; /* Return code for this function */
+
+ assert( pFile );
- assert( id!=0 );
OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte));
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
- dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- if( dwRet==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
- pFile->lastErrno = error;
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+ /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
+ if( seekWinFile(pFile, nByte) ){
rc = SQLITE_IOERR_TRUNCATE;
- /* SetEndOfFile will fail if nByte is negative */
- }else if( !SetEndOfFile(pFile->h) ){
+ }else if( 0==SetEndOfFile(pFile->h) ){
pFile->lastErrno = GetLastError();
rc = SQLITE_IOERR_TRUNCATE;
}
- OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc==SQLITE_OK ? "ok" : "failed"));
+
+ OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok"));
return rc;
}
*(int*)pArg = (int)((winFile*)id)->lastErrno;
return SQLITE_OK;
}
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ ((winFile*)id)->szChunk = *(int *)pArg;
+ return SQLITE_OK;
+ }
case SQLITE_FCNTL_SIZE_HINT: {
sqlite3_int64 sz = *(sqlite3_int64*)pArg;
SimulateIOErrorBenign(1);
#ifndef SQLITE_OMIT_WAL
+/*
+** Windows will only let you create file view mappings
+** on allocation size granularity boundaries.
+** During sqlite3_os_init() we do a GetSystemInfo()
+** to get the granularity size.
+*/
+SYSTEM_INFO winSysInfo;
+
/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the winLockInfo objects used by
static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
winShmNode **pp;
winShmNode *p;
+ BOOL bRc;
assert( winShmMutexHeld() );
pp = &winShmNodeList;
while( (p = *pp)!=0 ){
int i;
if( p->mutex ) sqlite3_mutex_free(p->mutex);
for(i=0; i<p->nRegion; i++){
- UnmapViewOfFile(p->aRegion[i].pMap);
- CloseHandle(p->aRegion[i].hMap);
+ bRc = UnmapViewOfFile(p->aRegion[i].pMap);
+ OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n",
+ (int)GetCurrentProcessId(), i,
+ bRc ? "ok" : "failed"));
+ bRc = CloseHandle(p->aRegion[i].hMap);
+ OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
+ (int)GetCurrentProcessId(), i,
+ bRc ? "ok" : "failed"));
}
if( p->hFile.h != INVALID_HANDLE_VALUE ){
SimulateIOErrorBenign(1);
rc = SQLITE_NOMEM;
goto shm_open_err;
}
+
rc = winOpen(pDbFd->pVfs,
pShmNode->zFilename, /* Name of the file (UTF-8) */
(sqlite3_file*)&pShmNode->hFile, /* File handle here */
- SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */
+ SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */
0);
if( SQLITE_OK!=rc ){
rc = SQLITE_CANTOPEN_BKPT;
hMap = CreateFileMapping(pShmNode->hFile.h,
NULL, PAGE_READWRITE, 0, nByte, NULL
);
+ OSTRACE(("SHM-MAP pid-%d create region=%d nbyte=%d %s\n",
+ (int)GetCurrentProcessId(), pShmNode->nRegion, nByte,
+ hMap ? "ok" : "failed"));
if( hMap ){
+ int iOffset = pShmNode->nRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
pMap = MapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ,
- 0, 0, nByte
+ 0, iOffset - iOffsetShift, szRegion + iOffsetShift
);
+ OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n",
+ (int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion,
+ pMap ? "ok" : "failed"));
}
if( !pMap ){
pShmNode->lastErrno = GetLastError();
shmpage_out:
if( pShmNode->nRegion>iRegion ){
+ int iOffset = iRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
char *p = (char *)pShmNode->aRegion[iRegion].pMap;
- *pp = (void *)&p[iRegion*szRegion];
+ *pp = (void *)&p[iOffsetShift];
}else{
*pp = 0;
}
int isTemp = 0;
#endif
winFile *pFile = (winFile*)id;
- void *zConverted; /* Filename in OS encoding */
- const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
- char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
+ void *zConverted; /* Filename in OS encoding */
+ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
+
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
+
+ int rc = SQLITE_OK; /* Function Return Code */
+#if !defined(NDEBUG) || SQLITE_OS_WINCE
+ int eType = flags&0xFFFFFF00; /* Type of file to open */
+#endif
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+#ifndef NDEBUG
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+#endif
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+
+#ifndef NDEBUG
+ int isOpenJournal = (isCreate && (
+ eType==SQLITE_OPEN_MASTER_JOURNAL
+ || eType==SQLITE_OPEN_MAIN_JOURNAL
+ || eType==SQLITE_OPEN_WAL
+ ));
+#endif
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, WAL file and master journal are never
+ ** automatically deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
+ );
assert( id!=0 );
UNUSED_PARAMETER(pVfs);
** temporary file name to use
*/
if( !zUtf8Name ){
- int rc = getTempname(MAX_PATH+1, zTmpname);
+ assert(isDelete && !isOpenJournal);
+ rc = getTempname(MAX_PATH+1, zTmpname);
if( rc!=SQLITE_OK ){
return rc;
}
return SQLITE_NOMEM;
}
- if( flags & SQLITE_OPEN_READWRITE ){
+ if( isReadWrite ){
dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
}else{
dwDesiredAccess = GENERIC_READ;
}
+
/* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
** created. SQLite doesn't use it to indicate "exclusive access"
** as it is usually understood.
*/
- assert(!(flags & SQLITE_OPEN_EXCLUSIVE) || (flags & SQLITE_OPEN_CREATE));
- if( flags & SQLITE_OPEN_EXCLUSIVE ){
+ if( isExclusive ){
/* Creates a new file, only if it does not already exist. */
/* If the file exists, it fails. */
dwCreationDisposition = CREATE_NEW;
- }else if( flags & SQLITE_OPEN_CREATE ){
+ }else if( isCreate ){
/* Open existing file, or create if it doesn't exist */
dwCreationDisposition = OPEN_ALWAYS;
}else{
/* Opens a file, only if it exists. */
dwCreationDisposition = OPEN_EXISTING;
}
+
dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
- if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+
+ if( isDelete ){
#if SQLITE_OS_WINCE
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
isTemp = 1;
#if SQLITE_OS_WINCE
dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
#endif
+
if( isNT() ){
h = CreateFileW((WCHAR*)zConverted,
dwDesiredAccess,
);
#endif
}
+
OSTRACE(("OPEN %d %s 0x%lx %s\n",
h, zName, dwDesiredAccess,
h==INVALID_HANDLE_VALUE ? "failed" : "ok"));
+
if( h==INVALID_HANDLE_VALUE ){
pFile->lastErrno = GetLastError();
free(zConverted);
- if( flags & SQLITE_OPEN_READWRITE ){
+ if( isReadWrite ){
return winOpen(pVfs, zName, id,
- ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
+ ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags);
}else{
return SQLITE_CANTOPEN_BKPT;
}
}
+
if( pOutFlags ){
- if( flags & SQLITE_OPEN_READWRITE ){
+ if( isReadWrite ){
*pOutFlags = SQLITE_OPEN_READWRITE;
}else{
*pOutFlags = SQLITE_OPEN_READONLY;
}
}
+
memset(pFile, 0, sizeof(*pFile));
pFile->pMethod = &winIoMethod;
pFile->h = h;
pFile->pShm = 0;
pFile->zPath = zName;
pFile->sectorSize = getSectorSize(pVfs, zUtf8Name);
+
#if SQLITE_OS_WINCE
- if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
- (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
+ if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
&& !winceCreateLock(zName, pFile)
){
CloseHandle(h);
{
free(zConverted);
}
+
OpenCounter(+1);
- return SQLITE_OK;
+ return rc;
}
/*
winCurrentTimeInt64, /* xCurrentTimeInt64 */
};
+#ifndef SQLITE_OMIT_WAL
+ /* get memory map allocation granularity */
+ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
+ GetSystemInfo(&winSysInfo);
+ assert(winSysInfo.dwAllocationGranularity > 0);
+#endif
+
sqlite3_vfs_register(&winVfs, 1);
return SQLITE_OK;
}
*/
/* Size of the Bitvec structure in bytes. */
-#define BITVEC_SZ (sizeof(void*)*128) /* 512 on 32bit. 1024 on 64bit */
+#define BITVEC_SZ 512
/* Round the union size down to the nearest pointer boundary, since that's how
** it will be aligned within the Bitvec struct. */
*/
SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
if( sqlite3GlobalConfig.pcache.xInit==0 ){
+ /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
+ ** built-in default page cache is used instead of the application defined
+ ** page cache. */
sqlite3PCacheSetDefault();
}
return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
}
SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
if( sqlite3GlobalConfig.pcache.xShutdown ){
+ /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
}
}
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
-/* Pointers to structures of this type are cast and returned as
-** opaque sqlite3_pcache* handles
+/* Each page cache is an instance of the following object. Every
+** open database file (including each in-memory database and each
+** temporary or transient database) has a single page cache which
+** is an instance of this object.
+**
+** Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles.
*/
struct PCache1 {
/* Cache configuration parameters. Page size (szPage) and the purgeable
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
int szSlot; /* Size of each free slot */
+ int nSlot; /* The number of pcache slots */
+ int nFreeSlot; /* Number of unused pcache slots */
+ int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
PgFreeslot *pFree; /* Free page blocks */
int isInit; /* True if initialized */
PgFreeslot *p;
sz = ROUNDDOWN8(sz);
pcache1.szSlot = sz;
+ pcache1.nSlot = pcache1.nFreeSlot = n;
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
pcache1.pStart = pBuf;
pcache1.pFree = 0;
while( n-- ){
static void *pcache1Alloc(int nByte){
void *p;
assert( sqlite3_mutex_held(pcache1.mutex) );
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
if( nByte<=pcache1.szSlot && pcache1.pFree ){
assert( pcache1.isInit );
p = (PgHdr1 *)pcache1.pFree;
pcache1.pFree = pcache1.pFree->pNext;
- sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ pcache1.nFreeSlot--;
+ assert( pcache1.nFreeSlot>=0 );
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
}else{
pSlot = (PgFreeslot*)p;
pSlot->pNext = pcache1.pFree;
pcache1.pFree = pSlot;
+ pcache1.nFreeSlot++;
+ assert( pcache1.nFreeSlot<=pcache1.nSlot );
}else{
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
}
}
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** Return the size of a pcache allocation
+*/
+static int pcache1MemSize(void *p){
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ return pcache1.szSlot;
+ }else{
+ int iSize;
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ iSize = sqlite3MallocSize(p);
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ return iSize;
+ }
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
/*
** Allocate a new page object initially associated with cache pCache.
*/
pcache1LeaveMutex();
}
+
+/*
+** Return true if it desirable to avoid allocating a new page cache
+** entry.
+**
+** If memory was allocated specifically to the page cache using
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
+** it is desirable to avoid allocating a new page cache entry because
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
+** for all page cache needs and we should not need to spill the
+** allocation onto the heap.
+**
+** Or, the heap is used for all page cache memory put the heap is
+** under memory pressure, then again it is desirable to avoid
+** allocating a new page cache entry in order to avoid stressing
+** the heap even further.
+*/
+static int pcache1UnderMemoryPressure(PCache1 *pCache){
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
+ return pcache1.nFreeSlot<pcache1.nReserve;
+ }else{
+ return sqlite3HeapNearlyFull();
+ }
+}
+
/******************************************************************************/
/******** General Implementation Functions ************************************/
** 2. If createFlag==0 and the page is not already in the cache, NULL is
** returned.
**
-** 3. If createFlag is 1, and the page is not already in the cache,
-** and if either of the following are true, return NULL:
+** 3. If createFlag is 1, and the page is not already in the cache, then
+** return NULL (do not allocate a new page) if any of the following
+** conditions are true:
**
** (a) the number of pages pinned by the cache is greater than
** PCache1.nMax, or
+**
** (b) the number of pages pinned by the cache is greater than
** the sum of nMax for all purgeable caches, less the sum of
-** nMin for all other purgeable caches.
+** nMin for all other purgeable caches, or
**
** 4. If none of the first three conditions apply and the cache is marked
** as purgeable, and if one of the following is true:
** already equal to or greater than the sum of nMax for all
** purgeable caches,
**
+** (c) The system is under memory pressure and wants to avoid
+** unnecessary pages cache entry allocations
+**
** then attempt to recycle a page from the LRU list. If it is the right
** size, return the recycled buffer. Otherwise, free the buffer and
** proceed to step 5.
if( createFlag==1 && (
nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
|| nPinned>=(pCache->nMax * 9 / 10)
+ || pcache1UnderMemoryPressure(pCache)
)){
goto fetch_out;
}
/* Step 4. Try to recycle a page buffer if appropriate. */
if( pCache->bPurgeable && pcache1.pLruTail && (
- (pCache->nPage+1>=pCache->nMax) || pcache1.nCurrentPage>=pcache1.nMaxPage
+ (pCache->nPage+1>=pCache->nMax)
+ || pcache1.nCurrentPage>=pcache1.nMaxPage
+ || pcache1UnderMemoryPressure(pCache)
)){
pPage = pcache1.pLruTail;
pcache1RemoveFromHash(pPage);
*/
static void pcache1Destroy(sqlite3_pcache *p){
PCache1 *pCache = (PCache1 *)p;
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
pcache1EnterMutex();
pcache1TruncateUnsafe(pCache, 0);
pcache1.nMaxPage -= pCache->nMax;
if( pcache1.pStart==0 ){
PgHdr1 *p;
pcache1EnterMutex();
- while( (nReq<0 || nFree<nReq) && (p=pcache1.pLruTail) ){
- nFree += sqlite3MallocSize(PGHDR1_TO_PAGE(p));
+ while( (nReq<0 || nFree<nReq) && ((p=pcache1.pLruTail)!=0) ){
+ nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
pcache1PinPage(p);
pcache1RemoveFromHash(p);
pcache1FreePage(p);
# define sqlite3WalBeginReadTransaction(y,z) 0
# define sqlite3WalEndReadTransaction(z)
# define sqlite3WalRead(v,w,x,y,z) 0
-# define sqlite3WalDbsize(y,z)
+# define sqlite3WalDbsize(y) 0
# define sqlite3WalBeginWriteTransaction(y) 0
# define sqlite3WalEndWriteTransaction(x) 0
# define sqlite3WalUndo(x,y,z) 0
/* Read a page from the write-ahead log, if it is present. */
SQLITE_PRIVATE int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, int nOut, u8 *pOut);
-/* Return the size of the database as it existed at the beginning
-** of the snapshot */
-SQLITE_PRIVATE void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno);
+/* If the WAL is not empty, return the size of the database. */
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
/* Obtain or release the WRITER lock. */
SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
/************** End of wal.h *************************************************/
/************** Continuing where we left off in pager.c **********************/
-/*
-******************** NOTES ON THE DESIGN OF THE PAGER ************************
+
+/******************* NOTES ON THE DESIGN OF THE PAGER ************************
+**
+** This comment block describes invariants that hold when using a rollback
+** journal. These invariants do not apply for journal_mode=WAL,
+** journal_mode=MEMORY, or journal_mode=OFF.
**
** Within this comment block, a page is deemed to have been synced
** automatically as soon as it is written when PRAGMA synchronous=OFF.
** transaction.
**
** (3) Writes to the database file are an integer multiple of the page size
-** in length and are aligned to a page boundary.
+** in length and are aligned on a page boundary.
**
** (4) Reads from the database file are either aligned on a page boundary and
** an integer multiple of the page size in length or are taken from the
**
** (9) Whenever the database file is modified, at least one bit in the range
** of bytes from 24 through 39 inclusive will be changed prior to releasing
-** the EXCLUSIVE lock.
+** the EXCLUSIVE lock, thus signaling other connections on the same
+** database to flush their caches.
**
** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
** than one billion transactions.
**
** (13) A SHARED lock is held on the database file while reading any
** content out of the database file.
-*/
+**
+******************************************************************************/
/*
** Macros for troubleshooting. Normally turned off
#define FILEHANDLEID(fd) ((int)fd)
/*
-** The page cache as a whole is always in one of the following
-** states:
-**
-** PAGER_UNLOCK The page cache is not currently reading or
-** writing the database file. There is no
-** data held in memory. This is the initial
-** state.
-**
-** PAGER_SHARED The page cache is reading the database.
-** Writing is not permitted. There can be
-** multiple readers accessing the same database
-** file at the same time.
-**
-** PAGER_RESERVED This process has reserved the database for writing
-** but has not yet made any changes. Only one process
-** at a time can reserve the database. The original
-** database file has not been modified so other
-** processes may still be reading the on-disk
-** database file.
-**
-** PAGER_EXCLUSIVE The page cache is writing the database.
-** Access is exclusive. No other processes or
-** threads can be reading or writing while one
-** process is writing.
-**
-** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
-** after all dirty pages have been written to the
-** database file and the file has been synced to
-** disk. All that remains to do is to remove or
-** truncate the journal file and the transaction
-** will be committed.
-**
-** The page cache comes up in PAGER_UNLOCK. The first time a
-** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
-** After all pages have been released using sqlite_page_unref(),
-** the state transitions back to PAGER_UNLOCK. The first time
-** that sqlite3PagerWrite() is called, the state transitions to
-** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
-** called on an outstanding page which means that the pager must
-** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
-** PAGER_RESERVED means that there is an open rollback journal.
-** The transition to PAGER_EXCLUSIVE occurs before any changes
-** are made to the database file, though writes to the rollback
-** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
-** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
-** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
-*/
-#define PAGER_UNLOCK 0
-#define PAGER_SHARED 1 /* same as SHARED_LOCK */
-#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
-#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
-#define PAGER_SYNCED 5
+** The Pager.eState variable stores the current 'state' of a pager. A
+** pager may be in any one of the seven states shown in the following
+** state diagram.
+**
+** OPEN <------+------+
+** | | |
+** V | |
+** +---------> READER-------+ |
+** | | |
+** | V |
+** |<-------WRITER_LOCKED------> ERROR
+** | | ^
+** | V |
+** |<------WRITER_CACHEMOD-------->|
+** | | |
+** | V |
+** |<-------WRITER_DBMOD---------->|
+** | | |
+** | V |
+** +<------WRITER_FINISHED-------->+
+**
+**
+** List of state transitions and the C [function] that performs each:
+**
+** OPEN -> READER [sqlite3PagerSharedLock]
+** READER -> OPEN [pager_unlock]
+**
+** READER -> WRITER_LOCKED [sqlite3PagerBegin]
+** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
+** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
+** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
+** WRITER_*** -> READER [pager_end_transaction]
+**
+** WRITER_*** -> ERROR [pager_error]
+** ERROR -> OPEN [pager_unlock]
+**
+**
+** OPEN:
+**
+** The pager starts up in this state. Nothing is guaranteed in this
+** state - the file may or may not be locked and the database size is
+** unknown. The database may not be read or written.
+**
+** * No read or write transaction is active.
+** * Any lock, or no lock at all, may be held on the database file.
+** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
+**
+** READER:
+**
+** In this state all the requirements for reading the database in
+** rollback (non-WAL) mode are met. Unless the pager is (or recently
+** was) in exclusive-locking mode, a user-level read transaction is
+** open. The database size is known in this state.
+**
+** A connection running with locking_mode=normal enters this state when
+** it opens a read-transaction on the database and returns to state
+** OPEN after the read-transaction is completed. However a connection
+** running in locking_mode=exclusive (including temp databases) remains in
+** this state even after the read-transaction is closed. The only way
+** a locking_mode=exclusive connection can transition from READER to OPEN
+** is via the ERROR state (see below).
+**
+** * A read transaction may be active (but a write-transaction cannot).
+** * A SHARED or greater lock is held on the database file.
+** * The dbSize variable may be trusted (even if a user-level read
+** transaction is not active). The dbOrigSize and dbFileSize variables
+** may not be trusted at this point.
+** * If the database is a WAL database, then the WAL connection is open.
+** * Even if a read-transaction is not open, it is guaranteed that
+** there is no hot-journal in the file-system.
+**
+** WRITER_LOCKED:
+**
+** The pager moves to this state from READER when a write-transaction
+** is first opened on the database. In WRITER_LOCKED state, all locks
+** required to start a write-transaction are held, but no actual
+** modifications to the cache or database have taken place.
+**
+** In rollback mode, a RESERVED or (if the transaction was opened with
+** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
+** moving to this state, but the journal file is not written to or opened
+** to in this state. If the transaction is committed or rolled back while
+** in WRITER_LOCKED state, all that is required is to unlock the database
+** file.
+**
+** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
+** If the connection is running with locking_mode=exclusive, an attempt
+** is made to obtain an EXCLUSIVE lock on the database file.
+**
+** * A write transaction is active.
+** * If the connection is open in rollback-mode, a RESERVED or greater
+** lock is held on the database file.
+** * If the connection is open in WAL-mode, a WAL write transaction
+** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
+** called).
+** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
+** * The contents of the pager cache have not been modified.
+** * The journal file may or may not be open.
+** * Nothing (not even the first header) has been written to the journal.
+**
+** WRITER_CACHEMOD:
+**
+** A pager moves from WRITER_LOCKED state to this state when a page is
+** first modified by the upper layer. In rollback mode the journal file
+** is opened (if it is not already open) and a header written to the
+** start of it. The database file on disk has not been modified.
+**
+** * A write transaction is active.
+** * A RESERVED or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** to it, but the header has not been synced to disk.
+** * The contents of the page cache have been modified.
+**
+** WRITER_DBMOD:
+**
+** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
+** when it modifies the contents of the database file. WAL connections
+** never enter this state (since they do not modify the database file,
+** just the log file).
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** and synced to disk.
+** * The contents of the page cache have been modified (and possibly
+** written to disk).
+**
+** WRITER_FINISHED:
+**
+** It is not possible for a WAL connection to enter this state.
+**
+** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
+** state after the entire transaction has been successfully written into the
+** database file. In this state the transaction may be committed simply
+** by finalizing the journal file. Once in WRITER_FINISHED state, it is
+** not possible to modify the database further. At this point, the upper
+** layer must either commit or rollback the transaction.
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * All writing and syncing of journal and database data has finished.
+** If no error occured, all that remains is to finalize the journal to
+** commit the transaction. If an error did occur, the caller will need
+** to rollback the transaction.
+**
+** ERROR:
+**
+** The ERROR state is entered when an IO or disk-full error (including
+** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
+** difficult to be sure that the in-memory pager state (cache contents,
+** db size etc.) are consistent with the contents of the file-system.
+**
+** Temporary pager files may enter the ERROR state, but in-memory pagers
+** cannot.
+**
+** For example, if an IO error occurs while performing a rollback,
+** the contents of the page-cache may be left in an inconsistent state.
+** At this point it would be dangerous to change back to READER state
+** (as usually happens after a rollback). Any subsequent readers might
+** report database corruption (due to the inconsistent cache), and if
+** they upgrade to writers, they may inadvertently corrupt the database
+** file. To avoid this hazard, the pager switches into the ERROR state
+** instead of READER following such an error.
+**
+** Once it has entered the ERROR state, any attempt to use the pager
+** to read or write data returns an error. Eventually, once all
+** outstanding transactions have been abandoned, the pager is able to
+** transition back to OPEN state, discarding the contents of the
+** page-cache and any other in-memory state at the same time. Everything
+** is reloaded from disk (and, if necessary, hot-journal rollback peformed)
+** when a read-transaction is next opened on the pager (transitioning
+** the pager into READER state). At that point the system has recovered
+** from the error.
+**
+** Specifically, the pager jumps into the ERROR state if:
+**
+** 1. An error occurs while attempting a rollback. This happens in
+** function sqlite3PagerRollback().
+**
+** 2. An error occurs while attempting to finalize a journal file
+** following a commit in function sqlite3PagerCommitPhaseTwo().
+**
+** 3. An error occurs while attempting to write to the journal or
+** database file in function pagerStress() in order to free up
+** memory.
+**
+** In other cases, the error is returned to the b-tree layer. The b-tree
+** layer then attempts a rollback operation. If the error condition
+** persists, the pager enters the ERROR state via condition (1) above.
+**
+** Condition (3) is necessary because it can be triggered by a read-only
+** statement executed within a transaction. In this case, if the error
+** code were simply returned to the user, the b-tree layer would not
+** automatically attempt a rollback, as it assumes that an error in a
+** read-only statement cannot leave the pager in an internally inconsistent
+** state.
+**
+** * The Pager.errCode variable is set to something other than SQLITE_OK.
+** * There are one or more outstanding references to pages (after the
+** last reference is dropped the pager should move back to OPEN state).
+** * The pager is not an in-memory pager.
+**
+**
+** Notes:
+**
+** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
+** connection is open in WAL mode. A WAL connection is always in one
+** of the first four states.
+**
+** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
+** state. There are two exceptions: immediately after exclusive-mode has
+** been turned on (and before any read or write transactions are
+** executed), and when the pager is leaving the "error state".
+**
+** * See also: assert_pager_state().
+*/
+#define PAGER_OPEN 0
+#define PAGER_READER 1
+#define PAGER_WRITER_LOCKED 2
+#define PAGER_WRITER_CACHEMOD 3
+#define PAGER_WRITER_DBMOD 4
+#define PAGER_WRITER_FINISHED 5
+#define PAGER_ERROR 6
+
+/*
+** The Pager.eLock variable is almost always set to one of the
+** following locking-states, according to the lock currently held on
+** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+** This variable is kept up to date as locks are taken and released by
+** the pagerLockDb() and pagerUnlockDb() wrappers.
+**
+** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
+** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
+** the operation was successful. In these circumstances pagerLockDb() and
+** pagerUnlockDb() take a conservative approach - eLock is always updated
+** when unlocking the file, and only updated when locking the file if the
+** VFS call is successful. This way, the Pager.eLock variable may be set
+** to a less exclusive (lower) value than the lock that is actually held
+** at the system level, but it is never set to a more exclusive value.
+**
+** This is usually safe. If an xUnlock fails or appears to fail, there may
+** be a few redundant xLock() calls or a lock may be held for longer than
+** required, but nothing really goes wrong.
+**
+** The exception is when the database file is unlocked as the pager moves
+** from ERROR to OPEN state. At this point there may be a hot-journal file
+** in the file-system that needs to be rolled back (as part of a OPEN->SHARED
+** transition, by the same pager or any other). If the call to xUnlock()
+** fails at this point and the pager is left holding an EXCLUSIVE lock, this
+** can confuse the call to xCheckReservedLock() call made later as part
+** of hot-journal detection.
+**
+** xCheckReservedLock() is defined as returning true "if there is a RESERVED
+** lock held by this process or any others". So xCheckReservedLock may
+** return true because the caller itself is holding an EXCLUSIVE lock (but
+** doesn't know it because of a previous error in xUnlock). If this happens
+** a hot-journal may be mistaken for a journal being created by an active
+** transaction in another process, causing SQLite to read from the database
+** without rolling it back.
+**
+** To work around this, if a call to xUnlock() fails when unlocking the
+** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
+** is only changed back to a real locking state after a successful call
+** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
+** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
+** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
+** lock on the database file before attempting to roll it back. See function
+** PagerSharedLock() for more detail.
+**
+** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
+** PAGER_OPEN state.
+*/
+#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
/*
** A macro used for invoking the codec if there is one
};
/*
-** A open page cache is an instance of the following structure.
+** A open page cache is an instance of struct Pager. A description of
+** some of the more important member variables follows:
**
-** errCode
+** eState
+**
+** The current 'state' of the pager object. See the comment and state
+** diagram above for a description of the pager state.
+**
+** eLock
+**
+** For a real on-disk database, the current lock held on the database file -
+** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
**
-** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
-** or SQLITE_FULL. Once one of the first three errors occurs, it persists
-** and is returned as the result of every major pager API call. The
-** SQLITE_FULL return code is slightly different. It persists only until the
-** next successful rollback is performed on the pager cache. Also,
-** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
-** APIs, they may still be used successfully.
-**
-** dbSizeValid, dbSize, dbOrigSize, dbFileSize
-**
-** Managing the size of the database file in pages is a little complicated.
-** The variable Pager.dbSize contains the number of pages that the database
-** image currently contains. As the database image grows or shrinks this
-** variable is updated. The variable Pager.dbFileSize contains the number
-** of pages in the database file. This may be different from Pager.dbSize
-** if some pages have been appended to the database image but not yet written
-** out from the cache to the actual file on disk. Or if the image has been
-** truncated by an incremental-vacuum operation. The Pager.dbOrigSize variable
-** contains the number of pages in the database image when the current
-** transaction was opened. The contents of all three of these variables is
-** only guaranteed to be correct if the boolean Pager.dbSizeValid is true.
-**
-** TODO: Under what conditions is dbSizeValid set? Cleared?
+** For a temporary or in-memory database (neither of which require any
+** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
+** databases always have Pager.exclusiveMode==1, this tricks the pager
+** logic into thinking that it already has all the locks it will ever
+** need (and no reason to release them).
+**
+** In some (obscure) circumstances, this variable may also be set to
+** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
+** details.
**
** changeCountDone
**
** need only update the change-counter once, for the first transaction
** committed.
**
-** dbModified
-**
-** The dbModified flag is set whenever a database page is dirtied.
-** It is cleared at the end of each transaction.
-**
-** It is used when committing or otherwise ending a transaction. If
-** the dbModified flag is clear then less work has to be done.
-**
-** journalStarted
-**
-** This flag is set whenever the the main journal is opened and
-** initialized
-**
-** The point of this flag is that it must be set after the
-** first journal header in a journal file has been synced to disk.
-** After this has happened, new pages appended to the database
-** do not need the PGHDR_NEED_SYNC flag set, as they do not need
-** to wait for a journal sync before they can be written out to
-** the database file (see function pager_write()).
-**
** setMaster
**
-** This variable is used to ensure that the master journal file name
-** (if any) is only written into the journal file once.
-**
-** When committing a transaction, the master journal file name (if any)
-** may be written into the journal file while the pager is still in
-** PAGER_RESERVED state (see CommitPhaseOne() for the action). It
-** then attempts to upgrade to an exclusive lock. If this attempt
-** fails, then SQLITE_BUSY may be returned to the user and the user
-** may attempt to commit the transaction again later (calling
-** CommitPhaseOne() again). This flag is used to ensure that the
-** master journal name is only written to the journal file the first
-** time CommitPhaseOne() is called.
+** When PagerCommitPhaseOne() is called to commit a transaction, it may
+** (or may not) specify a master-journal name to be written into the
+** journal file before it is synced to disk.
+**
+** Whether or not a journal file contains a master-journal pointer affects
+** the way in which the journal file is finalized after the transaction is
+** committed or rolled back when running in "journal_mode=PERSIST" mode.
+** If a journal file does not contain a master-journal pointer, it is
+** finalized by overwriting the first journal header with zeroes. If
+** it does contain a master-journal pointer the journal file is finalized
+** by truncating it to zero bytes, just as if the connection were
+** running in "journal_mode=truncate" mode.
+**
+** Journal files that contain master journal pointers cannot be finalized
+** simply by overwriting the first journal-header with zeroes, as the
+** master journal pointer could interfere with hot-journal rollback of any
+** subsequently interrupted transaction that reuses the journal file.
+**
+** The flag is cleared as soon as the journal file is finalized (either
+** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
+** journal file from being successfully finalized, the setMaster flag
+** is cleared anyway (and the pager will move to ERROR state).
**
** doNotSpill, doNotSyncSpill
**
-** When enabled, cache spills are prohibited. The doNotSpill variable
-** inhibits all cache spill and doNotSyncSpill inhibits those spills that
-** would require a journal sync. The doNotSyncSpill is set and cleared
-** by sqlite3PagerWrite() in order to prevent a journal sync from happening
-** in between the journalling of two pages on the same sector. The
-** doNotSpill value set to prevent pagerStress() from trying to use
-** the journal during a rollback.
-**
-** needSync
+** These two boolean variables control the behaviour of cache-spills
+** (calls made by the pcache module to the pagerStress() routine to
+** write cached data to the file-system in order to free up memory).
**
-** TODO: It might be easier to set this variable in writeJournalHdr()
-** and writeMasterJournal() only. Change its meaning to "unsynced data
-** has been written to the journal".
+** When doNotSpill is non-zero, writing to the database from pagerStress()
+** is disabled altogether. This is done in a very obscure case that
+** comes up during savepoint rollback that requires the pcache module
+** to allocate a new page to prevent the journal file from being written
+** while it is being traversed by code in pager_playback().
+**
+** If doNotSyncSpill is non-zero, writing to the database from pagerStress()
+** is permitted, but syncing the journal file is not. This flag is set
+** by sqlite3PagerWrite() when the file-system sector-size is larger than
+** the database page-size in order to prevent a journal sync from happening
+** in between the journalling of two pages on the same sector.
**
** subjInMemory
**
** This is a boolean variable. If true, then any required sub-journal
** is opened as an in-memory journal file. If false, then in-memory
** sub-journals are only used for in-memory pager files.
+**
+** This variable is updated by the upper layer each time a new
+** write-transaction is opened.
+**
+** dbSize, dbOrigSize, dbFileSize
+**
+** Variable dbSize is set to the number of pages in the database file.
+** It is valid in PAGER_READER and higher states (all states except for
+** OPEN and ERROR).
+**
+** dbSize is set based on the size of the database file, which may be
+** larger than the size of the database (the value stored at offset
+** 28 of the database header by the btree). If the size of the file
+** is not an integer multiple of the page-size, the value stored in
+** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
+** Except, any file that is greater than 0 bytes in size is considered
+** to have at least one page. (i.e. a 1KB file with 2K page-size leads
+** to dbSize==1).
+**
+** During a write-transaction, if pages with page-numbers greater than
+** dbSize are modified in the cache, dbSize is updated accordingly.
+** Similarly, if the database is truncated using PagerTruncateImage(),
+** dbSize is updated.
+**
+** Variables dbOrigSize and dbFileSize are valid in states
+** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
+** variable at the start of the transaction. It is used during rollback,
+** and to determine whether or not pages need to be journalled before
+** being modified.
+**
+** Throughout a write-transaction, dbFileSize contains the size of
+** the file on disk in pages. It is set to a copy of dbSize when the
+** write-transaction is first opened, and updated when VFS calls are made
+** to write or truncate the database file on disk.
+**
+** The only reason the dbFileSize variable is required is to suppress
+** unnecessary calls to xTruncate() after committing a transaction. If,
+** when a transaction is committed, the dbFileSize variable indicates
+** that the database file is larger than the database image (Pager.dbSize),
+** pager_truncate() is called. The pager_truncate() call uses xFilesize()
+** to measure the database file on disk, and then truncates it if required.
+** dbFileSize is not used when rolling back a transaction. In this case
+** pager_truncate() is called unconditionally (which means there may be
+** a call to xFilesize() that is not strictly required). In either case,
+** pager_truncate() may cause the file to become smaller or larger.
+**
+** dbHintSize
+**
+** The dbHintSize variable is used to limit the number of calls made to
+** the VFS xFileControl(FCNTL_SIZE_HINT) method.
+**
+** dbHintSize is set to a copy of the dbSize variable when a
+** write-transaction is opened (at the same time as dbFileSize and
+** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
+** dbHintSize is increased to the number of pages that correspond to the
+** size-hint passed to the method call. See pager_write_pagelist() for
+** details.
+**
+** errCode
+**
+** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
+** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
+** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
+** sub-codes.
*/
struct Pager {
sqlite3_vfs *pVfs; /* OS functions to use for IO */
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
- u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
+ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
u8 useJournal; /* Use a rollback journal on this file */
u8 noReadlock; /* Do not bother to obtain readlocks */
u8 noSync; /* Do not sync the journal if true */
u8 readOnly; /* True for a read-only database */
u8 memDb; /* True to inhibit all file I/O */
- /* The following block contains those class members that are dynamically
- ** modified during normal operations. The other variables in this structure
- ** are either constant throughout the lifetime of the pager, or else
- ** used to store configuration parameters that affect the way the pager
- ** operates.
- **
- ** The 'state' variable is described in more detail along with the
- ** descriptions of the values it may take - PAGER_UNLOCK etc. Many of the
- ** other variables in this block are described in the comment directly
- ** above this class definition.
- */
- u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
- u8 dbModified; /* True if there are any changes to the Db */
- u8 needSync; /* True if an fsync() is needed on the journal */
- u8 journalStarted; /* True if header of journal is synced */
+ /**************************************************************************
+ ** The following block contains those class members that change during
+ ** routine opertion. Class members not in this block are either fixed
+ ** when the pager is first created or else only change when there is a
+ ** significant mode change (such as changing the page_size, locking_mode,
+ ** or the journal_mode). From another view, these class members describe
+ ** the "state" of the pager, while other class members describe the
+ ** "configuration" of the pager.
+ */
+ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
+ u8 eLock; /* Current lock held on database file */
u8 changeCountDone; /* Set after incrementing the change-counter */
u8 setMaster; /* True if a m-j name has been written to jrnl */
u8 doNotSpill; /* Do not spill the cache when non-zero */
u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */
- u8 dbSizeValid; /* Set when dbSize is correct */
u8 subjInMemory; /* True to use in-memory sub-journals */
Pgno dbSize; /* Number of pages in the database */
Pgno dbOrigSize; /* dbSize before the current transaction */
Pgno dbFileSize; /* Number of pages in the database file */
+ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
int errCode; /* One of several kinds of errors */
int nRec; /* Pages journalled since last j-header written */
u32 cksumInit; /* Quasi-random value added to every checksum */
sqlite3_file *sjfd; /* File descriptor for sub-journal */
i64 journalOff; /* Current write offset in the journal file */
i64 journalHdr; /* Byte offset to previous journal header */
- i64 journalSizeLimit; /* Size limit for persistent journal files */
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
PagerSavepoint *aSavepoint; /* Array of active savepoints */
int nSavepoint; /* Number of elements in aSavepoint[] */
char dbFileVers[16]; /* Changes whenever database file changes */
- u32 sectorSize; /* Assumed sector size during rollback */
+ /*
+ ** End of the routinely-changing class members
+ ***************************************************************************/
u16 nExtra; /* Add this many bytes to each in-memory page */
i16 nReserve; /* Number of unused bytes at end of each page */
u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
+ u32 sectorSize; /* Assumed sector size during rollback */
int pageSize; /* Number of bytes in a page */
Pgno mxPgno; /* Maximum allowed size of the database */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
char *zFilename; /* Name of the database file */
char *zJournal; /* Name of the journal file */
int (*xBusyHandler)(void*); /* Function to call when busy */
#endif
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
PCache *pPCache; /* Pointer to page cache object */
- sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
#ifndef SQLITE_OMIT_WAL
Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
char *zWal; /* File name for write-ahead log */
*/
#define PAGER_MAX_PGNO 2147483647
+/*
+** The argument to this macro is a file descriptor (type sqlite3_file*).
+** Return 0 if it is not open, or non-zero (but not 1) if it is.
+**
+** This is so that expressions can be written as:
+**
+** if( isOpen(pPager->jfd) ){ ...
+**
+** instead of
+**
+** if( pPager->jfd->pMethods ){ ...
+*/
+#define isOpen(pFd) ((pFd)->pMethods)
+
+/*
+** Return true if this pager uses a write-ahead log instead of the usual
+** rollback journal. Otherwise false.
+*/
+#ifndef SQLITE_OMIT_WAL
+static int pagerUseWal(Pager *pPager){
+ return (pPager->pWal!=0);
+}
+#else
+# define pagerUseWal(x) 0
+# define pagerRollbackWal(x) 0
+# define pagerWalFrames(v,w,x,y,z) 0
+# define pagerOpenWalIfPresent(z) SQLITE_OK
+# define pagerBeginReadTransaction(z) SQLITE_OK
+#endif
+
#ifndef NDEBUG
/*
** Usage:
**
** assert( assert_pager_state(pPager) );
+**
+** This function runs many asserts to try to find inconsistencies in
+** the internal state of the Pager object.
*/
-static int assert_pager_state(Pager *pPager){
+static int assert_pager_state(Pager *p){
+ Pager *pPager = p;
+
+ /* State must be valid. */
+ assert( p->eState==PAGER_OPEN
+ || p->eState==PAGER_READER
+ || p->eState==PAGER_WRITER_LOCKED
+ || p->eState==PAGER_WRITER_CACHEMOD
+ || p->eState==PAGER_WRITER_DBMOD
+ || p->eState==PAGER_WRITER_FINISHED
+ || p->eState==PAGER_ERROR
+ );
+
+ /* Regardless of the current state, a temp-file connection always behaves
+ ** as if it has an exclusive lock on the database file. It never updates
+ ** the change-counter field, so the changeCountDone flag is always set.
+ */
+ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
+ assert( p->tempFile==0 || pPager->changeCountDone );
+
+ /* If the useJournal flag is clear, the journal-mode must be "OFF".
+ ** And if the journal-mode is "OFF", the journal file must not be open.
+ */
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
+ assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
+
+ /* Check that MEMDB implies noSync. And an in-memory journal. Since
+ ** this means an in-memory pager performs no IO at all, it cannot encounter
+ ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
+ ** a journal file. (although the in-memory journal implementation may
+ ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
+ ** is therefore not possible for an in-memory pager to enter the ERROR
+ ** state.
+ */
+ if( MEMDB ){
+ assert( p->noSync );
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_MEMORY
+ );
+ assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
+ assert( pagerUseWal(p)==0 );
+ }
- /* A temp-file is always in PAGER_EXCLUSIVE or PAGER_SYNCED state. */
- assert( pPager->tempFile==0 || pPager->state>=PAGER_EXCLUSIVE );
+ /* If changeCountDone is set, a RESERVED lock or greater must be held
+ ** on the file.
+ */
+ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
+ assert( p->eLock!=PENDING_LOCK );
- /* The changeCountDone flag is always set for temp-files */
- assert( pPager->tempFile==0 || pPager->changeCountDone );
+ switch( p->eState ){
+ case PAGER_OPEN:
+ assert( !MEMDB );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
+ break;
+
+ case PAGER_READER:
+ assert( pPager->errCode==SQLITE_OK );
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( p->eLock>=SHARED_LOCK || p->noReadlock );
+ break;
+
+ case PAGER_WRITER_LOCKED:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ assert( p->eLock>=RESERVED_LOCK );
+ }
+ assert( pPager->dbSize==pPager->dbOrigSize );
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ assert( pPager->setMaster==0 );
+ break;
+
+ case PAGER_WRITER_CACHEMOD:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ /* It is possible that if journal_mode=wal here that neither the
+ ** journal file nor the WAL file are open. This happens during
+ ** a rollback transaction that switches from journal_mode=off
+ ** to journal_mode=wal.
+ */
+ assert( p->eLock>=RESERVED_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ }
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_DBMOD:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( p->eLock>=EXCLUSIVE_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ assert( pPager->dbOrigSize<=pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_FINISHED:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ break;
+
+ case PAGER_ERROR:
+ /* There must be at least one outstanding reference to the pager if
+ ** in ERROR state. Otherwise the pager should have already dropped
+ ** back to OPEN state.
+ */
+ assert( pPager->errCode!=SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 );
+ break;
+ }
return 1;
}
+
+/*
+** Return a pointer to a human readable string in a static buffer
+** containing the state of the Pager object passed as an argument. This
+** is intended to be used within debuggers. For example, as an alternative
+** to "print *pPager" in gdb:
+**
+** (gdb) printf "%s", print_pager_state(pPager)
+*/
+static char *print_pager_state(Pager *p){
+ static char zRet[1024];
+
+ sqlite3_snprintf(1024, zRet,
+ "Filename: %s\n"
+ "State: %s errCode=%d\n"
+ "Lock: %s\n"
+ "Locking mode: locking_mode=%s\n"
+ "Journal mode: journal_mode=%s\n"
+ "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
+ "Journal: journalOff=%lld journalHdr=%lld\n"
+ "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
+ , p->zFilename
+ , p->eState==PAGER_OPEN ? "OPEN" :
+ p->eState==PAGER_READER ? "READER" :
+ p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" :
+ p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
+ p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" :
+ p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
+ p->eState==PAGER_ERROR ? "ERROR" : "?error?"
+ , (int)p->errCode
+ , p->eLock==NO_LOCK ? "NO_LOCK" :
+ p->eLock==RESERVED_LOCK ? "RESERVED" :
+ p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" :
+ p->eLock==SHARED_LOCK ? "SHARED" :
+ p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?"
+ , p->exclusiveMode ? "exclusive" : "normal"
+ , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" :
+ p->journalMode==PAGER_JOURNALMODE_OFF ? "off" :
+ p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" :
+ p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" :
+ p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
+ p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?"
+ , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
+ , p->journalOff, p->journalHdr
+ , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
+ );
+
+ return zRet;
+}
#endif
/*
*/
#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
+
/*
** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
** on success or an error code is something goes wrong.
}
/*
-** The argument to this macro is a file descriptor (type sqlite3_file*).
-** Return 0 if it is not open, or non-zero (but not 1) if it is.
-**
-** This is so that expressions can be written as:
-**
-** if( isOpen(pPager->jfd) ){ ...
-**
-** instead of
+** Unlock the database file to level eLock, which must be either NO_LOCK
+** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
+** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
**
-** if( pPager->jfd->pMethods ){ ...
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it. See the comment above the #define of
+** UNKNOWN_LOCK for an explanation of this.
*/
-#define isOpen(pFd) ((pFd)->pMethods)
+static int pagerUnlockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( !pPager->exclusiveMode );
+ assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
+ assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
+ if( isOpen(pPager->fd) ){
+ assert( pPager->eLock>=eLock );
+ rc = sqlite3OsUnlock(pPager->fd, eLock);
+ if( pPager->eLock!=UNKNOWN_LOCK ){
+ pPager->eLock = (u8)eLock;
+ }
+ IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
+ }
+ return rc;
+}
/*
-** If file pFd is open, call sqlite3OsUnlock() on it.
+** Lock the database file to level eLock, which must be either SHARED_LOCK,
+** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
+** Pager.eLock variable to the new locking state.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
+** See the comment above the #define of UNKNOWN_LOCK for an explanation
+** of this.
*/
-static int osUnlock(sqlite3_file *pFd, int eLock){
- if( !isOpen(pFd) ){
- return SQLITE_OK;
+static int pagerLockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
+ if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
+ rc = sqlite3OsLock(pPager->fd, eLock);
+ if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
+ pPager->eLock = (u8)eLock;
+ IOTRACE(("LOCK %p %d\n", pPager, eLock))
+ }
}
- return sqlite3OsUnlock(pFd, eLock);
+ return rc;
}
/*
#define CHECK_PAGE(x) checkPage(x)
static void checkPage(PgHdr *pPg){
Pager *pPager = pPg->pPager;
- assert( !pPg->pageHash || pPager->errCode
- || (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
}
#else
#define pager_datahash(X,Y) 0
#define pager_pagehash(X) 0
+#define pager_set_pagehash(X)
#define CHECK_PAGE(x)
#endif /* SQLITE_CHECK_PAGES */
static int writeJournalHdr(Pager *pPager){
int rc = SQLITE_OK; /* Return code */
char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
- u32 nHeader = pPager->pageSize; /* Size of buffer pointed to by zHeader */
+ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
u32 nWrite; /* Bytes of header sector written */
int ii; /* Loop counter */
** that garbage data is never appended to the journal file.
*/
assert( isOpen(pPager->fd) || pPager->noSync );
- if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
+ if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
|| (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
){
memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
if( pPager->journalOff==0 ){
u32 iPageSize; /* Page-size field of journal header */
u32 iSectorSize; /* Sector-size field of journal header */
- u16 iPageSize16; /* Copy of iPageSize in 16-bit variable */
/* Read the page-size and sector-size journal header fields. */
if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
return rc;
}
+ /* Versions of SQLite prior to 3.5.8 set the page-size field of the
+ ** journal header to zero. In this case, assume that the Pager.pageSize
+ ** variable is already set to the correct page size.
+ */
+ if( iPageSize==0 ){
+ iPageSize = pPager->pageSize;
+ }
+
/* Check that the values read from the page-size and sector-size fields
** are within range. To be 'in range', both values need to be a power
** of two greater than or equal to 512 or 32, and not greater than their
** Use a testcase() macro to make sure that malloc failure within
** PagerSetPagesize() is tested.
*/
- iPageSize16 = (u16)iPageSize;
- rc = sqlite3PagerSetPagesize(pPager, &iPageSize16, -1);
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
testcase( rc!=SQLITE_OK );
- assert( rc!=SQLITE_OK || iPageSize16==(u16)iPageSize );
/* Update the assumed sector-size to match the value used by
** the process that created this journal. If this journal was
i64 jrnlSize; /* Size of journal file on disk */
u32 cksum = 0; /* Checksum of string zMaster */
- if( !zMaster || pPager->setMaster
+ assert( pPager->setMaster==0 );
+ assert( !pagerUseWal(pPager) );
+
+ if( !zMaster
|| pPager->journalMode==PAGER_JOURNALMODE_MEMORY
|| pPager->journalMode==PAGER_JOURNALMODE_OFF
){
return rc;
}
pPager->journalOff += (nMaster+20);
- pPager->needSync = !pPager->noSync;
/* If the pager is in peristent-journal mode, then the physical
** journal-file may extend past the end of the master-journal name
}
/*
-** Unless the pager is in error-state, discard all in-memory pages. If
-** the pager is in error-state, then this call is a no-op.
-**
-** TODO: Why can we not reset the pager while in error state?
+** Discard the entire contents of the in-memory page-cache.
*/
static void pager_reset(Pager *pPager){
- if( SQLITE_OK==pPager->errCode ){
- sqlite3BackupRestart(pPager->pBackup);
- sqlite3PcacheClear(pPager->pPCache);
- pPager->dbSizeValid = 0;
- }
+ sqlite3BackupRestart(pPager->pBackup);
+ sqlite3PcacheClear(pPager->pPCache);
}
/*
}
/*
-** Return true if this pager uses a write-ahead log instead of the usual
-** rollback journal. Otherwise false.
-*/
-#ifndef SQLITE_OMIT_WAL
-static int pagerUseWal(Pager *pPager){
- return (pPager->pWal!=0);
-}
-#else
-# define pagerUseWal(x) 0
-# define pagerRollbackWal(x) 0
-# define pagerWalFrames(v,w,x,y,z) 0
-# define pagerOpenWalIfPresent(z) SQLITE_OK
-# define pagerBeginReadTransaction(z) SQLITE_OK
-#endif
-
-/*
-** Unlock the database file. This function is a no-op if the pager
-** is in exclusive mode.
+** This function is a no-op if the pager is in exclusive mode and not
+** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
+** state.
+**
+** If the pager is not in exclusive-access mode, the database file is
+** completely unlocked. If the file is unlocked and the file-system does
+** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
+** closed (if it is open).
**
-** If the pager is currently in error state, discard the contents of
-** the cache and reset the Pager structure internal state. If there is
-** an open journal-file, then the next time a shared-lock is obtained
-** on the pager file (by this or any other process), it will be
-** treated as a hot-journal and rolled back.
+** If the pager is in ERROR state when this function is called, the
+** contents of the pager cache are discarded before switching back to
+** the OPEN state. Regardless of whether the pager is in exclusive-mode
+** or not, any journal file left in the file-system will be treated
+** as a hot-journal and rolled back the next time a read-transaction
+** is opened (by this or by any other connection).
*/
static void pager_unlock(Pager *pPager){
- if( !pPager->exclusiveMode ){
- int rc = SQLITE_OK; /* Return code */
+
+ assert( pPager->eState==PAGER_READER
+ || pPager->eState==PAGER_OPEN
+ || pPager->eState==PAGER_ERROR
+ );
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ releaseAllSavepoints(pPager);
+
+ if( pagerUseWal(pPager) ){
+ assert( !isOpen(pPager->jfd) );
+ sqlite3WalEndReadTransaction(pPager->pWal);
+ pPager->eState = PAGER_OPEN;
+ }else if( !pPager->exclusiveMode ){
+ int rc; /* Error code returned by pagerUnlockDb() */
int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
/* If the operating system support deletion of open files, then
sqlite3OsClose(pPager->jfd);
}
- sqlite3BitvecDestroy(pPager->pInJournal);
- pPager->pInJournal = 0;
- releaseAllSavepoints(pPager);
-
- /* If the file is unlocked, somebody else might change it. The
- ** values stored in Pager.dbSize etc. might become invalid if
- ** this happens. One can argue that this doesn't need to be cleared
- ** until the change-counter check fails in PagerSharedLock().
- ** Clearing the page size cache here is being conservative.
+ /* If the pager is in the ERROR state and the call to unlock the database
+ ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
+ ** above the #define for UNKNOWN_LOCK for an explanation of why this
+ ** is necessary.
*/
- pPager->dbSizeValid = 0;
-
- if( pagerUseWal(pPager) ){
- sqlite3WalEndReadTransaction(pPager->pWal);
- }else{
- rc = osUnlock(pPager->fd, NO_LOCK);
- }
- if( rc ){
- pPager->errCode = rc;
+ rc = pagerUnlockDb(pPager, NO_LOCK);
+ if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
+ pPager->eLock = UNKNOWN_LOCK;
}
- IOTRACE(("UNLOCK %p\n", pPager))
- /* If Pager.errCode is set, the contents of the pager cache cannot be
- ** trusted. Now that the pager file is unlocked, the contents of the
- ** cache can be discarded and the error code safely cleared.
+ /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
+ ** without clearing the error code. This is intentional - the error
+ ** code is cleared and the cache reset in the block below.
*/
- if( pPager->errCode ){
- if( rc==SQLITE_OK ){
- pPager->errCode = SQLITE_OK;
- }
- pager_reset(pPager);
- }
-
+ assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
pPager->changeCountDone = 0;
- pPager->state = PAGER_UNLOCK;
- pPager->dbModified = 0;
+ pPager->eState = PAGER_OPEN;
}
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that there are no outstanding references to the pager,
+ ** it can safely move back to PAGER_OPEN state. This happens in both
+ ** normal and exclusive-locking mode.
+ */
+ if( pPager->errCode ){
+ assert( !MEMDB );
+ pager_reset(pPager);
+ pPager->changeCountDone = pPager->tempFile;
+ pPager->eState = PAGER_OPEN;
+ pPager->errCode = SQLITE_OK;
+ }
+
+ pPager->journalOff = 0;
+ pPager->journalHdr = 0;
+ pPager->setMaster = 0;
}
/*
-** This function should be called when an IOERR, CORRUPT or FULL error
-** may have occurred. The first argument is a pointer to the pager
-** structure, the second the error-code about to be returned by a pager
-** API function. The value returned is a copy of the second argument
-** to this function.
+** This function is called whenever an IOERR or FULL error that requires
+** the pager to transition into the ERROR state may ahve occurred.
+** The first argument is a pointer to the pager structure, the second
+** the error-code about to be returned by a pager API function. The
+** value returned is a copy of the second argument to this function.
**
-** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
-** the error becomes persistent. Until the persistent error is cleared,
-** subsequent API calls on this Pager will immediately return the same
-** error code.
+** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
+** IOERR sub-codes, the pager enters the ERROR state and the error code
+** is stored in Pager.errCode. While the pager remains in the ERROR state,
+** all major API calls on the Pager will immediately return Pager.errCode.
**
-** A persistent error indicates that the contents of the pager-cache
+** The ERROR state indicates that the contents of the pager-cache
** cannot be trusted. This state can be cleared by completely discarding
** the contents of the pager-cache. If a transaction was active when
** the persistent error occurred, then the rollback journal may need
);
if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
pPager->errCode = rc;
+ pPager->eState = PAGER_ERROR;
}
return rc;
}
-/*
-** Execute a rollback if a transaction is active and unlock the
-** database file.
-**
-** If the pager has already entered the error state, do not attempt
-** the rollback at this time. Instead, pager_unlock() is called. The
-** call to pager_unlock() will discard all in-memory pages, unlock
-** the database file and clear the error state. If this means that
-** there is a hot-journal left in the file-system, the next connection
-** to obtain a shared lock on the pager (which may be this one) will
-** roll it back.
-**
-** If the pager has not already entered the error state, but an IO or
-** malloc error occurs during a rollback, then this will itself cause
-** the pager to enter the error state. Which will be cleared by the
-** call to pager_unlock(), as described above.
-*/
-static void pagerUnlockAndRollback(Pager *pPager){
- if( pPager->errCode==SQLITE_OK && pPager->state>=PAGER_RESERVED ){
- sqlite3BeginBenignMalloc();
- sqlite3PagerRollback(pPager);
- sqlite3EndBenignMalloc();
- }
- pager_unlock(pPager);
-}
-
/*
** This routine ends a transaction. A transaction is usually ended by
** either a COMMIT or a ROLLBACK operation. This routine may be called
** the journal file or writing the very first journal-header of a
** database transaction.
**
-** If the pager is in PAGER_SHARED or PAGER_UNLOCK state when this
-** routine is called, it is a no-op (returns SQLITE_OK).
+** This routine is never called in PAGER_ERROR state. If it is called
+** in PAGER_NONE or PAGER_SHARED state and the lock held is less
+** exclusive than a RESERVED lock, it is a no-op.
**
** Otherwise, any active savepoints are released.
**
** DELETE and the pager is in exclusive mode, the method described under
** journalMode==PERSIST is used instead.
**
-** After the journal is finalized, if running in non-exclusive mode, the
-** pager moves to PAGER_SHARED state (and downgrades the lock on the
-** database file accordingly).
-**
-** If the pager is running in exclusive mode and is in PAGER_SYNCED state,
-** it moves to PAGER_EXCLUSIVE. No locks are downgraded when running in
-** exclusive mode.
+** After the journal is finalized, the pager moves to PAGER_READER state.
+** If running in non-exclusive rollback mode, the lock on the file is
+** downgraded to a SHARED_LOCK.
**
** SQLITE_OK is returned if no error occurs. If an error occurs during
** any of the IO operations to finalize the journal file or unlock the
int rc = SQLITE_OK; /* Error code from journal finalization operation */
int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
- if( pPager->state<PAGER_RESERVED ){
+ /* Do nothing if the pager does not have an open write transaction
+ ** or at least a RESERVED lock. This function may be called when there
+ ** is no write-transaction active but a RESERVED or greater lock is
+ ** held under two circumstances:
+ **
+ ** 1. After a successful hot-journal rollback, it is called with
+ ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
+ **
+ ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
+ ** lock switches back to locking_mode=normal and then executes a
+ ** read-transaction, this function is called with eState==PAGER_READER
+ ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
+ */
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState!=PAGER_ERROR );
+ if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
return SQLITE_OK;
}
- releaseAllSavepoints(pPager);
+ releaseAllSavepoints(pPager);
assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
if( isOpen(pPager->jfd) ){
assert( !pagerUseWal(pPager) );
rc = sqlite3OsTruncate(pPager->jfd, 0);
}
pPager->journalOff = 0;
- pPager->journalStarted = 0;
}else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
|| (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
){
rc = zeroJournalHdr(pPager, hasMaster);
- pager_error(pPager, rc);
pPager->journalOff = 0;
- pPager->journalStarted = 0;
}else{
/* This branch may be executed with Pager.journalMode==MEMORY if
** a hot-journal was just rolled back. In this case the journal
rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
}
}
+ }
#ifdef SQLITE_CHECK_PAGES
- sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
-#endif
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
+ if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
+ PgHdr *p = pager_lookup(pPager, 1);
+ if( p ){
+ p->pageHash = 0;
+ sqlite3PagerUnref(p);
+ }
}
+#endif
+
sqlite3BitvecDestroy(pPager->pInJournal);
pPager->pInJournal = 0;
pPager->nRec = 0;
sqlite3PcacheCleanAll(pPager->pPCache);
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
if( pagerUseWal(pPager) ){
+ /* Drop the WAL write-lock, if any. Also, if the connection was in
+ ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
+ ** lock held on the database file.
+ */
rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
assert( rc2==SQLITE_OK );
- pPager->state = PAGER_SHARED;
-
- /* If the connection was in locking_mode=exclusive mode but is no longer,
- ** drop the EXCLUSIVE lock held on the database file.
- */
- if( !pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, 0) ){
- rc2 = osUnlock(pPager->fd, SHARED_LOCK);
- }
- }else if( !pPager->exclusiveMode ){
- rc2 = osUnlock(pPager->fd, SHARED_LOCK);
- pPager->state = PAGER_SHARED;
+ }
+ if( !pPager->exclusiveMode
+ && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
+ ){
+ rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
pPager->changeCountDone = 0;
- }else if( pPager->state==PAGER_SYNCED ){
- pPager->state = PAGER_EXCLUSIVE;
}
+ pPager->eState = PAGER_READER;
pPager->setMaster = 0;
- pPager->needSync = 0;
- pPager->dbModified = 0;
-
- /* TODO: Is this optimal? Why is the db size invalidated here
- ** when the database file is not unlocked? */
- pPager->dbOrigSize = 0;
- sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
- if( !MEMDB ){
- pPager->dbSizeValid = 0;
- }
return (rc==SQLITE_OK?rc2:rc);
}
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file.
+**
+** If the pager has already entered the ERROR state, do not attempt
+** the rollback at this time. Instead, pager_unlock() is called. The
+** call to pager_unlock() will discard all in-memory pages, unlock
+** the database file and move the pager back to OPEN state. If this
+** means that there is a hot-journal left in the file-system, the next
+** connection to obtain a shared lock on the pager (which may be this one)
+** will roll it back.
+**
+** If the pager has not already entered the ERROR state, but an IO or
+** malloc error occurs during a rollback, then this will itself cause
+** the pager to enter the ERROR state. Which will be cleared by the
+** call to pager_unlock(), as described above.
+*/
+static void pagerUnlockAndRollback(Pager *pPager){
+ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_LOCKED ){
+ sqlite3BeginBenignMalloc();
+ sqlite3PagerRollback(pPager);
+ sqlite3EndBenignMalloc();
+ }else if( !pPager->exclusiveMode ){
+ assert( pPager->eState==PAGER_READER );
+ pager_end_transaction(pPager, 0);
+ }
+ }
+ pager_unlock(pPager);
+}
+
/*
** Parameter aData must point to a buffer of pPager->pageSize bytes
** of data. Compute and return a checksum based ont the contents of the
** The page begins at offset *pOffset into the file. The *pOffset
** value is increased to the start of the next page in the journal.
**
-** The isMainJrnl flag is true if this is the main rollback journal and
-** false for the statement journal. The main rollback journal uses
-** checksums - the statement journal does not.
+** The main rollback journal uses checksums - the statement journal does
+** not.
**
** If the page number of the page record read from the (sub-)journal file
** is greater than the current value of Pager.dbSize, then playback is
assert( aData ); /* Temp storage must have already been allocated */
assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
+ /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
+ ** or savepoint rollback done at the request of the caller) or this is
+ ** a hot-journal rollback. If it is a hot-journal rollback, the pager
+ ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
+ ** only reads from the main journal, not the sub-journal.
+ */
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD
+ || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
+ );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
+
/* Read the page number and page data from the journal or sub-journal
** file. Return an error code to the caller if an IO error occurs.
*/
if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
return rc;
}
- assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
/* When playing back page 1, restore the nReserve setting
*/
pagerReportSize(pPager);
}
- /* If the pager is in RESERVED state, then there must be a copy of this
+ /* If the pager is in CACHEMOD state, then there must be a copy of this
** page in the pager cache. In this case just update the pager cache,
** not the database file. The page is left marked dirty in this case.
**
** either. So the condition described in the above paragraph is not
** assert()able.
**
- ** If in EXCLUSIVE state, then we update the pager cache if it exists
- ** and the main file. The page is then marked not dirty.
+ ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
+ ** pager cache if it exists and the main file. The page is then marked
+ ** not dirty. Since this code is only executed in PAGER_OPEN state for
+ ** a hot-journal rollback, it is guaranteed that the page-cache is empty
+ ** if the pager is in OPEN state.
**
** Ticket #1171: The statement journal might contain page content that is
** different from the page content at the start of the transaction.
pPg = pager_lookup(pPager, pgno);
}
assert( pPg || !MEMDB );
+ assert( pPager->eState!=PAGER_OPEN || pPg==0 );
PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
(isMainJrnl?"main-journal":"sub-journal")
}else{
isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
}
- if( (pPager->state>=PAGER_EXCLUSIVE)
- && isOpen(pPager->fd)
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
&& isSynced
){
i64 ofst = (pgno-1)*(i64)pPager->pageSize;
assert( !pagerUseWal(pPager) );
sqlite3PcacheMakeClean(pPg);
}
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
+ pager_set_pagehash(pPg);
+
/* If this was page 1, then restore the value of Pager.dbFileVers.
** Do this before any decoding. */
if( pgno==1 ){
** file in the file-system. This only happens when committing a transaction,
** or rolling back a transaction (including rolling back a hot-journal).
**
-** If the main database file is not open, or an exclusive lock is not
-** held, this function is a no-op. Otherwise, the size of the file is
-** changed to nPage pages (nPage*pPager->pageSize bytes). If the file
-** on disk is currently larger than nPage pages, then use the VFS
+** If the main database file is not open, or the pager is not in either
+** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
+** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
+** If the file on disk is currently larger than nPage pages, then use the VFS
** xTruncate() method to truncate it.
**
** Or, it might might be the case that the file on disk is smaller than
*/
static int pager_truncate(Pager *pPager, Pgno nPage){
int rc = SQLITE_OK;
- if( pPager->state>=PAGER_EXCLUSIVE && isOpen(pPager->fd) ){
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState!=PAGER_READER );
+
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
i64 currentSize, newSize;
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
/* TODO: Is it safe to use Pager.dbFileSize here? */
rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
newSize = pPager->pageSize*(i64)nPage;
*/
assert( isOpen(pPager->jfd) );
rc = sqlite3OsFileSize(pPager->jfd, &szJ);
- if( rc!=SQLITE_OK || szJ==0 ){
+ if( rc!=SQLITE_OK ){
goto end_playback;
}
while( 1 ){
/* Read the next journal header from the journal file. If there are
** not enough bytes left in the journal file for a complete header, or
- ** it is corrupted, then a process must of failed while writing it.
+ ** it is corrupted, then a process must have failed while writing it.
** This indicates nothing more needs to be rolled back.
*/
rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
testcase( rc!=SQLITE_OK );
}
- if( rc==SQLITE_OK && pPager->noSync==0 && pPager->state>=PAGER_EXCLUSIVE ){
- rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
- }
- if( rc==SQLITE_OK && pPager->noSync==0 && pPager->state>=PAGER_EXCLUSIVE ){
+ if( rc==SQLITE_OK && !pPager->noSync
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
}
if( rc==SQLITE_OK ){
int isInWal = 0; /* True if page is in log file */
int pgsz = pPager->pageSize; /* Number of bytes to read */
- assert( pPager->state>=PAGER_SHARED && !MEMDB );
+ assert( pPager->eState>=PAGER_READER && !MEMDB );
assert( isOpen(pPager->fd) );
if( NEVER(!isOpen(pPager->fd)) ){
sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
}
}
+
+#ifdef SQLITE_CHECK_PAGES
+ {
+ PgHdr *p;
+ for(p=pList; p; p=p->pDirty) pager_set_pagehash(p);
+ }
+#endif
+
return rc;
}
int changed = 0; /* True if cache must be reset */
assert( pagerUseWal(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
/* sqlite3WalEndReadTransaction() was not called for the previous
** transaction in locking_mode=EXCLUSIVE. So call it now. If we
sqlite3WalEndReadTransaction(pPager->pWal);
rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
- if( rc==SQLITE_OK ){
- int dummy;
- if( changed ){
- pager_reset(pPager);
- assert( pPager->errCode || pPager->dbSizeValid==0 );
- }
- rc = sqlite3PagerPagecount(pPager, &dummy);
+ if( rc!=SQLITE_OK || changed ){
+ pager_reset(pPager);
}
- pPager->state = PAGER_SHARED;
return rc;
}
+#endif
+/*
+** This function is called as part of the transition from PAGER_OPEN
+** to PAGER_READER state to determine the size of the database file
+** in pages (assuming the page size currently stored in Pager.pageSize).
+**
+** If no error occurs, SQLITE_OK is returned and the size of the database
+** in pages is stored in *pnPage. Otherwise, an error code (perhaps
+** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
+*/
+static int pagerPagecount(Pager *pPager, Pgno *pnPage){
+ Pgno nPage; /* Value to return via *pnPage */
+
+ /* Query the WAL sub-system for the database size. The WalDbsize()
+ ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
+ ** if the database size is not available. The database size is not
+ ** available from the WAL sub-system if the log file is empty or
+ ** contains no valid committed transactions.
+ */
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock );
+ nPage = sqlite3WalDbsize(pPager->pWal);
+
+ /* If the database size was not available from the WAL sub-system,
+ ** determine it based on the size of the database file. If the size
+ ** of the database file is not an integer multiple of the page-size,
+ ** round down to the nearest page. Except, any file larger than 0
+ ** bytes in size is considered to contain at least one page.
+ */
+ if( nPage==0 ){
+ i64 n = 0; /* Size of db file in bytes */
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( isOpen(pPager->fd) ){
+ int rc = sqlite3OsFileSize(pPager->fd, &n);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ nPage = (Pgno)(n / pPager->pageSize);
+ if( nPage==0 && n>0 ){
+ nPage = 1;
+ }
+ }
+
+ /* If the current number of pages in the file is greater than the
+ ** configured maximum pager number, increase the allowed limit so
+ ** that the file can be read.
+ */
+ if( nPage>pPager->mxPgno ){
+ pPager->mxPgno = (Pgno)nPage;
+ }
+
+ *pnPage = nPage;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_WAL
/*
** Check if the *-wal file that corresponds to the database opened by pPager
** exists if the database is not empy, or verify that the *-wal file does
**
** Return SQLITE_OK or an error code.
**
-** If the WAL file is opened, also open a snapshot (read transaction).
-**
** The caller must hold a SHARED lock on the database file to call this
** function. Because an EXCLUSIVE lock on the db file is required to delete
** a WAL on a none-empty database, this ensures there is no race condition
*/
static int pagerOpenWalIfPresent(Pager *pPager){
int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock );
+
if( !pPager->tempFile ){
int isWal; /* True if WAL file exists */
- int nPage; /* Size of the database file */
- assert( pPager->state>=SHARED_LOCK );
- rc = sqlite3PagerPagecount(pPager, &nPage);
+ Pgno nPage; /* Size of the database file */
+
+ rc = pagerPagecount(pPager, &nPage);
if( rc ) return rc;
if( nPage==0 ){
rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
}
if( rc==SQLITE_OK ){
if( isWal ){
- pager_reset(pPager);
+ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
rc = sqlite3PagerOpenWal(pPager, 0);
- if( rc==SQLITE_OK ){
- rc = pagerBeginReadTransaction(pPager);
- }
}else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
pPager->journalMode = PAGER_JOURNALMODE_DELETE;
}
int rc = SQLITE_OK; /* Return code */
Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
- assert( pPager->state>=PAGER_SHARED );
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
/* Allocate a bitvec to use to store the set of pages rolled back */
if( pSavepoint ){
pPager->noSync = (level==1 || pPager->tempFile) ?1:0;
pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
- if( pPager->noSync ) pPager->needSync = 0;
}
#endif
**
** If the pager is in the error state when this function is called, it
** is a no-op. The value returned is the error state error code (i.e.
-** one of SQLITE_IOERR, SQLITE_CORRUPT or SQLITE_FULL).
+** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
**
** Otherwise, if all of the following are true:
**
** function was called, or because the memory allocation attempt failed,
** then *pPageSize is set to the old, retained page size before returning.
*/
-SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize, int nReserve){
- int rc = pPager->errCode;
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
+ int rc = SQLITE_OK;
- if( rc==SQLITE_OK ){
- u16 pageSize = *pPageSize;
- assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
- if( (pPager->memDb==0 || pPager->dbSize==0)
- && sqlite3PcacheRefCount(pPager->pPCache)==0
- && pageSize && pageSize!=pPager->pageSize
- ){
- char *pNew = (char *)sqlite3PageMalloc(pageSize);
- if( !pNew ){
- rc = SQLITE_NOMEM;
- }else{
- pager_reset(pPager);
- pPager->pageSize = pageSize;
- sqlite3PageFree(pPager->pTmpSpace);
- pPager->pTmpSpace = pNew;
- sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
- }
+ /* It is not possible to do a full assert_pager_state() here, as this
+ ** function may be called from within PagerOpen(), before the state
+ ** of the Pager object is internally consistent.
+ **
+ ** At one point this function returned an error if the pager was in
+ ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
+ ** there is at least one outstanding page reference, this function
+ ** is a no-op for that case anyhow.
+ */
+
+ u32 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( (pPager->memDb==0 || pPager->dbSize==0)
+ && sqlite3PcacheRefCount(pPager->pPCache)==0
+ && pageSize && pageSize!=(u32)pPager->pageSize
+ ){
+ char *pNew = NULL; /* New temp space */
+ i64 nByte = 0;
+
+ if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
+ rc = sqlite3OsFileSize(pPager->fd, &nByte);
+ }
+ if( rc==SQLITE_OK ){
+ pNew = (char *)sqlite3PageMalloc(pageSize);
+ if( !pNew ) rc = SQLITE_NOMEM;
+ }
+
+ if( rc==SQLITE_OK ){
+ pager_reset(pPager);
+ pPager->dbSize = (Pgno)(nByte/pageSize);
+ pPager->pageSize = pageSize;
+ sqlite3PageFree(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
}
- *pPageSize = (u16)pPager->pageSize;
+ }
+
+ *pPageSize = pPager->pageSize;
+ if( rc==SQLITE_OK ){
if( nReserve<0 ) nReserve = pPager->nReserve;
assert( nReserve>=0 && nReserve<1000 );
pPager->nReserve = (i16)nReserve;
** Regardless of mxPage, return the current maximum page count.
*/
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
- int nPage;
if( mxPage>0 ){
pPager->mxPgno = mxPage;
}
- if( pPager->state!=PAGER_UNLOCK ){
- sqlite3PagerPagecount(pPager, &nPage);
- assert( (int)pPager->mxPgno>=nPage );
+ if( pPager->eState!=PAGER_OPEN && pPager->mxPgno<pPager->dbSize ){
+ pPager->mxPgno = pPager->dbSize;
}
return pPager->mxPgno;
}
}
/*
-** Return the total number of pages in the database file associated
-** with pPager. Normally, this is calculated as (<db file size>/<page-size>).
+** This function may only be called when a read-transaction is open on
+** the pager. It returns the total number of pages in the database.
+**
** However, if the file is between 1 and <page-size> bytes in size, then
** this is considered a 1 page file.
-**
-** If the pager is in error state when this function is called, then the
-** error state error code is returned and *pnPage left unchanged. Or,
-** if the file system has to be queried for the size of the file and
-** the query attempt returns an IO error, the IO error code is returned
-** and *pnPage is left unchanged.
-**
-** Otherwise, if everything is successful, then SQLITE_OK is returned
-** and *pnPage is set to the number of pages in the database.
*/
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
- Pgno nPage = 0; /* Value to return via *pnPage */
-
- /* Determine the number of pages in the file. Store this in nPage. */
- if( pPager->dbSizeValid ){
- nPage = pPager->dbSize;
- }else{
- int rc; /* Error returned by OsFileSize() */
- i64 n = 0; /* File size in bytes returned by OsFileSize() */
-
- if( pagerUseWal(pPager) && pPager->state!=PAGER_UNLOCK ){
- sqlite3WalDbsize(pPager->pWal, &nPage);
- }
-
- if( nPage==0 ){
- assert( isOpen(pPager->fd) || pPager->tempFile );
- if( isOpen(pPager->fd) ){
- if( SQLITE_OK!=(rc = sqlite3OsFileSize(pPager->fd, &n)) ){
- pager_error(pPager, rc);
- return rc;
- }
- }
- if( n>0 && n<pPager->pageSize ){
- nPage = 1;
- }else{
- nPage = (Pgno)(n / pPager->pageSize);
- }
- }
- if( pPager->state!=PAGER_UNLOCK ){
- pPager->dbSize = nPage;
- pPager->dbFileSize = nPage;
- pPager->dbSizeValid = 1;
- }
- }
-
- /* If the current number of pages in the file is greater than the
- ** configured maximum pager number, increase the allowed limit so
- ** that the file can be read.
- */
- if( nPage>pPager->mxPgno ){
- pPager->mxPgno = (Pgno)nPage;
- }
-
- /* Set the output variable and return SQLITE_OK */
- *pnPage = nPage;
- return SQLITE_OK;
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
+ assert( pPager->eState>=PAGER_READER );
+ assert( pPager->eState!=PAGER_WRITER_FINISHED );
+ *pnPage = (int)pPager->dbSize;
}
static int pager_wait_on_lock(Pager *pPager, int locktype){
int rc; /* Return code */
- /* The OS lock values must be the same as the Pager lock values */
- assert( PAGER_SHARED==SHARED_LOCK );
- assert( PAGER_RESERVED==RESERVED_LOCK );
- assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
-
- /* If the file is currently unlocked then the size must be unknown. It
- ** must not have been modified at this point.
- */
- assert( pPager->state>=PAGER_SHARED || pPager->dbSizeValid==0 );
- assert( pPager->state>=PAGER_SHARED || pPager->dbModified==0 );
-
/* Check that this is either a no-op (because the requested lock is
** already held, or one of the transistions that the busy-handler
** may be invoked during, according to the comment above
** sqlite3PagerSetBusyhandler().
*/
- assert( (pPager->state>=locktype)
- || (pPager->state==PAGER_UNLOCK && locktype==PAGER_SHARED)
- || (pPager->state==PAGER_RESERVED && locktype==PAGER_EXCLUSIVE)
+ assert( (pPager->eLock>=locktype)
+ || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
+ || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
);
- if( pPager->state>=locktype ){
- rc = SQLITE_OK;
- }else{
- do {
- rc = sqlite3OsLock(pPager->fd, locktype);
- }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
- if( rc==SQLITE_OK ){
- pPager->state = (u8)locktype;
- IOTRACE(("LOCK %p %d\n", pPager, locktype))
- }
- }
+ do {
+ rc = pagerLockDb(pPager, locktype);
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
return rc;
}
** truncation will be done when the current transaction is committed.
*/
SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
- assert( pPager->dbSizeValid );
assert( pPager->dbSize>=nPage );
- assert( pPager->state>=PAGER_RESERVED );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
pPager->dbSize = nPage;
assertTruncateConstraint(pPager);
}
disable_simulated_io_errors();
sqlite3BeginBenignMalloc();
- pPager->errCode = 0;
+ /* pPager->errCode = 0; */
pPager->exclusiveMode = 0;
#ifndef SQLITE_OMIT_WAL
sqlite3WalClose(pPager->pWal,
if( MEMDB ){
pager_unlock(pPager);
}else{
- /* Set Pager.journalHdr to -1 for the benefit of the pager_playback()
- ** call which may be made from within pagerUnlockAndRollback(). If it
- ** is not -1, then the unsynced portion of an open journal file may
- ** be played back into the database. If a power failure occurs while
- ** this is happening, the database may become corrupt.
+ /* If it is open, sync the journal file before calling UnlockAndRollback.
+ ** If this is not done, then an unsynced portion of the open journal
+ ** file may be played back into the database. If a power failure occurs
+ ** while this is happening, the database could become corrupt.
+ **
+ ** If an error occurs while trying to sync the journal, shift the pager
+ ** into the ERROR state. This causes UnlockAndRollback to unlock the
+ ** database and close the journal file without attempting to roll it
+ ** back or finalize it. The next database user will have to do hot-journal
+ ** rollback before accessing the database file.
*/
if( isOpen(pPager->jfd) ){
- pPager->errCode = pagerSyncHotJournal(pPager);
+ pager_error(pPager, pagerSyncHotJournal(pPager));
}
pagerUnlockAndRollback(pPager);
}
** been written to the journal have actually reached the surface of the
** disk and can be restored in the event of a hot-journal rollback.
**
-** If the Pager.needSync flag is not set, then this function is a
-** no-op. Otherwise, the actions required depend on the journal-mode
-** and the device characteristics of the the file-system, as follows:
+** If the Pager.noSync flag is set, then this function is a no-op.
+** Otherwise, the actions required depend on the journal-mode and the
+** device characteristics of the the file-system, as follows:
**
** * If the journal file is an in-memory journal file, no action need
** be taken.
** if( NOT SEQUENTIAL ) xSync(<journal file>);
** }
**
-** The Pager.needSync flag is never be set for temporary files, or any
-** file operating in no-sync mode (Pager.noSync set to non-zero).
-**
** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
** page currently held in memory before returning SQLITE_OK. If an IO
** error is encountered, then the IO error code is returned to the caller.
*/
-static int syncJournal(Pager *pPager){
- if( pPager->needSync ){
+static int syncJournal(Pager *pPager, int newHdr){
+ int rc; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( !pagerUseWal(pPager) );
+
+ rc = sqlite3PagerExclusiveLock(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( !pPager->noSync ){
assert( !pPager->tempFile );
- if( pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
- int rc; /* Return code */
+ if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
assert( isOpen(pPager->jfd) );
);
if( rc!=SQLITE_OK ) return rc;
}
- }
- /* The journal file was just successfully synced. Set Pager.needSync
- ** to zero and clear the PGHDR_NEED_SYNC flag on all pagess.
- */
- pPager->needSync = 0;
- pPager->journalStarted = 1;
- pPager->journalHdr = pPager->journalOff;
- sqlite3PcacheClearSyncFlags(pPager->pPCache);
+ pPager->journalHdr = pPager->journalOff;
+ if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ pPager->nRec = 0;
+ rc = writeJournalHdr(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }else{
+ pPager->journalHdr = pPager->journalOff;
+ }
}
+ /* Unless the pager is in noSync mode, the journal file was just
+ ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
+ ** all pages.
+ */
+ sqlite3PcacheClearSyncFlags(pPager->pPCache);
+ pPager->eState = PAGER_WRITER_DBMOD;
+ assert( assert_pager_state(pPager) );
return SQLITE_OK;
}
** be obtained, SQLITE_BUSY is returned.
*/
static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
- int rc; /* Return code */
+ int rc = SQLITE_OK; /* Return code */
- /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
- ** database file. If there is already an EXCLUSIVE lock, the following
- ** call is a no-op.
- **
- ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
- ** through an intermediate state PENDING. A PENDING lock prevents new
- ** readers from attaching to the database but is unsufficient for us to
- ** write. The idea of a PENDING lock is to prevent new readers from
- ** coming in while we wait for existing readers to clear.
- **
- ** While the pager is in the RESERVED state, the original database file
- ** is unchanged and we can rollback without having to playback the
- ** journal into the original database file. Once we transition to
- ** EXCLUSIVE, it means the database file has been changed and any rollback
- ** will require a journal playback.
- */
+ /* This function is only called for rollback pagers in WRITER_DBMOD state. */
assert( !pagerUseWal(pPager) );
- assert( pPager->state>=PAGER_RESERVED );
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ assert( pPager->eState==PAGER_WRITER_DBMOD );
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
/* If the file is a temp-file has not yet been opened, open it now. It
** is not possible for rc to be other than SQLITE_OK if this branch
** file size will be.
*/
assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
- if( rc==SQLITE_OK && pPager->dbSize>(pPager->dbOrigSize+1) ){
+ if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){
sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
+ pPager->dbHintSize = pPager->dbSize;
}
while( rc==SQLITE_OK && pList ){
i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
char *pData; /* Data to write */
+ assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
+
/* Encode the database */
CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData);
}else{
PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
}
-#ifdef SQLITE_CHECK_PAGES
- pList->pageHash = pager_pagehash(pList);
-#endif
+ pager_set_pagehash(pList);
pList = pList->pDirty;
}
** The doNotSpill flag inhibits all cache spilling regardless of whether
** or not a sync is required. This is set during a rollback.
**
- ** Spilling is also inhibited when in an error state.
- */
- if( pPager->errCode ) return SQLITE_OK;
+ ** Spilling is also prohibited when in an error state since that could
+ ** lead to database corruption. In the current implementaton it
+ ** is impossible for sqlite3PCacheFetch() to be called with createFlag==1
+ ** while in the error state, hence it is impossible for this routine to
+ ** be called in the error state. Nevertheless, we include a NEVER()
+ ** test for the error state as a safeguard against future changes.
+ */
+ if( NEVER(pPager->errCode) ) return SQLITE_OK;
if( pPager->doNotSpill ) return SQLITE_OK;
if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){
return SQLITE_OK;
}else{
/* Sync the journal file if required. */
- if( pPg->flags&PGHDR_NEED_SYNC ){
- assert( !pPager->noSync );
- rc = syncJournal(pPager);
- if( rc==SQLITE_OK &&
- !(pPager->journalMode==PAGER_JOURNALMODE_MEMORY) &&
- !(sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
- ){
- pPager->nRec = 0;
- rc = writeJournalHdr(pPager);
- }
+ if( pPg->flags&PGHDR_NEED_SYNC
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ ){
+ rc = syncJournal(pPager, 1);
}
/* If the page number of this page is larger than the current size of
/* Write the contents of the page out to the database file. */
if( rc==SQLITE_OK ){
+ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
rc = pager_write_pagelist(pPager, pPg);
}
}
sqlite3PcacheMakeClean(pPg);
}
- return pager_error(pPager, rc);
+ return pager_error(pPager, rc);
}
int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */
int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
- u16 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
+ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
/* Figure out how much space is required for each journal file-handle
** (there are two of them, the main journal and the sub-journal). This
/* Set the output variable to NULL in case an error occurs. */
*ppPager = 0;
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( flags & PAGER_MEMORY ){
+ memDb = 1;
+ zFilename = 0;
+ }
+#endif
+
/* Compute and store the full pathname in an allocated buffer pointed
** to by zPathname, length nPathname. Or, if this is a temporary file,
** leave both nPathname and zPathname set to 0.
if( zPathname==0 ){
return SQLITE_NOMEM;
}
-#ifndef SQLITE_OMIT_MEMORYDB
- if( strcmp(zFilename,":memory:")==0 ){
- memDb = 1;
- zPathname[0] = 0;
- }else
-#endif
- {
- zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
- rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
- }
-
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
nPathname = sqlite3Strlen30(zPathname);
if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
/* This branch is taken when the journal path required by
/* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
if( zPathname ){
+ assert( nPathname>0 );
pPager->zJournal = (char*)(pPtr += nPathname + 1);
memcpy(pPager->zFilename, zPathname, nPathname);
memcpy(pPager->zJournal, zPathname, nPathname);
memcpy(&pPager->zJournal[nPathname], "-journal", 8);
- if( pPager->zFilename[0]==0 ){
- pPager->zJournal[0] = 0;
- }
#ifndef SQLITE_OMIT_WAL
- else{
- pPager->zWal = &pPager->zJournal[nPathname+8+1];
- memcpy(pPager->zWal, zPathname, nPathname);
- memcpy(&pPager->zWal[nPathname], "-wal", 4);
- }
+ pPager->zWal = &pPager->zJournal[nPathname+8+1];
+ memcpy(pPager->zWal, zPathname, nPathname);
+ memcpy(&pPager->zWal[nPathname], "-wal", 4);
#endif
sqlite3_free(zPathname);
}
/* Open the pager file.
*/
- if( zFilename && zFilename[0] && !memDb ){
+ if( zFilename && zFilename[0] ){
int fout = 0; /* VFS flags returned by xOpen() */
rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
+ assert( !memDb );
readOnly = (fout&SQLITE_OPEN_READONLY);
/* If the file was successfully opened for read/write access,
if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
}else{
- szPageDflt = (u16)pPager->sectorSize;
+ szPageDflt = (u32)pPager->sectorSize;
}
}
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
** disk and uses an in-memory rollback journal.
*/
tempFile = 1;
- pPager->state = PAGER_EXCLUSIVE;
+ pPager->eState = PAGER_READER;
+ pPager->eLock = EXCLUSIVE_LOCK;
readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
}
/* pPager->stmtOpen = 0; */
/* pPager->stmtInUse = 0; */
/* pPager->nRef = 0; */
- pPager->dbSizeValid = (u8)memDb;
/* pPager->stmtSize = 0; */
/* pPager->stmtJSize = 0; */
/* pPager->nPage = 0; */
pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
/* pPager->state = PAGER_UNLOCK; */
+#if 0
assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
+#endif
/* pPager->errMask = 0; */
pPager->tempFile = (u8)tempFile;
assert( tempFile==PAGER_LOCKINGMODE_NORMAL
pPager->changeCountDone = pPager->tempFile;
pPager->memDb = (u8)memDb;
pPager->readOnly = (u8)readOnly;
- /* pPager->needSync = 0; */
assert( useJournal || pPager->tempFile );
pPager->noSync = pPager->tempFile;
pPager->fullSync = pPager->noSync ?0:1;
int exists = 1; /* True if a journal file is present */
int jrnlOpen = !!isOpen(pPager->jfd);
- assert( pPager!=0 );
assert( pPager->useJournal );
assert( isOpen(pPager->fd) );
- assert( pPager->state <= PAGER_SHARED );
+ assert( pPager->eState==PAGER_OPEN );
+
assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
));
rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
}
if( rc==SQLITE_OK && exists ){
- int locked; /* True if some process holds a RESERVED lock */
+ int locked = 0; /* True if some process holds a RESERVED lock */
/* Race condition here: Another process might have been holding the
** the RESERVED lock and have a journal open at the sqlite3OsAccess()
*/
rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
if( rc==SQLITE_OK && !locked ){
- int nPage;
+ Pgno nPage; /* Number of pages in database file */
/* Check the size of the database file. If it consists of 0 pages,
** then delete the journal file. See the header comment above for
** a RESERVED lock to avoid race conditions and to avoid violating
** [H33020].
*/
- rc = sqlite3PagerPagecount(pPager, &nPage);
+ rc = pagerPagecount(pPager, &nPage);
if( rc==SQLITE_OK ){
if( nPage==0 ){
sqlite3BeginBenignMalloc();
- if( sqlite3OsLock(pPager->fd, RESERVED_LOCK)==SQLITE_OK ){
+ if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
- sqlite3OsUnlock(pPager->fd, SHARED_LOCK);
+ pagerUnlockDb(pPager, SHARED_LOCK);
}
sqlite3EndBenignMalloc();
}else{
**
** The following operations are also performed by this function.
**
-** 1) If the pager is currently in PAGER_UNLOCK state (no lock held
+** 1) If the pager is currently in PAGER_OPEN state (no lock held
** on the database file), then an attempt is made to obtain a
** SHARED lock on the database file. Immediately after obtaining
** the SHARED lock, the file-system is checked for a hot-journal,
** the contents of the page cache and rolling back any open journal
** file.
**
-** If the operation described by (2) above is not attempted, and if the
-** pager is in an error state other than SQLITE_FULL when this is called,
-** the error state error code is returned. It is permitted to read the
-** database when in SQLITE_FULL error state.
-**
-** Otherwise, if everything is successful, SQLITE_OK is returned. If an
-** IO error occurs while locking the database, checking for a hot-journal
-** file or rolling back a journal file, the IO error code is returned.
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs while locking the database, checking for a hot-journal file or
+** rolling back a journal file, the IO error code is returned.
*/
SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
int rc = SQLITE_OK; /* Return code */
- int isErrorReset = 0; /* True if recovering from error state */
/* This routine is only called from b-tree and only when there are no
- ** outstanding pages */
+ ** outstanding pages. This implies that the pager state should either
+ ** be OPEN or READER. READER is only possible if the pager is or was in
+ ** exclusive access mode.
+ */
assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; }
- /* If this database is in an error-state, now is a chance to clear
- ** the error. Discard the contents of the pager-cache and rollback
- ** any hot journal in the file-system.
- */
- if( pPager->errCode ){
- if( isOpen(pPager->jfd) || pPager->zJournal ){
- isErrorReset = 1;
- }
- pPager->errCode = SQLITE_OK;
- pager_reset(pPager);
- }
+ if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
+ int bHotJournal = 1; /* True if there exists a hot journal-file */
- if( pagerUseWal(pPager) ){
- rc = pagerBeginReadTransaction(pPager);
- }else if( pPager->state==PAGER_UNLOCK || isErrorReset ){
- sqlite3_vfs * const pVfs = pPager->pVfs;
- int isHotJournal = 0;
assert( !MEMDB );
- assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
- if( pPager->noReadlock ){
- assert( pPager->readOnly );
- pPager->state = PAGER_SHARED;
- }else{
+ assert( pPager->noReadlock==0 || pPager->readOnly );
+
+ if( pPager->noReadlock==0 ){
rc = pager_wait_on_lock(pPager, SHARED_LOCK);
if( rc!=SQLITE_OK ){
- assert( pPager->state==PAGER_UNLOCK );
- return pager_error(pPager, rc);
+ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
+ goto failed;
}
}
- assert( pPager->state>=SHARED_LOCK );
/* If a journal file exists, and there is no RESERVED lock on the
** database file, then it either needs to be played back or deleted.
*/
- if( !isErrorReset ){
- assert( pPager->state <= PAGER_SHARED );
- rc = hasHotJournal(pPager, &isHotJournal);
- if( rc!=SQLITE_OK ){
- goto failed;
- }
+ if( pPager->eLock<=SHARED_LOCK ){
+ rc = hasHotJournal(pPager, &bHotJournal);
}
- if( isErrorReset || isHotJournal ){
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ if( bHotJournal ){
/* Get an EXCLUSIVE lock on the database file. At this point it is
** important that a RESERVED lock is not obtained on the way to the
** EXCLUSIVE lock. If it were, another process might open the
** other process attempting to access the database file will get to
** this point in the code and fail to obtain its own EXCLUSIVE lock
** on the database file.
+ **
+ ** Unless the pager is in locking_mode=exclusive mode, the lock is
+ ** downgraded to SHARED_LOCK before this function returns.
*/
- if( pPager->state<EXCLUSIVE_LOCK ){
- rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
- if( rc!=SQLITE_OK ){
- rc = pager_error(pPager, rc);
- goto failed;
- }
- pPager->state = PAGER_EXCLUSIVE;
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto failed;
}
- /* Open the journal for read/write access. This is because in
- ** exclusive-access mode the file descriptor will be kept open and
- ** possibly used for a transaction later on. On some systems, the
- ** OsTruncate() call used in exclusive-access mode also requires
- ** a read/write file handle.
+ /* If it is not already open and the file exists on disk, open the
+ ** journal for read/write access. Write access is required because
+ ** in exclusive-access mode the file descriptor will be kept open
+ ** and possibly used for a transaction later on. Also, write-access
+ ** is usually required to finalize the journal in journal_mode=persist
+ ** mode (and also for journal_mode=truncate on some systems).
+ **
+ ** If the journal does not exist, it usually means that some
+ ** other connection managed to get in and roll it back before
+ ** this connection obtained the exclusive lock above. Or, it
+ ** may mean that the pager was in the error-state when this
+ ** function was called and the journal file does not exist.
*/
if( !isOpen(pPager->jfd) ){
- int res;
- rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
- if( rc==SQLITE_OK ){
- if( res ){
- int fout = 0;
- int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
- assert( !pPager->tempFile );
- rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
- assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
- if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
- rc = SQLITE_CANTOPEN_BKPT;
- sqlite3OsClose(pPager->jfd);
- }
- }else{
- /* If the journal does not exist, it usually means that some
- ** other connection managed to get in and roll it back before
- ** this connection obtained the exclusive lock above. Or, it
- ** may mean that the pager was in the error-state when this
- ** function was called and the journal file does not exist. */
- rc = pager_end_transaction(pPager, 0);
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int bExists; /* True if journal file exists */
+ rc = sqlite3OsAccess(
+ pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
+ if( rc==SQLITE_OK && bExists ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ sqlite3OsClose(pPager->jfd);
}
}
}
- if( rc!=SQLITE_OK ){
- goto failed;
- }
-
- /* Reset the journal status fields to indicates that we have no
- ** rollback journal at this time. */
- pPager->journalStarted = 0;
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
-
- /* Make sure the journal file has been synced to disk. */
/* Playback and delete the journal. Drop the database write
** lock and reacquire the read lock. Purge the cache before
** the journal before playing it back.
*/
if( isOpen(pPager->jfd) ){
+ assert( rc==SQLITE_OK );
rc = pagerSyncHotJournal(pPager);
if( rc==SQLITE_OK ){
rc = pager_playback(pPager, 1);
+ pPager->eState = PAGER_OPEN;
}
- if( rc!=SQLITE_OK ){
- rc = pager_error(pPager, rc);
- goto failed;
- }
+ }else if( !pPager->exclusiveMode ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
}
- assert( (pPager->state==PAGER_SHARED)
- || (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
+
+ if( rc!=SQLITE_OK ){
+ /* This branch is taken if an error occurs while trying to open
+ ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
+ ** pager_unlock() routine will be called before returning to unlock
+ ** the file. If the unlock attempt fails, then Pager.eLock must be
+ ** set to UNKNOWN_LOCK (see the comment above the #define for
+ ** UNKNOWN_LOCK above for an explanation).
+ **
+ ** In order to get pager_unlock() to do this, set Pager.eState to
+ ** PAGER_ERROR now. This is not actually counted as a transition
+ ** to ERROR state in the state diagram at the top of this file,
+ ** since we know that the same call to pager_unlock() will very
+ ** shortly transition the pager object to the OPEN state. Calling
+ ** assert_pager_state() would fail now, as it should not be possible
+ ** to be in ERROR state when there are zero outstanding page
+ ** references.
+ */
+ pager_error(pPager, rc);
+ goto failed;
+ }
+
+ assert( pPager->eState==PAGER_OPEN );
+ assert( (pPager->eLock==SHARED_LOCK)
+ || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
);
}
- if( pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0 ){
+ if( !pPager->tempFile
+ && (pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0)
+ ){
/* The shared-lock has just been acquired on the database file
** and there are already pages in the cache (from a previous
** read or write transaction). Check to see if the database
** detected. The chance of an undetected change is so small that
** it can be neglected.
*/
- int nPage = 0;
+ Pgno nPage = 0;
char dbFileVers[sizeof(pPager->dbFileVers)];
- sqlite3PagerPagecount(pPager, &nPage);
- if( pPager->errCode ){
- rc = pPager->errCode;
- goto failed;
- }
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc ) goto failed;
if( nPage>0 ){
IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
pager_reset(pPager);
}
}
- assert( pPager->exclusiveMode || pPager->state==PAGER_SHARED );
/* If there is a WAL file in the file-system, open this database in WAL
** mode. Otherwise, the following function call is a no-op.
*/
rc = pagerOpenWalIfPresent(pPager);
+#ifndef SQLITE_OMIT_WAL
+ assert( pPager->pWal==0 || rc==SQLITE_OK );
+#endif
+ }
+
+ if( pagerUseWal(pPager) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerBeginReadTransaction(pPager);
+ }
+
+ if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
+ rc = pagerPagecount(pPager, &pPager->dbSize);
}
failed:
if( rc!=SQLITE_OK ){
- /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
+ assert( !MEMDB );
pager_unlock(pPager);
+ assert( pPager->eState==PAGER_OPEN );
+ }else{
+ pPager->eState = PAGER_READER;
}
return rc;
}
** nothing to rollback, so this routine is a no-op.
*/
static void pagerUnlockIfUnused(Pager *pPager){
- if( (sqlite3PcacheRefCount(pPager->pPCache)==0)
- && (!pPager->exclusiveMode || pPager->journalOff>0)
- ){
+ if( (sqlite3PcacheRefCount(pPager->pPCache)==0) ){
pagerUnlockAndRollback(pPager);
}
}
int rc;
PgHdr *pPg;
+ assert( pPager->eState>=PAGER_READER );
assert( assert_pager_state(pPager) );
- assert( pPager->state>PAGER_UNLOCK );
if( pgno==0 ){
return SQLITE_CORRUPT_BKPT;
/* If the pager is in the error state, return an error immediately.
** Otherwise, request the page from the PCache layer. */
- if( pPager->errCode!=SQLITE_OK && pPager->errCode!=SQLITE_FULL ){
+ if( pPager->errCode!=SQLITE_OK ){
rc = pPager->errCode;
}else{
rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage);
}else{
/* The pager cache has created a new page. Its content needs to
** be initialized. */
- int nMax;
PAGER_INCR(pPager->nMiss);
pPg = *ppPage;
goto pager_acquire_err;
}
- rc = sqlite3PagerPagecount(pPager, &nMax);
- if( rc!=SQLITE_OK ){
- goto pager_acquire_err;
- }
-
- if( MEMDB || nMax<(int)pgno || noContent || !isOpen(pPager->fd) ){
+ if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){
if( pgno>pPager->mxPgno ){
rc = SQLITE_FULL;
goto pager_acquire_err;
goto pager_acquire_err;
}
}
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
+ pager_set_pagehash(pPg);
}
return SQLITE_OK;
/*
** Acquire a page if it is already in the in-memory cache. Do
** not read the page from disk. Return a pointer to the page,
-** or 0 if the page is not in cache. Also, return 0 if the
-** pager is in PAGER_UNLOCK state when this function is called,
-** or if the pager is in an error state other than SQLITE_FULL.
+** or 0 if the page is not in cache.
**
** See also sqlite3PagerGet(). The difference between this routine
** and sqlite3PagerGet() is that _get() will go to the disk and read
assert( pPager!=0 );
assert( pgno!=0 );
assert( pPager->pPCache!=0 );
- assert( pPager->state > PAGER_UNLOCK );
+ assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR );
sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
return pPg;
}
*/
static int pager_open_journal(Pager *pPager){
int rc = SQLITE_OK; /* Return code */
- int nPage; /* Size of database file */
sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
- assert( pPager->state>=PAGER_RESERVED );
- assert( pPager->useJournal );
- assert( pPager->journalMode!=PAGER_JOURNALMODE_OFF );
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
assert( pPager->pInJournal==0 );
/* If already in the error state, this function is a no-op. But on
** an error state. */
if( NEVER(pPager->errCode) ) return pPager->errCode;
- testcase( pPager->dbSizeValid==0 );
- rc = sqlite3PagerPagecount(pPager, &nPage);
- if( rc ) return rc;
- pPager->pInJournal = sqlite3BitvecCreate(nPage);
- if( pPager->pInJournal==0 ){
- return SQLITE_NOMEM;
- }
-
- /* Open the journal file if it is not already open. */
- if( !isOpen(pPager->jfd) ){
- if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
- sqlite3MemJournalOpen(pPager->jfd);
- }else{
- const int flags = /* VFS flags to open journal file */
- SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
- (pPager->tempFile ?
- (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
- (SQLITE_OPEN_MAIN_JOURNAL)
+ if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ if( pPager->pInJournal==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ /* Open the journal file if it is not already open. */
+ if( !isOpen(pPager->jfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3MemJournalOpen(pPager->jfd);
+ }else{
+ const int flags = /* VFS flags to open journal file */
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ (pPager->tempFile ?
+ (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
+ (SQLITE_OPEN_MAIN_JOURNAL)
+ );
+ #ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ rc = sqlite3JournalOpen(
+ pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
);
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
- rc = sqlite3JournalOpen(
- pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
- );
-#else
- rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
-#endif
+ #else
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
+ #endif
+ }
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ }
+
+
+ /* Write the first journal header to the journal file and open
+ ** the sub-journal if necessary.
+ */
+ if( rc==SQLITE_OK ){
+ /* TODO: Check if all of these are really required. */
+ pPager->nRec = 0;
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
+ rc = writeJournalHdr(pPager);
}
- assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
- }
-
-
- /* Write the first journal header to the journal file and open
- ** the sub-journal if necessary.
- */
- if( rc==SQLITE_OK ){
- /* TODO: Check if all of these are really required. */
- pPager->dbOrigSize = pPager->dbSize;
- pPager->journalStarted = 0;
- pPager->needSync = 0;
- pPager->nRec = 0;
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
- rc = writeJournalHdr(pPager);
}
if( rc!=SQLITE_OK ){
sqlite3BitvecDestroy(pPager->pInJournal);
pPager->pInJournal = 0;
+ }else{
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ pPager->eState = PAGER_WRITER_CACHEMOD;
}
+
return rc;
}
** an EXCLUSIVE lock. If such a lock is already held, no locking
** functions need be called.
**
-** If this is not a temporary or in-memory file and, the journal file is
-** opened if it has not been already. For a temporary file, the opening
-** of the journal file is deferred until there is an actual need to
-** write to the journal. TODO: Why handle temporary files differently?
-**
-** If the journal file is opened (or if it is already open), then a
-** journal-header is written to the start of it.
-**
** If the subjInMemory argument is non-zero, then any sub-journal opened
** within this transaction will be opened as an in-memory file. This
** has no effect if the sub-journal is already opened (as it may be when
*/
SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
int rc = SQLITE_OK;
- assert( pPager->state!=PAGER_UNLOCK );
+
+ if( pPager->errCode ) return pPager->errCode;
+ assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
pPager->subjInMemory = (u8)subjInMemory;
- if( pPager->state==PAGER_SHARED ){
+ if( ALWAYS(pPager->eState==PAGER_READER) ){
assert( pPager->pInJournal==0 );
- assert( !MEMDB && !pPager->tempFile );
if( pagerUseWal(pPager) ){
/* If the pager is configured to use locking_mode=exclusive, and an
** exclusive lock on the database is not already held, obtain it now.
*/
if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
- rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
- pPager->state = PAGER_SHARED;
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
if( rc!=SQLITE_OK ){
return rc;
}
** PAGER_RESERVED state. Otherwise, return an error code to the caller.
** The busy-handler is not invoked if another connection already
** holds the write-lock. If possible, the upper layer will call it.
- **
- ** WAL mode sets Pager.state to PAGER_RESERVED when it has an open
- ** transaction, but never to PAGER_EXCLUSIVE. This is because in
- ** PAGER_EXCLUSIVE state the code to roll back savepoint transactions
- ** may copy data from the sub-journal into the database file as well
- ** as into the page cache. Which would be incorrect in WAL mode.
*/
rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
- if( rc==SQLITE_OK ){
- pPager->dbOrigSize = pPager->dbSize;
- pPager->state = PAGER_RESERVED;
- pPager->journalOff = 0;
- }
-
- assert( rc!=SQLITE_OK || pPager->state==PAGER_RESERVED );
- assert( rc==SQLITE_OK || pPager->state==PAGER_SHARED );
}else{
/* Obtain a RESERVED lock on the database file. If the exFlag parameter
** is true, then immediately upgrade this to an EXCLUSIVE lock. The
** busy-handler callback can be used when upgrading to the EXCLUSIVE
** lock, but not when obtaining the RESERVED lock.
*/
- rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
- if( rc==SQLITE_OK ){
- pPager->state = PAGER_RESERVED;
- if( exFlag ){
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- }
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ if( rc==SQLITE_OK && exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
}
}
- /* No need to open the journal file at this time. It will be
- ** opened before it is written to. If we defer opening the journal,
- ** we might save the work of creating a file if the transaction
- ** ends up being a no-op.
- */
-
- if( rc!=SQLITE_OK ){
- assert( !pPager->dbModified );
- /* Ignore any IO error that occurs within pager_end_transaction(). The
- ** purpose of this call is to reset the internal state of the pager
- ** sub-system. It doesn't matter if the journal-file is not properly
- ** finalized at this point (since it is not a valid journal file anyway).
+ if( rc==SQLITE_OK ){
+ /* Change to WRITER_LOCKED state.
+ **
+ ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
+ ** when it has an open transaction, but never to DBMOD or FINISHED.
+ ** This is because in those states the code to roll back savepoint
+ ** transactions may copy data from the sub-journal into the database
+ ** file as well as into the page cache. Which would be incorrect in
+ ** WAL mode.
*/
- pager_end_transaction(pPager, 0);
+ pPager->eState = PAGER_WRITER_LOCKED;
+ pPager->dbHintSize = pPager->dbSize;
+ pPager->dbFileSize = pPager->dbSize;
+ pPager->dbOrigSize = pPager->dbSize;
+ pPager->journalOff = 0;
}
+
+ assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
+ assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
}
PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
Pager *pPager = pPg->pPager;
int rc = SQLITE_OK;
- /* This routine is not called unless a transaction has already been
- ** started.
+ /* This routine is not called unless a write-transaction has already
+ ** been started. The journal file may or may not be open at this point.
+ ** It is never called in the ERROR state.
*/
- assert( pPager->state>=PAGER_RESERVED );
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
/* If an error has been previously detected, report the same error
- ** again.
- */
+ ** again. This should not happen, but the check provides robustness. */
if( NEVER(pPager->errCode) ) return pPager->errCode;
/* Higher-level routines never call this function if database is not
** writable. But check anyway, just for robustness. */
if( NEVER(pPager->readOnly) ) return SQLITE_PERM;
- assert( !pPager->setMaster );
-
CHECK_PAGE(pPg);
+ /* The journal file needs to be opened. Higher level routines have already
+ ** obtained the necessary locks to begin the write-transaction, but the
+ ** rollback journal might not yet be open. Open it now if this is the case.
+ **
+ ** This is done before calling sqlite3PcacheMakeDirty() on the page.
+ ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
+ ** an error might occur and the pager would end up in WRITER_LOCKED state
+ ** with pages marked as dirty in the cache.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ assert( assert_pager_state(pPager) );
+
/* Mark the page as dirty. If the page has already been written
** to the journal then we can return right away.
*/
sqlite3PcacheMakeDirty(pPg);
if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){
assert( !pagerUseWal(pPager) );
- pPager->dbModified = 1;
}else{
-
- /* If we get this far, it means that the page needs to be
- ** written to the transaction journal or the ckeckpoint journal
- ** or both.
- **
- ** Higher level routines should have already started a transaction,
- ** which means they have acquired the necessary locks but the rollback
- ** journal might not yet be open.
- */
- assert( pPager->state>=RESERVED_LOCK );
- if( pPager->pInJournal==0
- && pPager->journalMode!=PAGER_JOURNALMODE_OFF
- && !pagerUseWal(pPager)
- ){
- assert( pPager->useJournal );
- rc = pager_open_journal(pPager);
- if( rc!=SQLITE_OK ) return rc;
- }
- pPager->dbModified = 1;
/* The transaction journal now exists and we have a RESERVED or an
** EXCLUSIVE lock on the main database file. Write the current page to
** the transaction journal if it is not there already.
*/
- if( !pageInJournal(pPg) && isOpen(pPager->jfd) ){
- assert( !pagerUseWal(pPager) );
- if( pPg->pgno<=pPager->dbOrigSize ){
+ if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){
+ assert( pagerUseWal(pPager)==0 );
+ if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){
u32 cksum;
char *pData2;
+ i64 iOff = pPager->journalOff;
/* We should never write to the journal file the page that
** contains the database locks. The following assert verifies
** that we do not. */
assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
- assert( pPager->journalHdr <= pPager->journalOff );
+ assert( pPager->journalHdr<=pPager->journalOff );
CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
cksum = pager_cksum(pPager, (u8*)pData2);
- rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
- pPager->journalOff + 4);
- pPager->journalOff += pPager->pageSize+4;
- }
- if( rc==SQLITE_OK ){
- rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
- pPager->journalOff += 4;
- }
- IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
- pPager->journalOff, pPager->pageSize));
- PAGER_INCR(sqlite3_pager_writej_count);
- PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
- PAGERID(pPager), pPg->pgno,
- ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
- /* Even if an IO or diskfull error occurred while journalling the
+ /* Even if an IO or diskfull error occurs while journalling the
** page in the block above, set the need-sync flag for the page.
** Otherwise, when the transaction is rolled back, the logic in
** playback_one_page() will think that the page needs to be restored
** in the database file. And if an IO error occurs while doing so,
** then corruption may follow.
*/
- if( !pPager->noSync ){
- pPg->flags |= PGHDR_NEED_SYNC;
- pPager->needSync = 1;
- }
+ pPg->flags |= PGHDR_NEED_SYNC;
- /* An error has occurred writing to the journal file. The
- ** transaction will be rolled back by the layer above.
- */
- if( rc!=SQLITE_OK ){
- return rc;
- }
+ rc = write32bits(pPager->jfd, iOff, pPg->pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
+ if( rc!=SQLITE_OK ) return rc;
+
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
+ pPager->journalOff += 8 + pPager->pageSize;
pPager->nRec++;
assert( pPager->pInJournal!=0 );
rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
return rc;
}
}else{
- if( !pPager->journalStarted && !pPager->noSync ){
+ if( pPager->eState!=PAGER_WRITER_DBMOD ){
pPg->flags |= PGHDR_NEED_SYNC;
- pPager->needSync = 1;
}
PAGERTRACE(("APPEND %d page %d needSync=%d\n",
PAGERID(pPager), pPg->pgno,
/* Update the database size and return.
*/
- assert( pPager->state>=PAGER_SHARED );
if( pPager->dbSize<pPg->pgno ){
pPager->dbSize = pPg->pgno;
}
Pager *pPager = pPg->pPager;
Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( assert_pager_state(pPager) );
+
if( nPagePerSector>1 ){
Pgno nPageCount; /* Total number of pages in database file */
Pgno pg1; /* First page of the sector pPg is located on. */
*/
pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
- rc = sqlite3PagerPagecount(pPager, (int *)&nPageCount);
- if( rc==SQLITE_OK ){
- if( pPg->pgno>nPageCount ){
- nPage = (pPg->pgno - pg1)+1;
- }else if( (pg1+nPagePerSector-1)>nPageCount ){
- nPage = nPageCount+1-pg1;
- }else{
- nPage = nPagePerSector;
- }
- assert(nPage>0);
- assert(pg1<=pPg->pgno);
- assert((pg1+nPage)>pPg->pgno);
+ nPageCount = pPager->dbSize;
+ if( pPg->pgno>nPageCount ){
+ nPage = (pPg->pgno - pg1)+1;
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){
+ nPage = nPageCount+1-pg1;
+ }else{
+ nPage = nPagePerSector;
}
+ assert(nPage>0);
+ assert(pg1<=pPg->pgno);
+ assert((pg1+nPage)>pPg->pgno);
for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
Pgno pg = pg1+ii;
rc = pager_write(pPage);
if( pPage->flags&PGHDR_NEED_SYNC ){
needSync = 1;
- assert(pPager->needSync);
}
sqlite3PagerUnref(pPage);
}
** before any of them can be written out to the database file.
*/
if( rc==SQLITE_OK && needSync ){
- assert( !MEMDB && pPager->noSync==0 );
+ assert( !MEMDB );
for(ii=0; ii<nPage; ii++){
PgHdr *pPage = pager_lookup(pPager, pg1+ii);
if( pPage ){
sqlite3PagerUnref(pPage);
}
}
- assert(pPager->needSync);
}
assert( pPager->doNotSyncSpill==1 );
PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
pPg->flags |= PGHDR_DONT_WRITE;
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
+ pager_set_pagehash(pPg);
}
}
static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
/* Declare and initialize constant integer 'isDirect'. If the
** atomic-write optimization is enabled in this build, then isDirect
** is initialized to the value passed as the isDirectMode parameter
# define DIRECT_MODE isDirectMode
#endif
- assert( pPager->state>=PAGER_RESERVED );
if( !pPager->changeCountDone && pPager->dbSize>0 ){
PgHdr *pPgHdr; /* Reference to page 1 */
u32 change_counter; /* Initial value of change-counter field */
return rc;
}
+/*
+** This function may only be called while a write-transaction is active in
+** rollback. If the connection is in WAL mode, this call is a no-op.
+** Otherwise, if the connection does not already have an EXCLUSIVE lock on
+** the database file, an attempt is made to obtain one.
+**
+** If the EXCLUSIVE lock is already held or the attempt to obtain it is
+** successful, or the connection is in WAL mode, SQLITE_OK is returned.
+** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
+** returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
+ int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_WRITER_LOCKED
+ );
+ assert( assert_pager_state(pPager) );
+ if( 0==pagerUseWal(pPager) ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ return rc;
+}
+
/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual
){
int rc = SQLITE_OK; /* Return code */
- /* The dbOrigSize is never set if journal_mode=OFF */
- assert( pPager->journalMode!=PAGER_JOURNALMODE_OFF || pPager->dbOrigSize==0 );
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_ERROR
+ );
+ assert( assert_pager_state(pPager) );
/* If a prior error occurred, report that error again. */
- if( pPager->errCode ) return pPager->errCode;
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n",
pPager->zFilename, zMaster, pPager->dbSize));
- if( MEMDB && pPager->dbModified ){
+ /* If no database changes have been made, return early. */
+ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
+
+ if( MEMDB ){
/* If this is an in-memory db, or no pages have been written to, or this
** function has already been called, it is mostly a no-op. However, any
** backup in progress needs to be restarted.
*/
sqlite3BackupRestart(pPager->pBackup);
- }else if( pPager->state!=PAGER_SYNCED && pPager->dbModified ){
+ }else{
if( pagerUseWal(pPager) ){
PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
if( pList ){
);
if( !zMaster && isOpen(pPager->jfd)
&& pPager->journalOff==jrnlBufferSize(pPager)
- && pPager->dbSize>=pPager->dbFileSize
+ && pPager->dbSize>=pPager->dbOrigSize
&& (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
){
/* Update the db file change counter via the direct-write method. The
** that it took at the start of the transaction. Otherwise, the
** calls to sqlite3PagerGet() return zeroed pages instead of
** reading data from the database file.
- **
- ** When journal_mode==OFF the dbOrigSize is always zero, so this
- ** block never runs if journal_mode=OFF.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pPager->dbSize<pPager->dbOrigSize
- && ALWAYS(pPager->journalMode!=PAGER_JOURNALMODE_OFF)
+ && pPager->journalMode!=PAGER_JOURNALMODE_OFF
){
Pgno i; /* Iterator variable */
const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */
rc = writeMasterJournal(pPager, zMaster);
if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
- /* Sync the journal file. If the atomic-update optimization is being
- ** used, this call will not create the journal file or perform any
- ** real IO.
+ /* Sync the journal file and write all dirty pages to the database.
+ ** If the atomic-update optimization is being used, this sync will not
+ ** create the journal file or perform any real IO.
+ **
+ ** Because the change-counter page was just modified, unless the
+ ** atomic-update optimization is used it is almost certain that the
+ ** journal requires a sync here. However, in locking_mode=exclusive
+ ** on a system under memory pressure it is just possible that this is
+ ** not the case. In this case it is likely enough that the redundant
+ ** xSync() call will be changed to a no-op by the OS anyhow.
*/
- rc = syncJournal(pPager);
+ rc = syncJournal(pPager, 0);
if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
- /* Write all dirty pages to the database file. */
rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
if( rc!=SQLITE_OK ){
assert( rc!=SQLITE_IOERR_BLOCKED );
*/
if( pPager->dbSize!=pPager->dbFileSize ){
Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
- assert( pPager->state>=PAGER_EXCLUSIVE );
+ assert( pPager->eState==PAGER_WRITER_DBMOD );
rc = pager_truncate(pPager, nNew);
if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
}
}
IOTRACE(("DBSYNC %p\n", pPager))
}
-
- pPager->state = PAGER_SYNCED;
}
commit_phase_one_exit:
+ if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
+ pPager->eState = PAGER_WRITER_FINISHED;
+ }
return rc;
}
** called, just return the same error code without doing anything. */
if( NEVER(pPager->errCode) ) return pPager->errCode;
- /* This function should not be called if the pager is not in at least
- ** PAGER_RESERVED state. **FIXME**: Make it so that this test always
- ** fails - make it so that we never reach this point if we do not hold
- ** all necessary locks.
- */
- if( NEVER(pPager->state<PAGER_RESERVED) ) return SQLITE_ERROR;
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_FINISHED
+ || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
+ );
+ assert( assert_pager_state(pPager) );
/* An optimization. If the database was not actually modified during
** this transaction, the pager is running in exclusive-mode and is
** header. Since the pager is in exclusive mode, there is no need
** to drop any locks either.
*/
- if( pPager->dbModified==0 && pPager->exclusiveMode
+ if( pPager->eState==PAGER_WRITER_LOCKED
+ && pPager->exclusiveMode
&& pPager->journalMode==PAGER_JOURNALMODE_PERSIST
){
assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
+ pPager->eState = PAGER_READER;
return SQLITE_OK;
}
PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
- assert( pPager->state==PAGER_SYNCED || MEMDB || !pPager->dbModified );
rc = pager_end_transaction(pPager, pPager->setMaster);
return pager_error(pPager, rc);
}
/*
-** Rollback all changes. The database falls back to PAGER_SHARED mode.
+** If a write transaction is open, then all changes made within the
+** transaction are reverted and the current write-transaction is closed.
+** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
+** state if an error occurs.
**
-** This function performs two tasks:
+** If the pager is already in PAGER_ERROR state when this function is called,
+** it returns Pager.errCode immediately. No work is performed in this case.
+**
+** Otherwise, in rollback mode, this function performs two functions:
**
** 1) It rolls back the journal file, restoring all database file and
** in-memory cache pages to the state they were in when the transaction
** was opened, and
+**
** 2) It finalizes the journal file, so that it is not used for hot
** rollback at any point in the future.
**
-** subject to the following qualifications:
-**
-** * If the journal file is not yet open when this function is called,
-** then only (2) is performed. In this case there is no journal file
-** to roll back.
-**
-** * If in an error state other than SQLITE_FULL, then task (1) is
-** performed. If successful, task (2). Regardless of the outcome
-** of either, the error state error code is returned to the caller
-** (i.e. either SQLITE_IOERR or SQLITE_CORRUPT).
+** Finalization of the journal file (task 2) is only performed if the
+** rollback is successful.
**
-** * If the pager is in PAGER_RESERVED state, then attempt (1). Whether
-** or not (1) is successful, also attempt (2). If successful, return
-** SQLITE_OK. Otherwise, enter the error state and return the first
-** error code encountered.
-**
-** In this case there is no chance that the database was written to.
-** So is safe to finalize the journal file even if the playback
-** (operation 1) failed. However the pager must enter the error state
-** as the contents of the in-memory cache are now suspect.
-**
-** * Finally, if in PAGER_EXCLUSIVE state, then attempt (1). Only
-** attempt (2) if (1) is successful. Return SQLITE_OK if successful,
-** otherwise enter the error state and return the error code from the
-** failing operation.
-**
-** In this case the database file may have been written to. So if the
-** playback operation did not succeed it would not be safe to finalize
-** the journal file. It needs to be left in the file-system so that
-** some other process can use it to restore the database state (by
-** hot-journal rollback).
+** In WAL mode, all cache-entries containing data modified within the
+** current transaction are either expelled from the cache or reverted to
+** their pre-transaction state by re-reading data from the database or
+** WAL files. The WAL transaction is then closed.
*/
SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
int rc = SQLITE_OK; /* Return code */
PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
+
+ /* PagerRollback() is a no-op if called in READER or OPEN state. If
+ ** the pager is already in the ERROR state, the rollback is not
+ ** attempted here. Instead, the error code is returned to the caller.
+ */
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
+ if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
+
if( pagerUseWal(pPager) ){
int rc2;
-
rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
rc2 = pager_end_transaction(pPager, pPager->setMaster);
if( rc==SQLITE_OK ) rc = rc2;
- rc = pager_error(pPager, rc);
- }else if( !pPager->dbModified || !isOpen(pPager->jfd) ){
- rc = pager_end_transaction(pPager, pPager->setMaster);
- }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- if( pPager->state>=PAGER_EXCLUSIVE ){
- pager_playback(pPager, 0);
- }
- rc = pPager->errCode;
+ }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
+ rc = pager_end_transaction(pPager, 0);
}else{
- if( pPager->state==PAGER_RESERVED ){
- int rc2;
- rc = pager_playback(pPager, 0);
- rc2 = pager_end_transaction(pPager, pPager->setMaster);
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- }else{
- rc = pager_playback(pPager, 0);
- }
+ rc = pager_playback(pPager, 0);
+ }
- if( !MEMDB ){
- pPager->dbSizeValid = 0;
- }
+ assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
+ assert( rc==SQLITE_OK || rc==SQLITE_FULL || (rc&0xFF)==SQLITE_IOERR );
- /* If an error occurs during a ROLLBACK, we can no longer trust the pager
- ** cache. So call pager_error() on the way out to make any error
- ** persistent.
- */
- rc = pager_error(pPager, rc);
- }
- return rc;
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error persistent.
+ */
+ return pager_error(pPager, rc);
}
/*
** used by the pager and its associated cache.
*/
SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
- int perPageSize = pPager->pageSize + pPager->nExtra + 20;
+ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
+ + 5*sizeof(void*);
return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
- + sqlite3MallocSize(pPager);
+ + sqlite3MallocSize(pPager)
+ + pPager->pageSize;
}
/*
a[0] = sqlite3PcacheRefCount(pPager->pPCache);
a[1] = sqlite3PcachePagecount(pPager->pPCache);
a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
- a[3] = pPager->dbSizeValid ? (int) pPager->dbSize : -1;
- a[4] = pPager->state;
+ a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
+ a[4] = pPager->eState;
a[5] = pPager->errCode;
a[6] = pPager->nHit;
a[7] = pPager->nMiss;
int rc = SQLITE_OK; /* Return code */
int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+
if( nSavepoint>nCurrent && pPager->useJournal ){
int ii; /* Iterator variable */
PagerSavepoint *aNew; /* New Pager.aSavepoint array */
- int nPage; /* Size of database file */
-
- rc = sqlite3PagerPagecount(pPager, &nPage);
- if( rc ) return rc;
/* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
** if the allocation fails. Otherwise, zero the new portion in case a
/* Populate the PagerSavepoint structures just allocated. */
for(ii=nCurrent; ii<nSavepoint; ii++){
- aNew[ii].nOrig = nPage;
+ aNew[ii].nOrig = pPager->dbSize;
if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
aNew[ii].iOffset = pPager->journalOff;
}else{
aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
}
aNew[ii].iSubRec = pPager->nSubRec;
- aNew[ii].pInSavepoint = sqlite3BitvecCreate(nPage);
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
if( !aNew[ii].pInSavepoint ){
return SQLITE_NOMEM;
}
** savepoint. If no errors occur, SQLITE_OK is returned.
*/
SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
- int rc = SQLITE_OK;
+ int rc = pPager->errCode; /* Return code */
assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
- if( iSavepoint<pPager->nSavepoint ){
+ if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
int ii; /* Iterator variable */
int nNew; /* Number of remaining savepoints after this op. */
rc = pagerPlaybackSavepoint(pPager, pSavepoint);
assert(rc!=SQLITE_DONE);
}
-
}
+
return rc;
}
Pgno origPgno; /* The original page number */
assert( pPg->nRef>0 );
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
/* In order to be able to rollback, an in-memory database must journal
** the page we are moving from.
needSyncPgno = pPg->pgno;
assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
assert( pPg->flags&PGHDR_DIRTY );
- assert( pPager->needSync );
}
/* If the cache contains a page with page-number pgno, remove it
- ** from its hash chain. Also, if the PgHdr.needSync was set for
+ ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
** page pgno before the 'move' operation, it needs to be retained
** for the page moved there.
*/
if( MEMDB ){
/* Do not discard pages from an in-memory database since we might
** need to rollback later. Just move the page out of the way. */
- assert( pPager->dbSizeValid );
sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
}else{
sqlite3PcacheDrop(pPgOld);
origPgno = pPg->pgno;
sqlite3PcacheMove(pPg, pgno);
sqlite3PcacheMakeDirty(pPg);
- pPager->dbModified = 1;
+
+ /* For an in-memory database, make sure the original page continues
+ ** to exist, in case the transaction needs to roll back. Use pPgOld
+ ** as the original page since it has already been allocated.
+ */
+ if( MEMDB ){
+ assert( pPgOld );
+ sqlite3PcacheMove(pPgOld, origPgno);
+ sqlite3PagerUnref(pPgOld);
+ }
if( needSyncPgno ){
/* If needSyncPgno is non-zero, then the journal file needs to be
** sync()ed before any data is written to database file page needSyncPgno.
** Currently, no such page exists in the page-cache and the
** "is journaled" bitvec flag has been set. This needs to be remedied by
- ** loading the page into the pager-cache and setting the PgHdr.needSync
+ ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
** flag.
**
** If the attempt to load the page into the page-cache fails, (due
** this transaction, it may be written to the database file before
** it is synced into the journal file. This way, it may end up in
** the journal file twice, but that is not a problem.
- **
- ** The sqlite3PagerGet() call may cause the journal to sync. So make
- ** sure the Pager.needSync flag is set too.
*/
PgHdr *pPgHdr;
- assert( pPager->needSync );
rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
if( rc!=SQLITE_OK ){
if( needSyncPgno<=pPager->dbOrigSize ){
}
return rc;
}
- pPager->needSync = 1;
- assert( pPager->noSync==0 && !MEMDB );
pPgHdr->flags |= PGHDR_NEED_SYNC;
sqlite3PcacheMakeDirty(pPgHdr);
sqlite3PagerUnref(pPgHdr);
}
- /*
- ** For an in-memory database, make sure the original page continues
- ** to exist, in case the transaction needs to roll back. Use pPgOld
- ** as the original page since it has already been allocated.
- */
- if( MEMDB ){
- sqlite3PcacheMove(pPgOld, origPgno);
- sqlite3PagerUnref(pPgOld);
- }
-
return SQLITE_OK;
}
#endif
SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
u8 eOld = pPager->journalMode; /* Prior journalmode */
+#ifdef SQLITE_DEBUG
+ /* The print_pager_state() routine is intended to be used by the debugger
+ ** only. We invoke it once here to suppress a compiler warning. */
+ print_pager_state(pPager);
+#endif
+
+
/* The eMode parameter is always valid */
assert( eMode==PAGER_JOURNALMODE_DELETE
|| eMode==PAGER_JOURNALMODE_TRUNCATE
}
if( eMode!=eOld ){
- /* When changing between rollback modes, close the journal file prior
- ** to the change. But when changing from a rollback mode to WAL, keep
- ** the journal open since there is a rollback-style transaction in play
- ** used to convert the version numbers in the btree header.
- */
- if( isOpen(pPager->jfd) && eMode!=PAGER_JOURNALMODE_WAL ){
- sqlite3OsClose(pPager->jfd);
- }
/* Change the journal mode. */
+ assert( pPager->eState!=PAGER_ERROR );
pPager->journalMode = (u8)eMode;
/* When transistioning from TRUNCATE or PERSIST to any other journal
- ** mode except WAL (and we are not in locking_mode=EXCLUSIVE) then
+ ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
** delete the journal file.
*/
assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
** database file. This ensures that the journal file is not deleted
** while it is in use by some other client.
*/
- int rc = SQLITE_OK;
- int state = pPager->state;
- if( state<PAGER_SHARED ){
- rc = sqlite3PagerSharedLock(pPager);
- }
- if( pPager->state==PAGER_SHARED ){
- assert( rc==SQLITE_OK );
- rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
- }
- if( rc==SQLITE_OK ){
+ sqlite3OsClose(pPager->jfd);
+ if( pPager->eLock>=RESERVED_LOCK ){
sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }else{
+ int rc = SQLITE_OK;
+ int state = pPager->eState;
+ assert( state==PAGER_OPEN || state==PAGER_READER );
+ if( state==PAGER_OPEN ){
+ rc = sqlite3PagerSharedLock(pPager);
+ }
+ if( pPager->eState==PAGER_READER ){
+ assert( rc==SQLITE_OK );
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }
+ if( rc==SQLITE_OK && state==PAGER_READER ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }else if( state==PAGER_OPEN ){
+ pager_unlock(pPager);
+ }
+ assert( state==pPager->eState );
}
- if( rc==SQLITE_OK && state==PAGER_SHARED ){
- sqlite3OsUnlock(pPager->fd, SHARED_LOCK);
- }else if( state==PAGER_UNLOCK ){
- pager_unlock(pPager);
- }
- assert( state==pPager->state );
}
}
** is unmodified.
*/
SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
- if( pPager->dbModified ) return 0;
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
return 1;
}
** file (not a temp file or an in-memory database), and the WAL file
** is not already open, make an attempt to open it now. If successful,
** return SQLITE_OK. If an error occurs or the VFS used by the pager does
-** not support the xShmXXX() methods, return an error code. *pisOpen is
+** not support the xShmXXX() methods, return an error code. *pbOpen is
** not modified in either case.
**
** If the pager is open on a temp-file (or in-memory database), or if
-** the WAL file is already open, set *pisOpen to 1 and return SQLITE_OK
+** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
** without doing anything.
*/
SQLITE_PRIVATE int sqlite3PagerOpenWal(
Pager *pPager, /* Pager object */
- int *pisOpen /* OUT: Set to true if call is a no-op */
+ int *pbOpen /* OUT: Set to true if call is a no-op */
){
int rc = SQLITE_OK; /* Return code */
- assert( pPager->state>=PAGER_SHARED );
- assert( (pisOpen==0 && !pPager->tempFile && !pPager->pWal) || *pisOpen==0 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pbOpen );
+ assert( pPager->eState==PAGER_READER || !pbOpen );
+ assert( pbOpen==0 || *pbOpen==0 );
+ assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
if( !pPager->tempFile && !pPager->pWal ){
if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
+ /* Close any rollback journal previously open */
+ sqlite3OsClose(pPager->jfd);
+
/* Open the connection to the log file. If this operation fails,
** (e.g. due to malloc() failure), unlock the database file and
** return an error code.
rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, &pPager->pWal);
if( rc==SQLITE_OK ){
pPager->journalMode = PAGER_JOURNALMODE_WAL;
+ pPager->eState = PAGER_OPEN;
}
}else{
- *pisOpen = 1;
+ *pbOpen = 1;
}
return rc;
*/
if( !pPager->pWal ){
int logexists = 0;
- rc = sqlite3OsLock(pPager->fd, SQLITE_LOCK_SHARED);
+ rc = pagerLockDb(pPager, SHARED_LOCK);
if( rc==SQLITE_OK ){
rc = sqlite3OsAccess(
pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
** the database file, the log and log-summary files will be deleted.
*/
if( rc==SQLITE_OK && pPager->pWal ){
- rc = sqlite3OsLock(pPager->fd, SQLITE_LOCK_EXCLUSIVE);
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
if( rc==SQLITE_OK ){
rc = sqlite3WalClose(pPager->pWal,
(pPager->noSync ? 0 : pPager->sync_flags),
}else{
/* If we cannot get an EXCLUSIVE lock, downgrade the PENDING lock
** that we did get back to SHARED. */
- sqlite3OsUnlock(pPager->fd, SQLITE_LOCK_SHARED);
+ pagerUnlockDb(pPager, SQLITE_LOCK_SHARED);
}
}
return rc;
**
** The actual header in the wal-index consists of two copies of this
** object.
+**
+** The szPage value can be any power of 2 between 512 and 32768, inclusive.
+** Or it can be 1 to represent a 65536-byte page. The latter case was
+** added in 3.7.1 when support for 64K pages was added.
*/
struct WalIndexHdr {
u32 iVersion; /* Wal-index version */
u32 iChange; /* Counter incremented each transaction */
u8 isInit; /* 1 when initialized */
u8 bigEndCksum; /* True if checksums in WAL are big-endian */
- u16 szPage; /* Database page size in bytes */
+ u16 szPage; /* Database page size in bytes. 1==64K */
u32 mxFrame; /* Index of last valid frame in the WAL */
u32 nPage; /* Size of database in pages */
u32 aFrameCksum[2]; /* Checksum of last frame in log */
u32 iCallback; /* Value to pass to log callback (or 0) */
int nWiData; /* Size of array apWiData */
volatile u32 **apWiData; /* Pointer to wal-index content in memory */
- u16 szPage; /* Database page size */
+ u32 szPage; /* Database page size */
i16 readLock; /* Which read lock is being held. -1 for none */
u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
u8 writeLock; /* True if in a write transaction */
goto finished;
}
pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
- pWal->szPage = (u16)szPage;
+ pWal->szPage = szPage;
pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
if( nTruncate ){
pWal->hdr.mxFrame = iFrame;
pWal->hdr.nPage = nTruncate;
- pWal->hdr.szPage = (u16)szPage;
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
}
pInfo->nBackfill = 0;
pInfo->aReadMark[0] = 0;
for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
+
+ /* If more than one frame was recovered from the log file, report an
+ ** event via sqlite3_log(). This is to help with identifying performance
+ ** problems caused by applications routinely shutting down without
+ ** checkpointing the log file.
+ */
+ if( pWal->hdr.nPage ){
+ sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
+ pWal->hdr.nPage, pWal->zWalName
+ );
+ }
}
recovery_error:
u8 *zBuf /* Temporary buffer to use */
){
int rc; /* Return code */
- int szPage = pWal->hdr.szPage; /* Database page-size */
+ int szPage; /* Database page-size */
WalIterator *pIter = 0; /* Wal iterator context */
u32 iDbpage = 0; /* Next database page to write */
u32 iFrame = 0; /* Wal frame containing data for iDbpage */
u32 mxSafeFrame; /* Max frame that can be backfilled */
+ u32 mxPage; /* Max database page to write */
int i; /* Loop counter */
volatile WalCkptInfo *pInfo; /* The checkpoint status information */
+ szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
if( pWal->hdr.mxFrame==0 ) return SQLITE_OK;
/* Allocate the iterator */
assert( pIter );
/*** TODO: Move this test out to the caller. Make it an assert() here ***/
- if( pWal->hdr.szPage!=nBuf ){
+ if( szPage!=nBuf ){
rc = SQLITE_CORRUPT_BKPT;
goto walcheckpoint_out;
}
** cannot be backfilled from the WAL.
*/
mxSafeFrame = pWal->hdr.mxFrame;
+ mxPage = pWal->hdr.nPage;
pInfo = walCkptInfo(pWal);
for(i=1; i<WAL_NREADER; i++){
u32 y = pInfo->aReadMark[i];
if( pInfo->nBackfill<mxSafeFrame
&& (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
){
+ i64 nSize; /* Current size of database file */
u32 nBackfill = pInfo->nBackfill;
/* Sync the WAL to disk */
rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
}
+ /* If the database file may grow as a result of this checkpoint, hint
+ ** about the eventual size of the db file to the VFS layer.
+ */
+ if( rc==SQLITE_OK ){
+ i64 nReq = ((i64)mxPage * szPage);
+ rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
+ if( rc==SQLITE_OK && nSize<nReq ){
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
+ }
+ }
+
/* Iterate through the contents of the WAL, copying data to the db file. */
while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
i64 iOffset;
assert( walFramePgno(pWal, iFrame)==iDbpage );
- if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
+ if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
/* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
/* The first page of the wal-index must be mapped at this point. */
assert( pWal->nWiData>0 && pWal->apWiData[0] );
- /* Read the header. This might happen currently with a write to the
+ /* Read the header. This might happen concurrently with a write to the
** same area of shared memory on a different CPU in a SMP,
** meaning it is possible that an inconsistent snapshot is read
** from the file. If this happens, return non-zero.
if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
*pChanged = 1;
memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
- pWal->szPage = pWal->hdr.szPage;
+ pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( pWal->szPage<=32768 );
+ testcase( pWal->szPage>=65536 );
}
/* The header was successfully read. Return zero. */
** read-lock.
*/
SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
+ sqlite3WalEndWriteTransaction(pWal);
if( pWal->readLock>=0 ){
walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
pWal->readLock = -1;
** required page. Read and return data from the log file.
*/
if( iRead ){
- i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
+ int sz;
+ i64 iOffset;
+ sz = pWal->hdr.szPage;
+ sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( sz<=32768 );
+ testcase( sz>=65536 );
+ iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
*pInWal = 1;
/* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
/*
-** Set *pPgno to the size of the database file (or zero, if unknown).
+** Return the size of the database in pages (or zero, if unknown).
*/
-SQLITE_PRIVATE void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
- assert( pWal->readLock>=0 || pWal->lockError );
- *pPgno = pWal->hdr.nPage;
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
+ if( pWal && ALWAYS(pWal->readLock>=0) ){
+ return pWal->hdr.nPage;
+ }
+ return 0;
}
*/
SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
int rc = SQLITE_OK;
- if( pWal->writeLock ){
+ if( ALWAYS(pWal->writeLock) ){
Pgno iMax = pWal->hdr.mxFrame;
Pgno iFrame;
**
** SQLITE_OK is returned if no error is encountered (regardless of whether
** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
-** if some error
+** if an error occurs.
*/
static int walRestartLog(Wal *pWal){
int rc = SQLITE_OK;
for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
assert( pInfo->aReadMark[0]==0 );
walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
}
}
walUnlockShared(pWal, WAL_READ_LOCK(0));
sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
- pWal->szPage = (u16)szPage;
+ pWal->szPage = szPage;
pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
pWal->hdr.aFrameCksum[0] = aCksum[0];
pWal->hdr.aFrameCksum[1] = aCksum[1];
return rc;
}
}
- assert( pWal->szPage==szPage );
+ assert( (int)pWal->szPage==szPage );
/* Write the log file. */
for(p=pList; p; p=p->pDirty){
if( rc==SQLITE_OK ){
/* Update the private copy of the header. */
- pWal->hdr.szPage = (u16)szPage;
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
pWal->hdr.mxFrame = iFrame;
if( isCommit ){
pWal->hdr.iChange++;
**
** The file is divided into pages. The first page is called page 1,
** the second is page 2, and so forth. A page number of zero indicates
-** "no such page". The page size can be any power of 2 between 512 and 32768.
+** "no such page". The page size can be any power of 2 between 512 and 65536.
** Each page can be either a btree page, a freelist page, an overflow
** page, or a pointer-map page.
**
u8 pageSizeFixed; /* True if the page size can no longer be changed */
u8 secureDelete; /* True if secure_delete is enabled */
u8 initiallyEmpty; /* Database is empty at start of transaction */
+ u8 openFlags; /* Flags to sqlite3BtreeOpen() */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 autoVacuum; /* True if auto-vacuum is enabled */
u8 incrVacuum; /* True if incr-vacuum is enabled */
#endif
- u16 pageSize; /* Total number of bytes on a page */
- u16 usableSize; /* Number of usable bytes on each page */
u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
u8 inTransaction; /* Transaction state */
u8 doNotUseWAL; /* If true, do not open write-ahead-log file */
+ u32 pageSize; /* Total number of bytes on a page */
+ u32 usableSize; /* Number of usable bytes on each page */
int nTransaction; /* Number of open transactions (read + write) */
u32 nPage; /* Number of pages in the database */
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
# define TRACE(X)
#endif
-
+/*
+** Extract a 2-byte big-endian integer from an array of unsigned bytes.
+** But if the value is zero, make it 65536.
+**
+** This routine is used to extract the "offset to cell content area" value
+** from the header of a btree page. If the page size is 65536 and the page
+** is empty, the offset should be 65536, but the 2-byte value stores zero.
+** This routine makes the necessary adjustment to 65536.
+*/
+#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
+**
+** Return 0 (not a valid page) for pgno==1 since there is
+** no pointer map associated with page 1. The integrity_check logic
+** requires that ptrmapPageno(*,1)!=1.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
int nPagesPerMapPage;
Pgno iPtrMap, ret;
assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno<2 ) return 0;
nPagesPerMapPage = (pBt->usableSize/5)+1;
iPtrMap = (pgno-2)/nPagesPerMapPage;
ret = (iPtrMap*nPagesPerMapPage) + 2;
nFrag = data[hdr+7];
assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
gap = pPage->cellOffset + 2*pPage->nCell;
- top = get2byte(&data[hdr+5]);
+ top = get2byteNotZero(&data[hdr+5]);
if( gap>top ) return SQLITE_CORRUPT_BKPT;
testcase( gap+2==top );
testcase( gap+1==top );
/* Always defragment highly fragmented pages */
rc = defragmentPage(pPage);
if( rc ) return rc;
- top = get2byte(&data[hdr+5]);
+ top = get2byteNotZero(&data[hdr+5]);
}else if( gap+2<=top ){
/* Search the freelist looking for a free slot big enough to satisfy
** the request. The allocation is made from the first free slot in
if( gap+2+nByte>top ){
rc = defragmentPage(pPage);
if( rc ) return rc;
- top = get2byte(&data[hdr+5]);
+ top = get2byteNotZero(&data[hdr+5]);
assert( gap+nByte<=top );
}
u8 hdr; /* Offset to beginning of page header */
u8 *data; /* Equal to pPage->aData */
BtShared *pBt; /* The main btree structure */
- u16 usableSize; /* Amount of usable space on each page */
+ int usableSize; /* Amount of usable space on each page */
u16 cellOffset; /* Offset from start of page to first cell pointer */
- u16 nFree; /* Number of unused bytes on the page */
- u16 top; /* First byte of the cell content area */
+ int nFree; /* Number of unused bytes on the page */
+ int top; /* First byte of the cell content area */
int iCellFirst; /* First allowable cell or freeblock offset */
int iCellLast; /* Last possible cell or freeblock offset */
hdr = pPage->hdrOffset;
data = pPage->aData;
if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
- assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
- pPage->maskPage = pBt->pageSize - 1;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
pPage->nOverflow = 0;
usableSize = pBt->usableSize;
pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
- top = get2byte(&data[hdr+5]);
+ top = get2byteNotZero(&data[hdr+5]);
pPage->nCell = get2byte(&data[hdr+3]);
if( pPage->nCell>MX_CELL(pBt) ){
/* To many cells for a single page. The page must be corrupt */
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pBt->usableSize);
- pPage->nFree = pBt->usableSize - first;
+ pPage->nFree = (u16)(pBt->usableSize - first);
decodeFlags(pPage, flags);
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->nOverflow = 0;
- assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
- pPage->maskPage = pBt->pageSize - 1;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
pPage->nCell = 0;
pPage->isInit = 1;
}
** Open a database file.
**
** zFilename is the name of the database file. If zFilename is NULL
-** a new database with a random name is created. This randomly named
-** database file will be deleted when sqlite3BtreeClose() is called.
+** then an ephemeral database is created. The ephemeral database might
+** be exclusively in memory, or it might use a disk-based memory cache.
+** Either way, the ephemeral database will be automatically deleted
+** when sqlite3BtreeClose() is called.
+**
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
**
+** The "flags" parameter is a bitmask that might contain bits
+** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
+** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
+** These flags are passed through into sqlite3PagerOpen() and must
+** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
+**
** If the database is already opened in the same database connection
** and we are in shared cache mode, then the open will fail with an
** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
u8 nReserve; /* Byte of unused space on each page */
unsigned char zDbHeader[100]; /* Database header content */
+ /* True if opening an ephemeral, temporary database */
+ const int isTempDb = zFilename==0 || zFilename[0]==0;
+
/* Set the variable isMemdb to true for an in-memory database, or
** false for a file-based database. This symbol is only required if
** either of the shared-data or autovacuum features are compiled
#ifdef SQLITE_OMIT_MEMORYDB
const int isMemdb = 0;
#else
- const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
+ const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
+ || (isTempDb && sqlite3TempInMemory(db));
#endif
#endif
assert( db!=0 );
assert( sqlite3_mutex_held(db->mutex) );
+ assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
+
+ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
+ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
+ /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
+ assert( (flags & BTREE_SINGLE)==0 || isTempDb );
+
+ if( db->flags & SQLITE_NoReadlock ){
+ flags |= BTREE_NO_READLOCK;
+ }
+ if( isMemdb ){
+ flags |= BTREE_MEMORY;
+ }
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
+ }
pVfs = db->pVfs;
p = sqlite3MallocZero(sizeof(Btree));
if( !p ){
** If this Btree is a candidate for shared cache, try to find an
** existing BtShared object that we can share with
*/
- if( isMemdb==0 && zFilename && zFilename[0] ){
+ if( isMemdb==0 && isTempDb==0 ){
if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
int nFullPathname = pVfs->mxPathname+1;
char *zFullPathname = sqlite3Malloc(nFullPathname);
if( rc!=SQLITE_OK ){
goto btree_open_out;
}
+ pBt->openFlags = (u8)flags;
pBt->db = db;
sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
p->pBt = pBt;
#ifdef SQLITE_SECURE_DELETE
pBt->secureDelete = 1;
#endif
- pBt->pageSize = get2byte(&zDbHeader[16]);
+ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
pBt->pageSize = 0;
sqlite3_free(pBt);
sqlite3_free(p);
*ppBtree = 0;
+ }else{
+ /* If the B-Tree was successfully opened, set the pager-cache size to the
+ ** default value. Except, when opening on an existing shared pager-cache,
+ ** do not change the pager-cache size.
+ */
+ if( sqlite3BtreeSchema(p, 0, 0)==0 ){
+ sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
+ }
}
if( mutexOpen ){
assert( sqlite3_mutex_held(mutexOpen) );
if( pBt->xFreeSchema && pBt->pSchema ){
pBt->xFreeSchema(pBt->pSchema);
}
- sqlite3_free(pBt->pSchema);
+ sqlite3DbFree(0, pBt->pSchema);
freeTempSpace(pBt);
sqlite3_free(pBt);
}
((pageSize-1)&pageSize)==0 ){
assert( (pageSize & 7)==0 );
assert( !pBt->pPage1 && !pBt->pCursor );
- pBt->pageSize = (u16)pageSize;
+ pBt->pageSize = (u32)pageSize;
freeTempSpace(pBt);
}
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
** a valid database file.
*/
nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
- if( (rc = sqlite3PagerPagecount(pBt->pPager, &nPageFile))!=SQLITE_OK ){;
- goto page1_init_failed;
- }
+ sqlite3PagerPagecount(pBt->pPager, &nPageFile);
if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
nPage = nPageFile;
}
if( nPage>0 ){
- int pageSize;
- int usableSize;
+ u32 pageSize;
+ u32 usableSize;
u8 *page1 = pPage1->aData;
rc = SQLITE_NOTADB;
if( memcmp(page1, zMagicHeader, 16)!=0 ){
if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
goto page1_init_failed;
}
- pageSize = get2byte(&page1[16]);
- if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
- (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
+ pageSize = (page1[16]<<8) | (page1[17]<<16);
+ if( ((pageSize-1)&pageSize)!=0
+ || pageSize>SQLITE_MAX_PAGE_SIZE
+ || pageSize<=256
){
goto page1_init_failed;
}
assert( (pageSize & 7)==0 );
usableSize = pageSize - page1[20];
- if( pageSize!=pBt->pageSize ){
+ if( (u32)pageSize!=pBt->pageSize ){
/* After reading the first page of the database assuming a page size
** of BtShared.pageSize, we have discovered that the page-size is
** actually pageSize. Unlock the database, leave pBt->pPage1 at
** again with the correct page-size.
*/
releasePage(pPage1);
- pBt->usableSize = (u16)usableSize;
- pBt->pageSize = (u16)pageSize;
+ pBt->usableSize = usableSize;
+ pBt->pageSize = pageSize;
freeTempSpace(pBt);
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
pageSize-usableSize);
if( usableSize<480 ){
goto page1_init_failed;
}
- pBt->pageSize = (u16)pageSize;
- pBt->usableSize = (u16)usableSize;
+ pBt->pageSize = pageSize;
+ pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
** 9-byte nKey value
** 4-byte nData value
** 4-byte overflow page pointer
- ** So a cell consists of a 2-byte poiner, a header which is as much as
+ ** So a cell consists of a 2-byte pointer, a header which is as much as
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
- pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
- pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
- pBt->maxLeaf = pBt->usableSize - 35;
- pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
+ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
+ pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
+ pBt->maxLeaf = (u16)(pBt->usableSize - 35);
+ pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
pBt->pPage1 = pPage1;
pBt->nPage = nPage;
if( rc ) return rc;
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
assert( sizeof(zMagicHeader)==16 );
- put2byte(&data[16], pBt->pageSize);
+ data[16] = (u8)((pBt->pageSize>>8)&0xff);
+ data[17] = (u8)((pBt->pageSize>>16)&0xff);
data[18] = 1;
data[19] = 1;
assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
rc = newDatabase(pBt);
pBt->nPage = get4byte(28 + pBt->pPage1->aData);
- if( pBt->nPage==0 ){
- sqlite3PagerPagecount(pBt->pPager, (int*)&pBt->nPage);
- }
+
+ /* The database size was written into the offset 28 of the header
+ ** when the transaction started, so we know that the value at offset
+ ** 28 is nonzero. */
+ assert( pBt->nPage>0 );
}
sqlite3BtreeLeave(p);
}
pCur->validNKey = 1;
pCur->info.nKey = nCellKey;
}else{
- /* The maximum supported page-size is 32768 bytes. This means that
+ /* The maximum supported page-size is 65536 bytes. This means that
** the maximum number of record bytes stored on an index B-Tree
- ** page is at most 8198 bytes, which may be stored as a 2-byte
+ ** page is less than 16384 bytes and may be stored as a 2-byte
** varint. This information is used to attempt to avoid parsing
** the entire cell by checking for the cases where the record is
** stored entirely within the b-tree page by inspecting the first
if( !pPrevTrunk ){
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
}else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
}
}else{
Pgno ovflPgno;
int rc;
int nOvfl;
- u16 ovflPageSize;
+ u32 ovflPageSize;
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
btreeParseCellPtr(pPage, pCell, &info);
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
int i; /* Loop counter */
- int pc; /* Offset to cell content of cell being deleted */
+ u32 pc; /* Offset to cell content of cell being deleted */
u8 *data; /* pPage->aData */
u8 *ptr; /* Used to move bytes around within data[] */
int rc; /* The return code */
hdr = pPage->hdrOffset;
testcase( pc==get2byte(&data[hdr+5]) );
testcase( pc+sz==pPage->pBt->usableSize );
- if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
+ if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
*pRC = SQLITE_CORRUPT_BKPT;
return;
}
if( *pRC ) return;
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
- assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
/* The cell should normally be sized correctly. However, when moving a
assert( pPage->nOverflow==0 );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
+ assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921);
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
/* Check that the page has just been zeroed by zeroPage() */
assert( pPage->nCell==0 );
- assert( get2byte(&data[hdr+5])==nUsable );
+ assert( get2byteNotZero(&data[hdr+5])==nUsable );
pCellptr = &data[pPage->cellOffset + nCell*2];
cellbody = nUsable;
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
assert( pPage->nOverflow==1 );
+ /* This error condition is now caught prior to reaching this function */
if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
/* Allocate a new page. This page will become the right-sibling of
** is allocated. */
if( pBt->secureDelete ){
int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
- if( (iOff+szNew[i])>pBt->usableSize ){
+ if( (iOff+szNew[i])>(int)pBt->usableSize ){
rc = SQLITE_CORRUPT_BKPT;
memset(apOld, 0, (i+1)*sizeof(MemPage*));
goto balance_cleanup;
szCell[nCell] = sz;
pTemp = &aSpace1[iSpace1];
iSpace1 += sz;
- assert( sz<=pBt->pageSize/4 );
+ assert( sz<=pBt->maxLocal+23 );
assert( iSpace1<=pBt->pageSize );
memcpy(pTemp, apDiv[i], sz);
apCell[nCell] = pTemp+leafCorrection;
}
}
iOvflSpace += sz;
- assert( sz<=pBt->pageSize/4 );
+ assert( sz<=pBt->maxLocal+23 );
assert( iOvflSpace<=pBt->pageSize );
insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
if( rc!=SQLITE_OK ) goto balance_cleanup;
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
** BTREE_ZERODATA Used for SQL indices
*/
-static int btreeCreateTable(Btree *p, int *piTable, int flags){
+static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
BtShared *pBt = p->pBt;
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
+ int ptfFlags; /* Page-type flage for the root page of new table */
assert( sqlite3BtreeHoldsMutex(p) );
assert( pBt->inTransaction==TRANS_WRITE );
}
#endif
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
- zeroPage(pRoot, flags | PTF_LEAF);
+ if( createTabFlags & BTREE_INTKEY ){
+ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
+ }else{
+ ptfFlags = PTF_ZERODATA | PTF_LEAF;
+ }
+ zeroPage(pRoot, ptfFlags);
sqlite3PagerUnref(pRoot->pDbPage);
+ assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
*piTable = (int)pgnoRoot;
return SQLITE_OK;
}
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
- if( n>pCheck->pBt->usableSize/4-2 ){
+ if( n>(int)pCheck->pBt->usableSize/4-2 ){
checkAppendMsg(pCheck, zContext,
"freelist leaf count too big on page %d", iPage);
N--;
if( hit==0 ){
pCheck->mallocFailed = 1;
}else{
- u16 contentOffset = get2byte(&data[hdr+5]);
+ int contentOffset = get2byteNotZero(&data[hdr+5]);
assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
memset(hit+contentOffset, 0, usableSize-contentOffset);
memset(hit, 1, contentOffset);
cellStart = hdr + 12 - 4*pPage->leaf;
for(i=0; i<nCell; i++){
int pc = get2byte(&data[cellStart+i*2]);
- u16 size = 1024;
+ u32 size = 65536;
int j;
if( pc<=usableSize-4 ){
size = cellSizePtr(pPage, &data[pc]);
}
- if( (pc+size-1)>=usableSize ){
+ if( (int)(pc+size-1)>=usableSize ){
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d",i,iPage);
}else{
sCheck.anRef[i] = 1;
}
sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
+ sCheck.errMsg.useMalloc = 2;
/* Check the integrity of the freelist
*/
return (p && (p->inTrans==TRANS_WRITE));
}
+#ifndef SQLITE_OMIT_WAL
+/*
+** Run a checkpoint on the Btree passed as the first argument.
+**
+** Return SQLITE_LOCKED if this or any other connection has an open
+** transaction on the shared-cache the argument Btree is connected to.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( pBt->inTransaction!=TRANS_NONE ){
+ rc = SQLITE_LOCKED;
+ }else{
+ rc = sqlite3PagerCheckpoint(pBt->pPager);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
/*
** Return non-zero if a read (or write) transaction is active.
*/
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
if( !pBt->pSchema && nBytes ){
- pBt->pSchema = sqlite3MallocZero(nBytes);
+ pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
pBt->xFreeSchema = xFree;
}
sqlite3BtreeLeave(p);
);
p = 0;
}else {
- /* Allocate space for a new sqlite3_backup object */
+ /* Allocate space for a new sqlite3_backup object...
+ ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup));
if( !p ){
sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
rc = SQLITE_READONLY;
}
+#ifdef SQLITE_HAS_CODEC
+ /* Backup is not possible if the page size of the destination is changing
+ ** a a codec is in use.
+ */
+ if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){
+ rc = SQLITE_READONLY;
+ }
+#endif
+
/* This loop runs once for each destination page spanned by the source
** page. For each iteration, variable iOff is set to the byte offset
** of the destination page.
}
sqlite3BtreeLeave(p->pSrc);
if( p->pDestDb ){
+ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
sqlite3_free(p);
}
sqlite3_mutex_leave(mutex);
pMem->z[pMem->n] = 0;
pMem->z[pMem->n+1] = 0;
pMem->flags |= MEM_Term;
+#ifdef SQLITE_DEBUG
+ pMem->pScopyFrom = 0;
+#endif
}
return SQLITE_OK;
ctx.s.db = pMem->db;
ctx.pMem = pMem;
ctx.pFunc = pFunc;
- pFunc->xFinalize(&ctx);
+ pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
sqlite3DbFree(pMem->db, pMem->zMalloc);
memcpy(pMem, &ctx.s, sizeof(ctx.s));
return doubleToInt64(pMem->r);
}else if( flags & (MEM_Str|MEM_Blob) ){
i64 value;
- pMem->flags |= MEM_Str;
- if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
- || sqlite3VdbeMemNulTerminate(pMem) ){
- return 0;
- }
- assert( pMem->z );
- sqlite3Atoi64(pMem->z, &value);
+ assert( pMem->z || pMem->n==0 );
+ testcase( pMem->z==0 );
+ sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
return value;
}else{
return 0;
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
double val = (double)0;
- pMem->flags |= MEM_Str;
- if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
- || sqlite3VdbeMemNulTerminate(pMem) ){
- /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
- return (double)0;
- }
- assert( pMem->z );
- sqlite3AtoF(pMem->z, &val);
+ sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
return val;
}else{
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
** as much of the string as we can and ignore the rest.
*/
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
- int rc;
- assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
- assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- rc = sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8);
- if( rc ) return rc;
- rc = sqlite3VdbeMemNulTerminate(pMem);
- if( rc ) return rc;
- if( sqlite3Atoi64(pMem->z, &pMem->u.i) ){
- MemSetTypeFlag(pMem, MEM_Int);
- }else{
- pMem->r = sqlite3VdbeRealValue(pMem);
- MemSetTypeFlag(pMem, MEM_Real);
- sqlite3VdbeIntegerAffinity(pMem);
+ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
+ MemSetTypeFlag(pMem, MEM_Int);
+ }else{
+ pMem->r = sqlite3VdbeRealValue(pMem);
+ MemSetTypeFlag(pMem, MEM_Real);
+ sqlite3VdbeIntegerAffinity(pMem);
+ }
}
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
+ pMem->flags &= ~(MEM_Str|MEM_Blob);
return SQLITE_OK;
}
return 0;
}
+#ifdef SQLITE_DEBUG
+/*
+** This routine prepares a memory cell for modication by breaking
+** its link to a shallow copy and by marking any current shallow
+** copies of this cell as invalid.
+**
+** This is used for testing and debugging only - to make sure shallow
+** copies are not misused.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){
+ int i;
+ Mem *pX;
+ for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
+ if( pX->pScopyFrom==pMem ){
+ pX->flags |= MEM_Invalid;
+ pX->pScopyFrom = 0;
+ }
+ }
+ pMem->pScopyFrom = 0;
+}
+#endif /* SQLITE_DEBUG */
+
/*
** Size of struct Mem not including the Mem.zMalloc member.
*/
return 0;
}
}
- sqlite3VdbeMemNulTerminate(pVal);
+ sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */
}else{
assert( (pVal->flags&MEM_Blob)==0 );
sqlite3VdbeMemStringify(pVal, enc);
int op;
char *zVal = 0;
sqlite3_value *pVal = 0;
+ int negInt = 1;
+ const char *zNeg = "";
if( !pExpr ){
*ppVal = 0;
}
op = pExpr->op;
- /* op can only be TK_REGISTER is we have compiled with SQLITE_ENABLE_STAT2.
+ /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
** The ifdef here is to enable us to achieve 100% branch test coverage even
** when SQLITE_ENABLE_STAT2 is omitted.
*/
if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif
+ /* Handle negative integers in a single step. This is needed in the
+ ** case when the value is -9223372036854775808.
+ */
+ if( op==TK_UMINUS
+ && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
+ pExpr = pExpr->pLeft;
+ op = pExpr->op;
+ negInt = -1;
+ zNeg = "-";
+ }
+
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
pVal = sqlite3ValueNew(db);
if( pVal==0 ) goto no_mem;
if( ExprHasProperty(pExpr, EP_IntValue) ){
- sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
+ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
}else{
- zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
+ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
if( zVal==0 ) goto no_mem;
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
}else{
sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
}
+ if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
if( enc!=SQLITE_UTF8 ){
sqlite3VdbeChangeEncoding(pVal, enc);
}
}else if( op==TK_UMINUS ) {
+ /* This branch happens for multiple negative signs. Ex: -(-5) */
if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
+ sqlite3VdbeMemNumerify(pVal);
pVal->u.i = -1 * pVal->u.i;
/* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */
pVal->r = (double)-1 * pVal->r;
+ sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
}
}
+static void vdbeFreeOpArray(sqlite3 *, Op *, int);
+
/*
** Delete a P4 value if necessary.
*/
static void freeP4(sqlite3 *db, int p4type, void *p4){
if( p4 ){
+ assert( db );
switch( p4type ){
case P4_REAL:
case P4_INT64:
- case P4_MPRINTF:
case P4_DYNAMIC:
case P4_KEYINFO:
case P4_INTARRAY:
sqlite3DbFree(db, p4);
break;
}
+ case P4_MPRINTF: {
+ if( db->pnBytesFreed==0 ) sqlite3_free(p4);
+ break;
+ }
case P4_VDBEFUNC: {
VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
freeEphemeralFunction(db, pVdbeFunc->pFunc);
- sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
+ if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
sqlite3DbFree(db, pVdbeFunc);
break;
}
break;
}
case P4_MEM: {
- sqlite3ValueFree((sqlite3_value*)p4);
+ if( db->pnBytesFreed==0 ){
+ sqlite3ValueFree((sqlite3_value*)p4);
+ }else{
+ Mem *p = (Mem*)p4;
+ sqlite3DbFree(db, p->zMalloc);
+ sqlite3DbFree(db, p);
+ }
break;
}
case P4_VTAB : {
- sqlite3VtabUnlock((VTable *)p4);
- break;
- }
- case P4_SUBPROGRAM : {
- sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1);
+ if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
break;
}
}
}
/*
-** Decrement the ref-count on the SubProgram structure passed as the
-** second argument. If the ref-count reaches zero, free the structure.
-**
-** The array of VDBE opcodes stored as SubProgram.aOp is freed if
-** either the ref-count reaches zero or parameter freeop is non-zero.
-**
-** Since the array of opcodes pointed to by SubProgram.aOp may directly
-** or indirectly contain a reference to the SubProgram structure itself.
-** By passing a non-zero freeop parameter, the caller may ensure that all
-** SubProgram structures and their aOp arrays are freed, even when there
-** are such circular references.
+** Link the SubProgram object passed as the second argument into the linked
+** list at Vdbe.pSubProgram. This list is used to delete all sub-program
+** objects when the VM is no longer required.
*/
-SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){
- if( p ){
- assert( p->nRef>0 );
- if( freeop || p->nRef==1 ){
- Op *aOp = p->aOp;
- p->aOp = 0;
- vdbeFreeOpArray(db, aOp, p->nOp);
- p->nOp = 0;
- }
- p->nRef--;
- if( p->nRef==0 ){
- sqlite3DbFree(db, p);
- }
- }
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
+ p->pNext = pVdbe->pProgram;
+ pVdbe->pProgram = p;
}
-
/*
** Change N opcodes starting at addr to No-ops.
*/
nField = ((KeyInfo*)zP4)->nField;
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqlite3Malloc( nByte );
+ pKeyInfo = sqlite3DbMallocRaw(0, nByte);
pOp->p4.pKeyInfo = pKeyInfo;
if( pKeyInfo ){
u8 *aSortOrder;
Mem *pEnd;
sqlite3 *db = p->db;
u8 malloc_failed = db->mallocFailed;
+ if( db->pnBytesFreed ){
+ for(pEnd=&p[N]; p<pEnd; p++){
+ sqlite3DbFree(db, p->zMalloc);
+ }
+ return;
+ }
for(pEnd=&p[N]; p<pEnd; p++){
assert( (&p[1])==pEnd || p[0].db==p[1].db );
** to the transaction.
*/
rc = sqlite3VtabSync(db, &p->zErrMsg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
/* This loop determines (a) if the commit hook should be invoked and
** (b) how many database files have open write transactions, not
** one database file has an open write transaction, a master journal
** file is required for an atomic commit.
*/
- for(i=0; i<db->nDb; i++){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeIsInTrans(pBt) ){
needXcommit = 1;
if( i!=1 ) nTrans++;
+ rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
}
}
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
/* If there are any write-transactions at all, invoke the commit hook */
if( needXcommit && db->xCommitCallback ){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeIsInTrans(pBt) ){
char const *zFile = sqlite3BtreeGetJournalname(pBt);
- if( zFile==0 || zFile[0]==0 ){
+ if( zFile==0 ){
continue; /* Ignore TEMP and :memory: databases */
}
+ assert( zFile[0]!=0 );
if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
needSync = 1;
}
}
}
sqlite3OsCloseFree(pMaster);
+ assert( rc!=SQLITE_BUSY );
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, zMaster);
return rc;
isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|| mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
if( isSpecialError ){
- /* If the query was read-only, we need do no rollback at all. Otherwise,
- ** proceed with the special handling.
+ /* If the query was read-only and the error code is SQLITE_INTERRUPT,
+ ** no rollback is necessary. Otherwise, at least a savepoint
+ ** transaction must be rolled back to restore the database to a
+ ** consistent state.
+ **
+ ** Even if the statement is read-only, it is important to perform
+ ** a statement or transaction rollback operation. If the error
+ ** occured while writing to the journal, sub-journal or database
+ ** file as part of an effort to free up cache space (see function
+ ** pagerStress() in pager.c), the rollback is required to restore
+ ** the pager to a consistent state.
*/
if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
}
}
+/*
+** Free all memory associated with the Vdbe passed as the second argument.
+** The difference between this function and sqlite3VdbeDelete() is that
+** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
+** the database connection.
+*/
+SQLITE_PRIVATE void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
+ SubProgram *pSub, *pNext;
+ assert( p->db==0 || p->db==db );
+ releaseMemArray(p->aVar, p->nVar);
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ for(pSub=p->pProgram; pSub; pSub=pNext){
+ pNext = pSub->pNext;
+ vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
+ sqlite3DbFree(db, pSub);
+ }
+ vdbeFreeOpArray(db, p->aOp, p->nOp);
+ sqlite3DbFree(db, p->aLabel);
+ sqlite3DbFree(db, p->aColName);
+ sqlite3DbFree(db, p->zSql);
+ sqlite3DbFree(db, p->pFree);
+ sqlite3DbFree(db, p);
+}
+
/*
** Delete an entire VDBE.
*/
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
- releaseMemArray(p->aVar, p->nVar);
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- vdbeFreeOpArray(db, p->aOp, p->nOp);
- sqlite3DbFree(db, p->aLabel);
- sqlite3DbFree(db, p->aColName);
- sqlite3DbFree(db, p->zSql);
p->magic = VDBE_MAGIC_DEAD;
- sqlite3DbFree(db, p->pFree);
p->db = 0;
- sqlite3DbFree(db, p);
+ sqlite3VdbeDeleteObject(db, p);
}
/*
rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
if( rc ) return rc;
p->lastRowid = p->movetoTarget;
- p->rowidIsValid = ALWAYS(res==0) ?1:0;
- if( NEVER(res<0) ){
- rc = sqlite3BtreeNext(p->pCursor, &res);
- if( rc ) return rc;
- }
+ if( res!=0 ) return SQLITE_CORRUPT_BKPT;
+ p->rowidIsValid = 1;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
int rc;
if( pStmt==0 ){
+ /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
+ ** pointer is a harmless no-op. */
rc = SQLITE_OK;
}else{
Vdbe *v = (Vdbe*)pStmt;
sqlite3VdbeMemExpandBlob(p);
p->flags &= ~MEM_Str;
p->flags |= MEM_Blob;
- return p->z;
+ return p->n ? p->z : 0;
}else{
return sqlite3_value_text(pVal);
}
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
sqlite3_int64 iNow;
sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
- db->xProfile(db->pProfileArg, p->zSql, iNow - p->startTime);
+ db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
}
#endif
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
+**
+** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
+** returns a copy of the pointer to the database connection (the 1st
+** parameter) of the sqlite3_create_function() and
+** sqlite3_create_function16() routines that originally registered the
+** application defined function.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
assert( p && p->pFunc );
** sqlite3_column_real()
** sqlite3_column_bytes()
** sqlite3_column_bytes16()
-**
-** But not for sqlite3_column_blob(), which never calls malloc().
+** sqiite3_column_blob()
*/
static void columnMallocFailure(sqlite3_stmt *pStmt)
{
/* If the bit corresponding to this variable in Vdbe.expmask is set, then
** binding a new value to this variable invalidates the current query plan.
+ **
+ ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
+ ** parameter in the WHERE clause might influence the choice of query plan
+ ** for a statement, then the statement will be automatically recompiled,
+ ** as if there had been a schema change, on the first sqlite3_step() call
+ ** following any change to the bindings of that parameter.
*/
if( p->isPrepareV2 &&
((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
** commenting and indentation practices when changing or adding code.
*/
+/*
+** Invoke this macro on memory cells just prior to changing the
+** value of the cell. This macro verifies that shallow copies are
+** not misused.
+*/
+#ifdef SQLITE_DEBUG
+# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
+#else
+# define memAboutToChange(P,M)
+#endif
+
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
*/
static void applyNumericAffinity(Mem *pRec){
if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
- int realnum;
+ double rValue;
+ i64 iValue;
u8 enc = pRec->enc;
- sqlite3VdbeMemNulTerminate(pRec);
- if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, enc) ){
- i64 value;
- char *zUtf8 = pRec->z;
-#ifndef SQLITE_OMIT_UTF16
- if( enc!=SQLITE_UTF8 ){
- assert( pRec->db );
- zUtf8 = sqlite3Utf16to8(pRec->db, pRec->z, pRec->n, enc);
- if( !zUtf8 ) return;
- }
-#endif
- if( !realnum && sqlite3Atoi64(zUtf8, &value) ){
- pRec->u.i = value;
- MemSetTypeFlag(pRec, MEM_Int);
- }else{
- sqlite3AtoF(zUtf8, &pRec->r);
- MemSetTypeFlag(pRec, MEM_Real);
- }
-#ifndef SQLITE_OMIT_UTF16
- if( enc!=SQLITE_UTF8 ){
- sqlite3DbFree(pRec->db, zUtf8);
- }
-#endif
+ if( (pRec->flags&MEM_Str)==0 ) return;
+ if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
+ if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
+ pRec->u.i = iValue;
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->r = rValue;
+ pRec->flags |= MEM_Real;
}
}
}
}
#endif
+/*
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
+** in memory obtained from sqlite3DbMalloc).
+*/
+static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
+ sqlite3 *db = p->db;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+}
+
+
/*
** Execute as much of a VDBE program as we can then return.
**
assert( pOp->p2>0 );
assert( pOp->p2<=p->nMem );
pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
sqlite3VdbeMemReleaseExternal(pOut);
pOut->flags = MEM_Int;
}
if( (pOp->opflags & OPFLG_IN1)!=0 ){
assert( pOp->p1>0 );
assert( pOp->p1<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p1]) );
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
}
if( (pOp->opflags & OPFLG_IN2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p2]) );
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
}
if( (pOp->opflags & OPFLG_IN3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p3]) );
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
}
if( (pOp->opflags & OPFLG_OUT2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=p->nMem );
+ memAboutToChange(p, &aMem[pOp->p2]);
}
if( (pOp->opflags & OPFLG_OUT3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=p->nMem );
+ memAboutToChange(p, &aMem[pOp->p3]);
}
#endif
case OP_Gosub: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Dyn)==0 );
+ memAboutToChange(p, pIn1);
pIn1->flags = MEM_Int;
pIn1->u.i = pc;
REGISTER_TRACE(pOp->p1, pIn1);
/* Opcode: Blob P1 P2 * P4
**
** P4 points to a blob of data P1 bytes long. Store this
-** blob in register P2. This instruction is not coded directly
-** by the compiler. Instead, the compiler layer specifies
-** an OP_HexBlob opcode, with the hex string representation of
-** the blob as P4. This opcode is transformed to an OP_Blob
-** the first time it is executed.
+** blob in register P2.
*/
case OP_Blob: { /* out2-prerelease */
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
while( u.ac.n-- ){
assert( pOut<=&aMem[p->nMem] );
assert( pIn1<=&aMem[p->nMem] );
+ assert( memIsValid(pIn1) );
+ memAboutToChange(p, pOut);
u.ac.zMalloc = pOut->zMalloc;
pOut->zMalloc = 0;
sqlite3VdbeMemMove(pOut, pIn1);
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+#ifdef SQLITE_DEBUG
+ if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
+#endif
REGISTER_TRACE(pOp->p2, pOut);
break;
}
*/
u.ad.pMem = p->pResultSet = &aMem[pOp->p1];
for(u.ad.i=0; u.ad.i<pOp->p2; u.ad.i++){
+ assert( memIsValid(&u.ad.pMem[u.ad.i]) );
+ Deephemeralize(&u.ad.pMem[u.ad.i]);
+ assert( (u.ad.pMem[u.ad.i].flags & MEM_Ephem)==0
+ || (u.ad.pMem[u.ad.i].flags & (MEM_Str|MEM_Blob))==0 );
sqlite3VdbeMemNulTerminate(&u.ad.pMem[u.ad.i]);
sqlite3VdbeMemStoreType(&u.ad.pMem[u.ad.i]);
REGISTER_TRACE(pOp->p1+u.ad.i, &u.ad.pMem[u.ad.i]);
u.ag.n = pOp->p5;
u.ag.apVal = p->apArg;
assert( u.ag.apVal || u.ag.n==0 );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
assert( u.ag.n==0 || (pOp->p2>0 && pOp->p2+u.ag.n<=p->nMem+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+u.ag.n );
u.ag.pArg = &aMem[pOp->p2];
for(u.ag.i=0; u.ag.i<u.ag.n; u.ag.i++, u.ag.pArg++){
+ assert( memIsValid(u.ag.pArg) );
u.ag.apVal[u.ag.i] = u.ag.pArg;
+ Deephemeralize(u.ag.pArg);
sqlite3VdbeMemStoreType(u.ag.pArg);
REGISTER_TRACE(pOp->p2+u.ag.i, u.ag.pArg);
}
u.ag.ctx.pFunc = u.ag.ctx.pVdbeFunc->pFunc;
}
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pOut = &aMem[pOp->p3];
u.ag.ctx.s.flags = MEM_Null;
u.ag.ctx.s.db = db;
u.ag.ctx.s.xDel = 0;
assert( pOp[-1].opcode==OP_CollSeq );
u.ag.ctx.pColl = pOp[-1].p4.pColl;
}
- (*u.ag.ctx.pFunc->xFunc)(&u.ag.ctx, u.ag.n, u.ag.apVal);
+ (*u.ag.ctx.pFunc->xFunc)(&u.ag.ctx, u.ag.n, u.ag.apVal); /* IMP: R-24505-23230 */
if( db->mallocFailed ){
/* Even though a malloc() has failed, the implementation of the
** user function may have called an sqlite3_result_XXX() function
/* Opcode: ShiftLeft P1 P2 P3 * *
**
** Shift the integer value in register P2 to the left by the
-** number of bits specified by the integer in regiser P1.
+** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
*/
case OP_AddImm: { /* in1 */
pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
sqlite3VdbeMemIntegerify(pIn1);
pIn1->u.i += pOp->p2;
break;
*/
case OP_MustBeInt: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
*/
case OP_ToText: { /* same as TK_TO_TEXT, in1 */
pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
if( pIn1->flags & MEM_Null ) break;
assert( MEM_Str==(MEM_Blob>>3) );
pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
*/
case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
- sqlite3VdbeMemNumerify(pIn1);
- }
+ sqlite3VdbeMemNumerify(pIn1);
break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: ToInt P1 * * * *
**
-** Force the value in register P1 be an integer. If
+** Force the value in register P1 to be an integer. If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
*/
case OP_ToReal: { /* same as TK_TO_REAL, in1 */
pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
if( (pIn1->flags & MEM_Null)==0 ){
sqlite3VdbeMemRealify(pIn1);
}
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
-** bit is clear then fall thru if either operand is NULL.
+** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
if( pOp->p5 & SQLITE_STOREP2 ){
pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = u.ai.res;
REGISTER_TRACE(pOp->p2, pOut);
/* Opcode: Compare P1 P2 P3 P4 *
**
-** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
-** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** P4 is a KeyInfo structure that defines collating sequences and sort
#endif /* SQLITE_DEBUG */
for(u.aj.i=0; u.aj.i<u.aj.n; u.aj.i++){
u.aj.idx = aPermute ? aPermute[u.aj.i] : u.aj.i;
+ assert( memIsValid(&aMem[u.aj.p1+u.aj.idx]) );
+ assert( memIsValid(&aMem[u.aj.p2+u.aj.idx]) );
REGISTER_TRACE(u.aj.p1+u.aj.idx, &aMem[u.aj.p1+u.aj.idx]);
REGISTER_TRACE(u.aj.p2+u.aj.idx, &aMem[u.aj.p2+u.aj.idx]);
assert( u.aj.i<u.aj.pKeyInfo->nField );
assert( u.am.p1<p->nCursor );
assert( pOp->p3>0 && pOp->p3<=p->nMem );
u.am.pDest = &aMem[pOp->p3];
+ memAboutToChange(p, u.am.pDest);
MemSetTypeFlag(u.am.pDest, MEM_Null);
u.am.zRec = 0;
}else if( u.am.pC->pseudoTableReg>0 ){
u.am.pReg = &aMem[u.am.pC->pseudoTableReg];
assert( u.am.pReg->flags & MEM_Blob );
+ assert( memIsValid(u.am.pReg) );
u.am.payloadSize = u.am.pReg->n;
u.am.zRec = u.am.pReg->z;
u.am.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
pIn1 = &aMem[pOp->p1];
while( (u.an.cAff = *(u.an.zAffinity++))!=0 ){
assert( pIn1 <= &p->aMem[p->nMem] );
+ assert( memIsValid(pIn1) );
ExpandBlob(pIn1);
applyAffinity(pIn1, u.an.cAff, encoding);
pIn1++;
/* Opcode: MakeRecord P1 P2 P3 P4 *
**
-** Convert P2 registers beginning with P1 into a single entry
-** suitable for use as a data record in a database table or as a key
-** in an index. The details of the format are irrelevant as long as
-** the OP_Column opcode can decode the record later.
-** Refer to source code comments for the details of the record
-** format.
+** Convert P2 registers beginning with P1 into the [record format]
+** use as a data record in a database table or as a key
+** in an index. The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
u.ao.pLast = &u.ao.pData0[u.ao.nField-1];
u.ao.file_format = p->minWriteFileFormat;
+ /* Identify the output register */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){
+ assert( memIsValid(u.ao.pRec) );
if( u.ao.zAffinity ){
applyAffinity(u.ao.pRec, u.ao.zAffinity[u.ao.pRec-u.ao.pData0], encoding);
}
** be one of the input registers (because the following call to
** sqlite3VdbeMemGrow() could clobber the value before it is used).
*/
- assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
- pOut = &aMem[pOp->p3];
if( sqlite3VdbeMemGrow(pOut, (int)u.ao.nByte, 0) ){
goto no_mem;
}
if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
sqlite3ExpirePreparedStatements(db);
sqlite3ResetInternalSchema(db, 0);
+ db->flags = (db->flags | SQLITE_InternChanges);
}
}
assert( u.aw.p2>0 );
assert( u.aw.p2<=p->nMem );
pIn2 = &aMem[u.aw.p2];
+ assert( memIsValid(pIn2) );
+ assert( (pIn2->flags & MEM_Int)!=0 );
sqlite3VdbeMemIntegerify(pIn2);
u.aw.p2 = (int)pIn2->u.i;
/* The u.aw.p2 value always comes from a prior OP_CreateTable opcode and
u.aw.pCur = allocateCursor(p, pOp->p1, u.aw.nField, u.aw.iDb, 1);
if( u.aw.pCur==0 ) goto no_mem;
u.aw.pCur->nullRow = 1;
+ u.aw.pCur->isOrdered = 1;
rc = sqlite3BtreeCursor(u.aw.pX, u.aw.p2, u.aw.wrFlag, u.aw.pKeyInfo, u.aw.pCur->pCursor);
u.aw.pCur->pKeyInfo = u.aw.pKeyInfo;
#if 0 /* local variables moved into u.ax */
VdbeCursor *pCx;
#endif /* local variables moved into u.ax */
- static const int openFlags =
+ static const int vfsFlags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE |
u.ax.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( u.ax.pCx==0 ) goto no_mem;
u.ax.pCx->nullRow = 1;
- rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
- &u.ax.pCx->pBt);
+ rc = sqlite3BtreeOpen(0, db, &u.ax.pCx->pBt,
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginTrans(u.ax.pCx->pBt, 1);
}
if( rc==SQLITE_OK ){
/* If a transient index is required, create it by calling
- ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
** opening it. If a transient table is required, just use the
- ** automatically created table with root-page 1 (an INTKEY table).
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table).
*/
if( pOp->p4.pKeyInfo ){
int pgno;
assert( pOp->p4type==P4_KEYINFO );
- rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_ZERODATA);
+ rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_BLOBKEY);
if( rc==SQLITE_OK ){
assert( pgno==MASTER_ROOT+1 );
rc = sqlite3BtreeCursor(u.ax.pCx->pBt, pgno, 1,
u.ax.pCx->isTable = 1;
}
}
+ u.ax.pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
u.ax.pCx->isIndex = !u.ax.pCx->isTable;
break;
}
assert( OP_SeekLe == OP_SeekLt+1 );
assert( OP_SeekGe == OP_SeekLt+2 );
assert( OP_SeekGt == OP_SeekLt+3 );
+ assert( u.az.pC->isOrdered );
if( u.az.pC->pCursor!=0 ){
u.az.oc = pOp->opcode;
u.az.pC->nullRow = 0;
assert( u.az.oc!=OP_SeekLt || u.az.r.flags==0 );
u.az.r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<u.az.r.nField; i++) assert( memIsValid(&u.az.r.aMem[i]) ); }
+#endif
ExpandBlob(u.az.r.aMem);
rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, &u.az.r, 0, 0, &u.az.res);
if( rc!=SQLITE_OK ){
u.bb.r.pKeyInfo = u.bb.pC->pKeyInfo;
u.bb.r.nField = (u16)pOp->p4.i;
u.bb.r.aMem = pIn3;
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<u.bb.r.nField; i++) assert( memIsValid(&u.bb.r.aMem[i]) ); }
+#endif
u.bb.r.flags = UNPACKED_PREFIX_MATCH;
u.bb.pIdxKey = &u.bb.r;
}else{
assert( pIn3->flags & MEM_Blob );
- ExpandBlob(pIn3);
+ assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
u.bb.pIdxKey = sqlite3VdbeRecordUnpack(u.bb.pC->pKeyInfo, pIn3->n, pIn3->z,
u.bb.aTempRec, sizeof(u.bb.aTempRec));
if( u.bb.pIdxKey==0 ){
u.bc.r.nField = u.bc.nField + 1;
u.bc.r.flags = UNPACKED_PREFIX_SEARCH;
u.bc.r.aMem = u.bc.aMx;
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<u.bc.r.nField; i++) assert( memIsValid(&u.bc.r.aMem[i]) ); }
+#endif
/* Extract the value of u.bc.R from register P3. */
sqlite3VdbeMemIntegerify(pIn3);
**
** Use the content of register P3 as a integer key. If a record
** with that key does not exist in table of P1, then jump to P2.
-** If the record does exist, then fall thru. The cursor is left
+** If the record does exist, then fall through. The cursor is left
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=p->nMem );
u.be.pMem = &aMem[pOp->p3];
+ memAboutToChange(p, u.be.pMem);
}
+ assert( memIsValid(u.be.pMem) );
REGISTER_TRACE(pOp->p3, u.be.pMem);
sqlite3VdbeMemIntegerify(u.be.pMem);
sqlite3BtreeSetCachedRowid(u.be.pC->pCursor, u.be.v<MAX_ROWID ? u.be.v+1 : 0);
}
if( u.be.pC->useRandomRowid ){
- /* IMPLEMENTATION-OF: R-48598-02938 If the largest ROWID is equal to the
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
** largest possible integer (9223372036854775807) then the database
- ** engine starts picking candidate ROWIDs at random until it finds one
- ** that is not previously used.
- */
+ ** engine starts picking positive candidate ROWIDs at random until
+ ** it finds one that is not previously used. */
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
** an AUTOINCREMENT table. */
+ /* on the first attempt, simply do one more than previous */
u.be.v = db->lastRowid;
+ u.be.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
+ u.be.v++; /* ensure non-zero */
u.be.cnt = 0;
- do{
- if( u.be.cnt==0 && (u.be.v&0xffffff)==u.be.v ){
- u.be.v++;
+ while( ((rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v,
+ 0, &u.be.res))==SQLITE_OK)
+ && (u.be.res==0)
+ && (++u.be.cnt<100)){
+ /* collision - try another random rowid */
+ sqlite3_randomness(sizeof(u.be.v), &u.be.v);
+ if( u.be.cnt<5 ){
+ /* try "small" random rowids for the initial attempts */
+ u.be.v &= 0xffffff;
}else{
- sqlite3_randomness(sizeof(u.be.v), &u.be.v);
- if( u.be.cnt<5 ) u.be.v &= 0xffffff;
+ u.be.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
}
- rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v, 0, &u.be.res);
- u.be.cnt++;
- }while( u.be.cnt<100 && rc==SQLITE_OK && u.be.res==0 );
+ u.be.v++; /* ensure non-zero */
+ }
if( rc==SQLITE_OK && u.be.res==0 ){
rc = SQLITE_FULL; /* IMP: R-38219-53002 */
goto abort_due_to_error;
}
+ assert( u.be.v>0 ); /* EV: R-40812-03570 */
}
u.be.pC->rowidIsValid = 0;
u.be.pC->deferredMoveto = 0;
u.bf.pData = &aMem[pOp->p2];
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( memIsValid(u.bf.pData) );
u.bf.pC = p->apCsr[pOp->p1];
assert( u.bf.pC!=0 );
assert( u.bf.pC->pCursor!=0 );
if( pOp->opcode==OP_Insert ){
u.bf.pKey = &aMem[pOp->p3];
assert( u.bf.pKey->flags & MEM_Int );
+ assert( memIsValid(u.bf.pKey) );
REGISTER_TRACE(pOp->p3, u.bf.pKey);
u.bf.iKey = u.bf.pKey->u.i;
}else{
#endif /* local variables moved into u.bh */
pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
/* Note that RowKey and RowData are really exactly the same instruction */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
u.bi.pModule = u.bi.pVtab->pModule;
assert( u.bi.pModule->xRowid );
rc = u.bi.pModule->xRowid(u.bi.pC->pVtabCursor, &u.bi.v);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.bi.pVtab->zErrMsg;
- u.bi.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.bi.pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}else{
assert( u.bi.pC->pCursor!=0 );
u.bo.r.nField = (u16)pOp->p3;
u.bo.r.flags = 0;
u.bo.r.aMem = &aMem[pOp->p2];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<u.bo.r.nField; i++) assert( memIsValid(&u.bo.r.aMem[i]) ); }
+#endif
rc = sqlite3BtreeMovetoUnpacked(u.bo.pCrsr, &u.bo.r, 0, 0, &u.bo.res);
if( rc==SQLITE_OK && u.bo.res==0 ){
rc = sqlite3BtreeDelete(u.bo.pCrsr);
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
*/
-/* Opcode: IdxLT P1 P2 P3 * P5
+/* Opcode: IdxLT P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
u.bq.pC = p->apCsr[pOp->p1];
assert( u.bq.pC!=0 );
+ assert( u.bq.pC->isOrdered );
if( ALWAYS(u.bq.pC->pCursor!=0) ){
assert( u.bq.pC->deferredMoveto==0 );
assert( pOp->p5==0 || pOp->p5==1 );
u.bq.r.flags = UNPACKED_IGNORE_ROWID;
}
u.bq.r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<u.bq.r.nField; i++) assert( memIsValid(&u.bq.r.aMem[i]) ); }
+#endif
rc = sqlite3VdbeIdxKeyCompare(u.bq.pC, &u.bq.r, &u.bq.res);
if( pOp->opcode==OP_IdxLT ){
u.bq.res = -u.bq.res;
if( pOp->p3 ){
p->nChange += u.bs.nChange;
if( pOp->p3>0 ){
+ assert( memIsValid(&aMem[pOp->p3]) );
+ memAboutToChange(p, &aMem[pOp->p3]);
aMem[pOp->p3].u.i += u.bs.nChange;
}
}
assert( u.bt.pDb->pBt!=0 );
if( pOp->opcode==OP_CreateTable ){
/* u.bt.flags = BTREE_INTKEY; */
- u.bt.flags = BTREE_LEAFDATA|BTREE_INTKEY;
+ u.bt.flags = BTREE_INTKEY;
}else{
- u.bt.flags = BTREE_ZERODATA;
+ u.bt.flags = BTREE_BLOBKEY;
}
rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags);
pOut->u.i = u.bt.pgno;
u.by.pProgram = pOp->p4.pProgram;
u.by.pRt = &aMem[pOp->p3];
+ assert( memIsValid(u.by.pRt) );
assert( u.by.pProgram->nOp>0 );
/* If the p5 flag is clear, then recursive invocation of triggers is
}else{
u.ca.pIn1 = &aMem[pOp->p1];
}
+ assert( memIsValid(u.ca.pIn1) );
sqlite3VdbeMemIntegerify(u.ca.pIn1);
pIn2 = &aMem[pOp->p2];
sqlite3VdbeMemIntegerify(pIn2);
u.cb.apVal = p->apArg;
assert( u.cb.apVal || u.cb.n==0 );
for(u.cb.i=0; u.cb.i<u.cb.n; u.cb.i++, u.cb.pRec++){
+ assert( memIsValid(u.cb.pRec) );
u.cb.apVal[u.cb.i] = u.cb.pRec;
+ memAboutToChange(p, u.cb.pRec);
sqlite3VdbeMemStoreType(u.cb.pRec);
}
u.cb.ctx.pFunc = pOp->p4.pFunc;
assert( pOp[-1].opcode==OP_CollSeq );
u.cb.ctx.pColl = pOp[-1].p4.pColl;
}
- (u.cb.ctx.pFunc->xStep)(&u.cb.ctx, u.cb.n, u.cb.apVal);
+ (u.cb.ctx.pFunc->xStep)(&u.cb.ctx, u.cb.n, u.cb.apVal); /* IMP: R-24505-23230 */
if( u.cb.ctx.isError ){
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cb.ctx.s));
rc = u.cb.ctx.isError;
#endif /* local variables moved into u.cf */
u.cf.pVTab = pOp->p4.pVtab;
rc = sqlite3VtabBegin(db, u.cf.pVTab);
- if( u.cf.pVTab ){
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.cf.pVTab->pVtab->zErrMsg;
- u.cf.pVTab->pVtab->zErrMsg = 0;
- }
+ if( u.cf.pVTab ) importVtabErrMsg(p, u.cf.pVTab->pVtab);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
u.cg.pModule = (sqlite3_module *)u.cg.pVtab->pModule;
assert(u.cg.pVtab && u.cg.pModule);
rc = u.cg.pModule->xOpen(u.cg.pVtab, &u.cg.pVtabCursor);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.cg.pVtab->zErrMsg;
- u.cg.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.cg.pVtab);
if( SQLITE_OK==rc ){
/* Initialize sqlite3_vtab_cursor base class */
u.cg.pVtabCursor->pVtab = u.cg.pVtab;
u.ch.pQuery = &aMem[pOp->p3];
u.ch.pArgc = &u.ch.pQuery[1];
u.ch.pCur = p->apCsr[pOp->p1];
+ assert( memIsValid(u.ch.pQuery) );
REGISTER_TRACE(pOp->p3, u.ch.pQuery);
assert( u.ch.pCur->pVtabCursor );
u.ch.pVtabCursor = u.ch.pCur->pVtabCursor;
p->inVtabMethod = 1;
rc = u.ch.pModule->xFilter(u.ch.pVtabCursor, u.ch.iQuery, pOp->p4.z, u.ch.nArg, u.ch.apArg);
p->inVtabMethod = 0;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.ch.pVtab->zErrMsg;
- u.ch.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.ch.pVtab);
if( rc==SQLITE_OK ){
u.ch.res = u.ch.pModule->xEof(u.ch.pVtabCursor);
}
assert( pCur->pVtabCursor );
assert( pOp->p3>0 && pOp->p3<=p->nMem );
u.ci.pDest = &aMem[pOp->p3];
+ memAboutToChange(p, u.ci.pDest);
if( pCur->nullRow ){
sqlite3VdbeMemSetNull(u.ci.pDest);
break;
MemSetTypeFlag(&u.ci.sContext.s, MEM_Null);
rc = u.ci.pModule->xColumn(pCur->pVtabCursor, &u.ci.sContext, pOp->p2);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.ci.pVtab->zErrMsg;
- u.ci.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.ci.pVtab);
if( u.ci.sContext.isError ){
rc = u.ci.sContext.isError;
}
p->inVtabMethod = 1;
rc = u.cj.pModule->xNext(u.cj.pCur->pVtabCursor);
p->inVtabMethod = 0;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.cj.pVtab->zErrMsg;
- u.cj.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.cj.pVtab);
if( rc==SQLITE_OK ){
u.cj.res = u.cj.pModule->xEof(u.cj.pCur->pVtabCursor);
}
u.ck.pVtab = pOp->p4.pVtab->pVtab;
u.ck.pName = &aMem[pOp->p1];
assert( u.ck.pVtab->pModule->xRename );
+ assert( memIsValid(u.ck.pName) );
REGISTER_TRACE(pOp->p1, u.ck.pName);
assert( u.ck.pName->flags & MEM_Str );
rc = u.ck.pVtab->pModule->xRename(u.ck.pVtab, u.ck.pName->z);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.ck.pVtab->zErrMsg;
- u.ck.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.ck.pVtab);
+ p->expired = 0;
break;
}
u.cl.apArg = p->apArg;
u.cl.pX = &aMem[pOp->p3];
for(u.cl.i=0; u.cl.i<u.cl.nArg; u.cl.i++){
+ assert( memIsValid(u.cl.pX) );
+ memAboutToChange(p, u.cl.pX);
sqlite3VdbeMemStoreType(u.cl.pX);
u.cl.apArg[u.cl.i] = u.cl.pX;
u.cl.pX++;
}
rc = u.cl.pModule->xUpdate(u.cl.pVtab, u.cl.nArg, u.cl.apArg, &u.cl.rowid);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = u.cl.pVtab->zErrMsg;
- u.cl.pVtab->zErrMsg = 0;
+ importVtabErrMsg(p, u.cl.pVtab);
if( rc==SQLITE_OK && pOp->p1 ){
assert( u.cl.nArg>1 && u.cl.apArg[0] && (u.cl.apArg[0]->flags&MEM_Null) );
db->lastRowid = u.cl.rowid;
}
/*
-** Return the number of bytes required to store a MemJournal that uses vfs
-** pVfs to create the underlying on-disk files.
+** Return the number of bytes required to store a MemJournal file descriptor.
*/
SQLITE_PRIVATE int sqlite3MemJournalSize(void){
return sizeof(MemJournal);
return pExpr->affinity;
}
+/*
+** Set the explicit collating sequence for an expression to the
+** collating sequence supplied in the second argument.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
+ if( pExpr && pColl ){
+ pExpr->pColl = pColl;
+ pExpr->flags |= EP_ExpCollate;
+ }
+ return pExpr;
+}
+
/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken. Return a pointer to the revised expression.
** flag. An explicit collating sequence will override implicit
** collating sequences.
*/
-SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
+SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
char *zColl = 0; /* Dequoted name of collation sequence */
CollSeq *pColl;
sqlite3 *db = pParse->db;
zColl = sqlite3NameFromToken(db, pCollName);
- if( pExpr && zColl ){
- pColl = sqlite3LocateCollSeq(pParse, zColl);
- if( pColl ){
- pExpr->pColl = pColl;
- pExpr->flags |= EP_ExpCollate;
- }
- }
+ pColl = sqlite3LocateCollSeq(pParse, zColl);
+ sqlite3ExprSetColl(pExpr, pColl);
sqlite3DbFree(db, zColl);
return pExpr;
}
}else if( z[0]=='?' ){
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and
** use it as the variable number */
- int i = atoi((char*)&z[1]);
+ i64 i;
+ int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
pExpr->iColumn = (ynVar)i;
testcase( i==0 );
testcase( i==1 );
testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
- if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
}
if( i>pParse->nVar ){
- pParse->nVar = i;
+ pParse->nVar = (int)i;
}
}else{
/* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
#endif
/*
-** Generate code for scalar subqueries used as an expression
-** and IN operators. Examples:
+** Generate code for scalar subqueries used as a subquery expression, EXISTS,
+** or IN operators. Examples:
**
** (SELECT a FROM b) -- subquery
** EXISTS (SELECT a FROM b) -- EXISTS subquery
switch( pExpr->op ){
case TK_IN: {
- char affinity;
- KeyInfo keyInfo;
- int addr; /* Address of OP_OpenEphemeral instruction */
- Expr *pLeft = pExpr->pLeft;
+ char affinity; /* Affinity of the LHS of the IN */
+ KeyInfo keyInfo; /* Keyinfo for the generated table */
+ int addr; /* Address of OP_OpenEphemeral instruction */
+ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
if( rMayHaveNull ){
sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
*/
pExpr->iTable = pParse->nTab++;
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
+ if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
memset(&keyInfo, 0, sizeof(keyInfo));
keyInfo.nField = 1;
if( ALWAYS(z!=0) ){
double value;
char *zV;
- sqlite3AtoF(z, &value);
+ sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
if( negateFlag ) value = -value;
zV = dup8bytes(v, (char*)&value);
** Generate an instruction that will put the integer describe by
** text z[0..n-1] into register iMem.
**
-** The z[] string will probably not be zero-terminated. But the
-** z[n] character is guaranteed to be something that does not look
-** like the continuation of the number.
+** Expr.u.zToken is always UTF8 and zero-terminated.
*/
static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
Vdbe *v = pParse->pVdbe;
if( negFlag ) i = -i;
sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
}else{
+ int c;
+ i64 value;
const char *z = pExpr->u.zToken;
assert( z!=0 );
- if( sqlite3FitsIn64Bits(z, negFlag) ){
- i64 value;
+ c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
+ if( c==0 || (c==2 && negFlag) ){
char *zV;
- sqlite3Atoi64(z, &value);
- if( negFlag ) value = -value;
+ if( negFlag ){ value = -value; }
zV = dup8bytes(v, (char*)&value);
sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
}else{
}
#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
-/*
-** If the last instruction coded is an ephemeral copy of any of
-** the registers in the nReg registers beginning with iReg, then
-** convert the last instruction from OP_SCopy to OP_Copy.
-*/
-SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
- VdbeOp *pOp;
- Vdbe *v;
-
- assert( pParse->db->mallocFailed==0 );
- v = pParse->pVdbe;
- assert( v!=0 );
- pOp = sqlite3VdbeGetOp(v, -1);
- assert( pOp!=0 );
- if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
- pOp->opcode = OP_Copy;
- }
-}
-
-/*
-** Generate code to store the value of the iAlias-th alias in register
-** target. The first time this is called, pExpr is evaluated to compute
-** the value of the alias. The value is stored in an auxiliary register
-** and the number of that register is returned. On subsequent calls,
-** the register number is returned without generating any code.
-**
-** Note that in order for this to work, code must be generated in the
-** same order that it is executed.
-**
-** Aliases are numbered starting with 1. So iAlias is in the range
-** of 1 to pParse->nAlias inclusive.
-**
-** pParse->aAlias[iAlias-1] records the register number where the value
-** of the iAlias-th alias is stored. If zero, that means that the
-** alias has not yet been computed.
-*/
-static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
-#if 0
- sqlite3 *db = pParse->db;
- int iReg;
- if( pParse->nAliasAlloc<pParse->nAlias ){
- pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
- sizeof(pParse->aAlias[0])*pParse->nAlias );
- testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
- if( db->mallocFailed ) return 0;
- memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
- (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
- pParse->nAliasAlloc = pParse->nAlias;
- }
- assert( iAlias>0 && iAlias<=pParse->nAlias );
- iReg = pParse->aAlias[iAlias-1];
- if( iReg==0 ){
- if( pParse->iCacheLevel>0 ){
- iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
- }else{
- iReg = ++pParse->nMem;
- sqlite3ExprCode(pParse, pExpr, iReg);
- pParse->aAlias[iAlias-1] = iReg;
- }
- }
- return iReg;
-#else
- UNUSED_PARAMETER(iAlias);
- return sqlite3ExprCodeTarget(pParse, pExpr, target);
-#endif
-}
-
/*
** Generate code into the current Vdbe to evaluate the given
** expression. Attempt to store the results in register "target".
break;
}
case TK_AS: {
- inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
break;
}
#ifndef SQLITE_OMIT_CAST
opCompare.op = TK_EQ;
opCompare.pLeft = &cacheX;
pTest = &opCompare;
+ /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
+ ** The value in regFree1 might get SCopy-ed into the file result.
+ ** So make sure that the regFree1 register is not reused for other
+ ** purposes and possibly overwritten. */
+ regFree1 = 0;
}
for(i=0; i<nExpr; i=i+2){
sqlite3ExprCachePush(pParse);
int inReg;
assert( target>0 && target<=pParse->nMem );
- inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
- assert( pParse->pVdbe || pParse->db->mallocFailed );
- if( inReg!=target && pParse->pVdbe ){
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
+ if( pExpr && pExpr->op==TK_REGISTER ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
+ }else{
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ assert( pParse->pVdbe || pParse->db->mallocFailed );
+ if( inReg!=target && pParse->pVdbe ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
+ }
}
return target;
}
int i, n;
assert( pList!=0 );
assert( target>0 );
+ assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
n = pList->nExpr;
for(pItem=pList->a, i=0; i<n; i++, pItem++){
- if( pItem->iAlias ){
- int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( iReg!=target+i ){
- sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
- }
- }else{
- sqlite3ExprCode(pParse, pItem->pExpr, target+i);
- }
- if( doHardCopy && !pParse->db->mallocFailed ){
- sqlite3ExprHardCopy(pParse, target, n);
+ Expr *pExpr = pItem->pExpr;
+ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
+ if( inReg!=target+i ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
+ inReg, target+i);
}
}
return n;
}
}
}
+ if( zWhere ){
+ char *zNew = sqlite3MPrintf(pParse->db, "type='trigger' AND (%s)", zWhere);
+ sqlite3DbFree(pParse->db, zWhere);
+ zWhere = zNew;
+ }
return zWhere;
}
if( !pNew ) goto exit_begin_add_column;
pParse->pNewTable = pNew;
pNew->nRef = 1;
- pNew->dbMem = pTab->dbMem;
pNew->nCol = pTab->nCol;
assert( pNew->nCol>0 );
nAlloc = (((pNew->nCol-1)/8)*8)+8;
int i; /* Loop counter */
int topOfLoop; /* The top of the loop */
int endOfLoop; /* The end of the loop */
- int addr; /* The address of an instruction */
+ int addr = 0; /* The address of an instruction */
+ int jZeroRows = 0; /* Jump from here if number of rows is zero */
int iDb; /* Index of database containing pTab */
int regTabname = iMem++; /* Register containing table name */
int regIdxname = iMem++; /* Register containing index name */
#endif
v = sqlite3GetVdbe(pParse);
- if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
- /* Do no analysis for tables that have no indices */
+ if( v==0 || NEVER(pTab==0) ){
+ return;
+ }
+ if( pTab->tnum==0 ){
+ /* Do not gather statistics on views or virtual tables */
+ return;
+ }
+ if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
+ /* Do not gather statistics on system tables */
return;
}
assert( sqlite3BtreeHoldsAllMutexes(db) );
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
iIdxCur = pParse->nTab++;
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int nCol = pIdx->nColumn;
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
(char *)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
- /* Populate the registers containing the table and index names. */
- if( pTab->pIndex==pIdx ){
- sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
- }
+ /* Populate the register containing the index name. */
sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
#ifdef SQLITE_ENABLE_STAT2
** If K>0 then it is always the case the D>0 so division by zero
** is never possible.
*/
- addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
+ if( jZeroRows==0 ){
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
+ }
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ }
+
+ /* If the table has no indices, create a single sqlite_stat1 entry
+ ** containing NULL as the index name and the row count as the content.
+ */
+ if( pTab->pIndex==0 ){
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
+ VdbeComment((v, "%s", pTab->zName));
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
+ }else{
+ assert( jZeroRows>0 );
+ addr = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, jZeroRows);
+ }
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ if( pParse->nMem<regRec ) pParse->nMem = regRec;
+ if( jZeroRows ){
sqlite3VdbeJumpHere(v, addr);
}
}
/*
** Generate code that will cause the most recent index analysis to
-** be laoded into internal hash tables where is can be used.
+** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.
**
-** argv[0] = name of the index
-** argv[1] = results of analysis - on integer for each column
+** argv[0] = name of the table
+** argv[1] = name of the index (might be NULL)
+** argv[2] = results of analysis - on integer for each column
+**
+** Entries for which argv[1]==NULL simply record the number of rows in
+** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
analysisInfo *pInfo = (analysisInfo*)pData;
Index *pIndex;
- int i, c;
+ Table *pTable;
+ int i, c, n;
unsigned int v;
const char *z;
- assert( argc==2 );
+ assert( argc==3 );
UNUSED_PARAMETER2(NotUsed, argc);
- if( argv==0 || argv[0]==0 || argv[1]==0 ){
+ if( argv==0 || argv[0]==0 || argv[2]==0 ){
return 0;
}
- pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
- if( pIndex==0 ){
+ pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
+ if( pTable==0 ){
return 0;
}
- z = argv[1];
- for(i=0; *z && i<=pIndex->nColumn; i++){
+ if( argv[1] ){
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
+ }else{
+ pIndex = 0;
+ }
+ n = pIndex ? pIndex->nColumn : 0;
+ z = argv[2];
+ for(i=0; *z && i<=n; i++){
v = 0;
while( (c=z[0])>='0' && c<='9' ){
v = v*10 + c - '0';
z++;
}
+ if( i==0 ) pTable->nRowEst = v;
+ if( pIndex==0 ) break;
pIndex->aiRowEst[i] = v;
if( *z==' ' ) z++;
}
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
-SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index *pIdx){
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT2
if( pIdx->aSample ){
int j;
- sqlite3 *dbMem = pIdx->pTable->dbMem;
for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
IndexSample *p = &pIdx->aSample[j];
if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
- sqlite3DbFree(pIdx->pTable->dbMem, p->u.z);
+ sqlite3DbFree(db, p->u.z);
}
}
- sqlite3DbFree(dbMem, pIdx->aSample);
- pIdx->aSample = 0;
+ sqlite3DbFree(db, pIdx->aSample);
}
#else
+ UNUSED_PARAMETER(db);
UNUSED_PARAMETER(pIdx);
#endif
}
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
Index *pIdx = sqliteHashData(i);
sqlite3DefaultRowEst(pIdx);
- sqlite3DeleteIndexSamples(pIdx);
+ sqlite3DeleteIndexSamples(db, pIdx);
+ pIdx->aSample = 0;
}
/* Check to make sure the sqlite_stat1 table exists */
/* Load new statistics out of the sqlite_stat1 table */
zSql = sqlite3MPrintf(db,
- "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
if( pIdx ){
int iSample = sqlite3_column_int(pStmt, 1);
- sqlite3 *dbMem = pIdx->pTable->dbMem;
- assert( dbMem==db || dbMem==0 );
if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
int eType = sqlite3_column_type(pStmt, 2);
if( pIdx->aSample==0 ){
static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
- pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz);
+ pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
if( pIdx->aSample==0 ){
db->mallocFailed = 1;
break;
}
+ memset(pIdx->aSample, 0, sz);
}
assert( pIdx->aSample );
if( n < 1){
pSample->u.z = 0;
}else{
- pSample->u.z = sqlite3DbMallocRaw(dbMem, n);
- if( pSample->u.z ){
- memcpy(pSample->u.z, z, n);
- }else{
+ pSample->u.z = sqlite3DbStrNDup(0, z, n);
+ if( pSample->u.z==0 ){
db->mallocFailed = 1;
break;
}
** it to obtain the database schema. At this point the schema may
** or may not be initialised.
*/
- rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
- db->openFlags | SQLITE_OPEN_MAIN_DB,
- &aNew->pBt);
+ rc = sqlite3BtreeOpen(zFile, db, &aNew->pBt, 0,
+ db->openFlags | SQLITE_OPEN_MAIN_DB);
db->nDb++;
if( rc==SQLITE_CONSTRAINT ){
rc = SQLITE_ERROR;
0, /* xStep */
0, /* xFinalize */
"sqlite_detach", /* zName */
- 0 /* pHash */
+ 0, /* pHash */
+ 0 /* pDestructor */
};
codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}
0, /* xStep */
0, /* xFinalize */
"sqlite_attach", /* zName */
- 0 /* pHash */
+ 0, /* pHash */
+ 0 /* pDestructor */
};
codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
}
/*
** Reclaim the memory used by an index
*/
-static void freeIndex(Index *p){
- sqlite3 *db = p->pTable->dbMem;
+static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
- sqlite3DeleteIndexSamples(p);
+ sqlite3DeleteIndexSamples(db, p);
#endif
sqlite3DbFree(db, p->zColAff);
sqlite3DbFree(db, p);
}
-/*
-** Remove the given index from the index hash table, and free
-** its memory structures.
-**
-** The index is removed from the database hash tables but
-** it is not unlinked from the Table that it indexes.
-** Unlinking from the Table must be done by the calling function.
-*/
-static void sqlite3DeleteIndex(Index *p){
- Index *pOld;
- const char *zName = p->zName;
-
- pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName,
- sqlite3Strlen30(zName), 0);
- assert( pOld==0 || pOld==p );
- freeIndex(p);
-}
-
/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
p->pNext = pIndex->pNext;
}
}
- freeIndex(pIndex);
+ freeIndex(db, pIndex);
}
db->flags |= SQLITE_InternChanges;
}
}
/*
-** Clear the column names from a table or view.
+** Delete memory allocated for the column names of a table or view (the
+** Table.aCol[] array).
*/
-static void sqliteResetColumnNames(Table *pTable){
+static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
int i;
Column *pCol;
- sqlite3 *db = pTable->dbMem;
- testcase( db==0 );
assert( pTable!=0 );
if( (pCol = pTable->aCol)!=0 ){
for(i=0; i<pTable->nCol; i++, pCol++){
}
sqlite3DbFree(db, pTable->aCol);
}
- pTable->aCol = 0;
- pTable->nCol = 0;
}
/*
** memory structures of the indices and foreign keys associated with
** the table.
*/
-SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
Index *pIndex, *pNext;
- sqlite3 *db;
- if( pTable==0 ) return;
- db = pTable->dbMem;
- testcase( db==0 );
+ assert( !pTable || pTable->nRef>0 );
/* Do not delete the table until the reference count reaches zero. */
- pTable->nRef--;
- if( pTable->nRef>0 ){
- return;
- }
- assert( pTable->nRef==0 );
+ if( !pTable ) return;
+ if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
- /* Delete all indices associated with this table
- */
+ /* Delete all indices associated with this table. */
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
pNext = pIndex->pNext;
assert( pIndex->pSchema==pTable->pSchema );
- sqlite3DeleteIndex(pIndex);
+ if( !db || db->pnBytesFreed==0 ){
+ char *zName = pIndex->zName;
+ TESTONLY ( Index *pOld = ) sqlite3HashInsert(
+ &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
+ );
+ assert( pOld==pIndex || pOld==0 );
+ }
+ freeIndex(db, pIndex);
}
/* Delete any foreign keys attached to this table. */
- sqlite3FkDelete(pTable);
+ sqlite3FkDelete(db, pTable);
/* Delete the Table structure itself.
*/
- sqliteResetColumnNames(pTable);
+ sqliteDeleteColumnNames(db, pTable);
sqlite3DbFree(db, pTable->zName);
sqlite3DbFree(db, pTable->zColAff);
sqlite3SelectDelete(db, pTable->pSelect);
#ifndef SQLITE_OMIT_CHECK
sqlite3ExprDelete(db, pTable->pCheck);
#endif
- sqlite3VtabClear(pTable);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3VtabClear(db, pTable);
+#endif
sqlite3DbFree(db, pTable);
}
pDb = &db->aDb[iDb];
p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
sqlite3Strlen30(zTabName),0);
- sqlite3DeleteTable(p);
+ sqlite3DeleteTable(db, p);
db->flags |= SQLITE_InternChanges;
}
*/
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if( iDb<0 ) return;
- if( !OMIT_TEMPDB && isTemp && iDb>1 ){
- /* If creating a temp table, the name may not be qualified */
+ if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
+ /* If creating a temp table, the name may not be qualified. Unless
+ ** the database name is "temp" anyway. */
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
return;
}
** collisions.
*/
if( !IN_DECLARE_VTAB ){
+ char *zDb = db->aDb[iDb].zName;
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
goto begin_table_error;
}
- pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
+ pTable = sqlite3FindTable(db, zName, zDb);
if( pTable ){
if( !noErr ){
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
}
goto begin_table_error;
}
- if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
+ if( sqlite3FindIndex(db, zName, zDb)!=0 ){
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
goto begin_table_error;
}
pTable->iPKey = -1;
pTable->pSchema = db->aDb[iDb].pSchema;
pTable->nRef = 1;
- pTable->dbMem = 0;
+ pTable->nRowEst = 1000000;
assert( pParse->pNewTable==0 );
pParse->pNewTable = pTable;
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
- zStmt = sqlite3Malloc( n );
+ zStmt = sqlite3DbMallocRaw(0, n);
if( zStmt==0 ){
db->mallocFailed = 1;
return 0;
p->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
+ sqlite3DeleteTable(db, pSelTab);
}
}
}
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
p = pParse->pNewTable;
- if( p==0 ){
+ if( p==0 || pParse->nErr ){
sqlite3SelectDelete(db, pSelect);
return;
}
- assert( pParse->nErr==0 ); /* If sqlite3StartTable return non-NULL then
- ** there could not have been an error */
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
iDb = sqlite3SchemaToIndex(db, p->pSchema);
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
pTable->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
+ sqlite3DeleteTable(db, pSelTab);
pTable->pSchema->flags |= DB_UnresetViews;
}else{
pTable->nCol = 0;
for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
Table *pTab = sqliteHashData(i);
if( pTab->pSelect ){
- sqliteResetColumnNames(pTab);
+ sqliteDeleteColumnNames(db, pTab);
+ pTab->aCol = 0;
+ pTab->nCol = 0;
}
}
DbClearProperty(db, idx, DB_UnresetViews);
sqlite3RefillIndex(pParse, pIndex, iMem);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
- sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
+ sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
+ P4_DYNAMIC);
sqlite3VdbeAddOp1(v, OP_Expire, 0);
}
}
/* Clean up before exiting */
exit_create_index:
if( pIndex ){
- sqlite3_free(pIndex->zColAff);
+ sqlite3DbFree(db, pIndex->zColAff);
sqlite3DbFree(db, pIndex);
}
sqlite3ExprListDelete(db, pList);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
unsigned *a = pIdx->aiRowEst;
int i;
+ unsigned n;
assert( a!=0 );
- a[0] = 1000000;
- for(i=pIdx->nColumn; i>=5; i--){
- a[i] = 5;
- }
- while( i>=1 ){
- a[i] = 11 - i;
- i--;
+ a[0] = pIdx->pTable->nRowEst;
+ if( a[0]<10 ) a[0] = 10;
+ n = 10;
+ for(i=1; i<=pIdx->nColumn; i++){
+ a[i] = n;
+ if( n>5 ) n--;
}
if( pIdx->onError!=OE_None ){
a[pIdx->nColumn] = 1;
if( v ){
sqlite3BeginWriteOperation(pParse, 1, iDb);
sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE name=%Q",
+ "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName
);
sqlite3DbFree(db, pItem->zName);
sqlite3DbFree(db, pItem->zAlias);
sqlite3DbFree(db, pItem->zIndex);
- sqlite3DeleteTable(pItem->pTab);
+ sqlite3DeleteTable(db, pItem->pTab);
sqlite3SelectDelete(db, pItem->pSelect);
sqlite3ExprDelete(db, pItem->pOn);
sqlite3IdListDelete(db, pItem->pUsing);
SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_TEMP_DB;
- rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, &pBt);
+ rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
"file for storing temporary tables");
** priority to built-in functions.
**
** Except, if createFlag is true, that means that we are trying to
- ** install a new function. Whatever FuncDef structure is returned will
+ ** install a new function. Whatever FuncDef structure is returned it will
** have fields overwritten with new information appropriate for the
** new function. But the FuncDefs for built-in functions are read-only.
** So we must not search for built-ins when creating a new function.
sqlite3HashInit(&pSchema->tblHash);
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
- assert( pTab->dbMem==0 );
- sqlite3DeleteTable(pTab);
+ sqlite3DeleteTable(0, pTab);
}
sqlite3HashClear(&temp1);
sqlite3HashClear(&pSchema->fkeyHash);
if( pBt ){
p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
}else{
- p = (Schema *)sqlite3MallocZero(sizeof(Schema));
+ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
}
if( !p ){
db->mallocFailed = 1;
Table *pTab;
assert( pItem && pSrc->nSrc==1 );
pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
- sqlite3DeleteTable(pItem->pTab);
+ sqlite3DeleteTable(pParse->db, pItem->pTab);
pItem->pTab = pTab;
if( pTab ){
pTab->nRef++;
sqlite3_result_error_nomem(context);
return;
}
- sqlite3AtoF(zBuf, &r);
+ sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
sqlite3_free(zBuf);
}
sqlite3_result_double(context, r);
const char *zOptName;
assert( argc==1 );
UNUSED_PARAMETER(argc);
- /* IMP: R-xxxx This function is an SQL wrapper around the
- ** sqlite3_compileoption_used() C interface. */
+ /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
+ ** function is a wrapper around the sqlite3_compileoption_used() C/C++
+ ** function.
+ */
if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
}
int n;
assert( argc==1 );
UNUSED_PARAMETER(argc);
- /* IMP: R-xxxx This function is an SQL wrapper around the
- ** sqlite3_compileoption_get() C interface. */
+ /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
+ ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
+ */
n = sqlite3_value_int(argv[0]);
sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
}
testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
- sqlite3DbFree(db, zOut);
+ sqlite3_free(zOut);
return;
}
zOld = zOut;
zOut = sqlite3_realloc(zOut, (int)nOut);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
- sqlite3DbFree(db, zOld);
+ sqlite3_free(zOld);
return;
}
memcpy(&zOut[j], zRep, nRep);
if( pAccum ){
sqlite3 *db = sqlite3_context_db_handle(context);
int firstTerm = pAccum->useMalloc==0;
- pAccum->useMalloc = 1;
+ pAccum->useMalloc = 2;
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
if( !firstTerm ){
if( argc==2 ){
}else{
pInfo = (struct compareInfo*)&likeInfoNorm;
}
- sqlite3CreateFunc(db, "like", 2, SQLITE_ANY, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "like", 3, SQLITE_ANY, pInfo, likeFunc, 0, 0);
+ sqlite3CreateFunc(db, "like", 2, SQLITE_ANY, pInfo, likeFunc, 0, 0, 0);
+ sqlite3CreateFunc(db, "like", 3, SQLITE_ANY, pInfo, likeFunc, 0, 0, 0);
sqlite3CreateFunc(db, "glob", 2, SQLITE_ANY,
- (struct compareInfo*)&globInfo, likeFunc, 0,0);
+ (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
setLikeOptFlag(db, "like",
caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
FUNCTION(coalesce, 1, 0, 0, 0 ),
FUNCTION(coalesce, 0, 0, 0, 0 ),
/* FUNCTION(coalesce, -1, 0, 0, ifnullFunc ), */
- {-1,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"coalesce",0},
+ {-1,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"coalesce",0,0},
FUNCTION(hex, 1, 0, 0, hexFunc ),
/* FUNCTION(ifnull, 2, 0, 0, ifnullFunc ), */
- {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0},
+ {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0},
FUNCTION(random, 0, 0, 0, randomFunc ),
FUNCTION(randomblob, 1, 0, 0, randomBlob ),
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
/* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */
- {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0},
+ {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
+ sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
}
/* If the parent table is the same as the child table, and we are about
if( pIdx ){
Column *pCol;
iCol = pIdx->aiColumn[i];
- pCol = &pIdx->pTable->aCol[iCol];
+ pCol = &pTab->aCol[iCol];
+ if( pTab->iPKey==iCol ) iCol = -1;
pLeft->iTable = regData+iCol+1;
pLeft->affinity = pCol->affinity;
pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
pWhere = 0;
}
- /* In the current implementation, pTab->dbMem==0 for all tables except
- ** for temporary tables used to describe subqueries. And temporary
- ** tables do not have foreign key constraints. Hence, pTab->dbMem
- ** should always be 0 there.
- */
+ /* Disable lookaside memory allocation */
enableLookaside = db->lookaside.bEnabled;
db->lookaside.bEnabled = 0;
** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
** hash table.
*/
-SQLITE_PRIVATE void sqlite3FkDelete(Table *pTab){
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){
FKey *pFKey; /* Iterator variable */
FKey *pNext; /* Copy of pFKey->pNextFrom */
for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
/* Remove the FK from the fkeyHash hash table. */
- if( pFKey->pPrevTo ){
- pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
- }else{
- void *data = (void *)pFKey->pNextTo;
- const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
- sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
- }
- if( pFKey->pNextTo ){
- pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
+ if( !db || db->pnBytesFreed==0 ){
+ if( pFKey->pPrevTo ){
+ pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
+ }else{
+ void *p = (void *)pFKey->pNextTo;
+ const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
+ sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
+ }
+ if( pFKey->pNextTo ){
+ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
+ }
}
- /* Delete any triggers created to implement actions for this FK. */
-#ifndef SQLITE_OMIT_TRIGGER
- fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
- fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
-#endif
-
/* EV: R-30323-21917 Each foreign key constraint in SQLite is
** classified as either immediate or deferred.
*/
assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
+ /* Delete any triggers created to implement actions for this FK. */
+#ifndef SQLITE_OMIT_TRIGGER
+ fkTriggerDelete(db, pFKey->apTrigger[0]);
+ fkTriggerDelete(db, pFKey->apTrigger[1]);
+#endif
+
pNext = pFKey->pNextFrom;
- sqlite3DbFree(pTab->dbMem, pFKey);
+ sqlite3DbFree(db, pFKey);
}
}
#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
int n;
Table *pTab = pIdx->pTable;
sqlite3 *db = sqlite3VdbeDb(v);
- pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2);
if( !pIdx->zColAff ){
db->mallocFailed = 1;
return 0;
int i;
sqlite3 *db = sqlite3VdbeDb(v);
- zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
+ zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
if( !zColAff ){
db->mallocFailed = 1;
return;
if( onError==OE_Ignore ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
}else{
+ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
sqlite3HaltConstraint(pParse, onError, 0, 0);
}
sqlite3VdbeResolveLabel(v, allOk);
handle = sqlite3OsDlOpen(pVfs, zFile);
if( handle==0 ){
if( pzErrMsg ){
- zErrmsg = sqlite3StackAllocZero(db, nMsg);
+ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
if( zErrmsg ){
sqlite3_snprintf(nMsg, zErrmsg,
"unable to open shared library [%s]", zFile);
sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
- *pzErrMsg = sqlite3DbStrDup(0, zErrmsg);
- sqlite3StackFree(db, zErrmsg);
}
}
return SQLITE_ERROR;
sqlite3OsDlSym(pVfs, handle, zProc);
if( xInit==0 ){
if( pzErrMsg ){
- zErrmsg = sqlite3StackAllocZero(db, nMsg);
+ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
if( zErrmsg ){
sqlite3_snprintf(nMsg, zErrmsg,
"no entry point [%s] in shared library [%s]", zProc,zFile);
sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
- *pzErrMsg = sqlite3DbStrDup(0, zErrmsg);
- sqlite3StackFree(db, zErrmsg);
}
sqlite3OsDlClose(pVfs, handle);
}
Pager *pPager = sqlite3BtreePager(pDb->pBt);
i64 iLimit = -2;
if( zRight ){
- sqlite3Atoi64(zRight, &iLimit);
+ sqlite3Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8);
if( iLimit<-1 ) iLimit = -1;
}
iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
}
sqlite3_free(sqlite3_temp_directory);
if( zRight[0] ){
- sqlite3_temp_directory = sqlite3DbStrDup(0, zRight);
+ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
}else{
sqlite3_temp_directory = 0;
}
while( pParse->pTriggerPrg ){
TriggerPrg *pT = pParse->pTriggerPrg;
pParse->pTriggerPrg = pT->pNext;
- sqlite3VdbeProgramDelete(db, pT->pProgram, 0);
sqlite3DbFree(db, pT);
}
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
sqlite3VdbeJumpHere(v, addr2);
- pSelect->iLimit = 0;
}
}
sqlite3ReleaseTempReg(pParse, r1);
}
+#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate an error message when a SELECT is used within a subexpression
** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
-** column. We do this in a subroutine because the error occurs in multiple
-** places.
+** column. We do this in a subroutine because the error used to occur
+** in multiple places. (The error only occurs in one place now, but we
+** retain the subroutine to minimize code disruption.)
*/
static int checkForMultiColumnSelectError(
Parse *pParse, /* Parse context. */
return 0;
}
}
+#endif
/*
** This routine generates the code for the inside of the inner loop
}
}
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
- return;
- }
-
switch( eDest ){
/* In this mode, write each query result to the key of the temporary
** table iParm.
#endif
}
- /* Jump to the end of the loop if the LIMIT is reached.
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if
+ ** there is a sorter, in which case the sorter has already limited
+ ** the output for us.
*/
- if( p->iLimit ){
- assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to
- ** pushOntoSorter() would have cleared p->iLimit */
+ if( pOrderBy==0 && p->iLimit ){
sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
}
}
sqlite3ReleaseTempReg(pParse, regRow);
sqlite3ReleaseTempReg(pParse, regRowid);
- /* LIMIT has been implemented by the pushOntoSorter() routine.
- */
- assert( p->iLimit==0 );
-
/* The bottom of the loop
*/
sqlite3VdbeResolveLabel(v, addrContinue);
return 0;
}
/* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
- ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
+ ** is disabled */
assert( db->lookaside.bEnabled==0 );
- pTab->dbMem = 0;
pTab->nRef = 1;
pTab->zName = 0;
selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
pTab->iPKey = -1;
if( db->mallocFailed ){
- sqlite3DeleteTable(pTab);
+ sqlite3DeleteTable(db, pTab);
return 0;
}
return pTab;
if( dest.eDest==SRT_EphemTab ){
assert( p->pEList );
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
dest.eDest = SRT_Table;
}
** regReturn is the number of the register holding the subroutine
** return address.
**
-** If regPrev>0 then it is a the first register in a vector that
+** If regPrev>0 then it is the first register in a vector that
** records the previous output. mem[regPrev] is a flag that is false
** if there has been no previous output. If regPrev>0 then code is
** generated to suppress duplicates. pKeyInfo is used for comparing
/* Separate the left and the right query from one another
*/
p->pPrior = 0;
- pPrior->pRightmost = 0;
sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
if( pPrior->pPrior==0 ){
sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
** (2) The subquery is not an aggregate or the outer query is not a join.
**
** (3) The subquery is not the right operand of a left outer join
-** (Originally ticket #306. Strenghtened by ticket #3300)
+** (Originally ticket #306. Strengthened by ticket #3300)
**
-** (4) The subquery is not DISTINCT or the outer query is not a join.
+** (4) The subquery is not DISTINCT.
**
-** (5) The subquery is not DISTINCT or the outer query does not use
-** aggregates.
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
+** sub-queries that were excluded from this optimization. Restriction
+** (4) has since been expanded to exclude all DISTINCT subqueries.
**
** (6) The subquery does not use aggregates or the outer query is not
** DISTINCT.
** (**) Not implemented. Subsumed into restriction (3). Was previously
** a separate restriction deriving from ticket #350.
**
-** (13) The subquery and outer query do not both use LIMIT
+** (13) The subquery and outer query do not both use LIMIT.
**
-** (14) The subquery does not use OFFSET
+** (14) The subquery does not use OFFSET.
**
** (15) The outer query is not part of a compound select or the
** subquery does not have a LIMIT clause.
return 0; /* Restriction (15) */
}
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
- if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
- && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
- return 0;
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
+ return 0; /* Restrictions (8)(9) */
}
if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
return 0; /* Restriction (6) */
sqlite3WalkSelect(pWalker, pSel);
pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
if( pTab==0 ) return WRC_Abort;
- pTab->dbMem = db->lookaside.bEnabled ? db : 0;
pTab->nRef = 1;
pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
while( pSel->pPrior ){ pSel = pSel->pPrior; }
if( pList ){
nArg = pList->nExpr;
regAgg = sqlite3GetTempRange(pParse, nArg);
- sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
}else{
nArg = 0;
regAgg = 0;
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto select_end;
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+ goto select_end;
+ }
+#endif
+
/* Generate code for all sub-queries in the FROM clause
*/
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
}
#endif
- /* If writing to memory or generating a set
- ** only a single column may be output.
- */
-#ifndef SQLITE_OMIT_SUBQUERY
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
- goto select_end;
- }
-#endif
-
/* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
** GROUP BY might use an index, DISTINCT never does.
*/
pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
}else{
distinct = -1;
}
int iEndTrigger = 0; /* Label to jump to if WHEN is false */
assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
+ assert( pTop->pVdbe );
/* Allocate the TriggerPrg and SubProgram objects. To ensure that they
** are freed if an error occurs, link them into the Parse.pTriggerPrg
pTop->pTriggerPrg = pPrg;
pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
if( !pProgram ) return 0;
- pProgram->nRef = 1;
+ sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram);
pPrg->pTrigger = pTrigger;
pPrg->orconf = orconf;
pPrg->aColmask[0] = 0xffffffff;
/* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
** is a pointer to the sub-vdbe containing the trigger program. */
if( pPrg ){
+ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));
+
sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem);
- pPrg->pProgram->nRef++;
sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
VdbeComment(
(v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));
** invocation is disallowed if (a) the sub-program is really a trigger,
** not a foreign key action, and (b) the flag to enable recursive triggers
** is clear. */
- sqlite3VdbeChangeP5(v, (u8)(p->zName && !(pParse->db->flags&SQLITE_RecTriggers)));
+ sqlite3VdbeChangeP5(v, (u8)bRecursive);
}
}
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
-sqlite*************************************************************************
+*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
*/
assert( v );
ephemTab = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
/* fill the ephemeral table
*/
sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
return SQLITE_ERROR;
}
+ if( db->activeVdbeCnt>1 ){
+ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
+ return SQLITE_ERROR;
+ }
/* Save the current value of the database flags so that it can be
** restored before returning. Then set the writable-schema flag, and
** in the list are moved to the sqlite3.pDisconnect list of the associated
** database connection.
*/
-SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
- vtabDisconnectAll(0, p);
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){
+ if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
if( p->azModuleArg ){
int i;
for(i=0; i<p->nModuleArg; i++){
- sqlite3DbFree(p->dbMem, p->azModuleArg[i]);
+ sqlite3DbFree(db, p->azModuleArg[i]);
}
- sqlite3DbFree(p->dbMem, p->azModuleArg);
+ sqlite3DbFree(db, p->azModuleArg);
}
}
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
- zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
+ zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
return;
}
- pSchema->db = pParse->db;
pParse->pNewTable = 0;
}
}
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
}else {
*pzErr = sqlite3MPrintf(db, "%s", zErr);
- sqlite3DbFree(db, zErr);
+ sqlite3_free(zErr);
}
sqlite3DbFree(db, pVTable);
}else if( ALWAYS(pVTable->pVtab) ){
if( pParse->pVdbe ){
sqlite3VdbeFinalize(pParse->pVdbe);
}
- sqlite3DeleteTable(pParse->pNewTable);
+ sqlite3DeleteTable(db, pParse->pNewTable);
sqlite3StackFree(db, pParse);
}
if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
rc = x(pVtab);
sqlite3DbFree(db, *pzErrmsg);
- *pzErrmsg = pVtab->zErrMsg;
- pVtab->zErrMsg = 0;
+ *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
}
}
db->aVTrans = aVTrans;
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
WhereTerm *pTerm;
int idx;
+ testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */
if( pWC->nTerm>=pWC->nSlot ){
WhereTerm *pOld = pWC->a;
sqlite3 *db = pWC->pParse->db;
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term. The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
+**
+** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
+** of one of the following forms: column = expression column > expression
+** column >= expression column < expression column <= expression
+** expression = column expression > column expression >= column
+** expression < column expression <= column column IN
+** (expression-list) column IN (subquery) column IS NULL
*/
static int allowedOp(int op){
assert( TK_GT>TK_EQ && TK_GT<TK_GE );
int c; /* One character in z[] */
int cnt; /* Number of non-wildcard prefix characters */
char wc[3]; /* Wildcard characters */
- CollSeq *pColl; /* Collating sequence for LHS */
sqlite3 *db = pParse->db; /* Database connection */
sqlite3_value *pVal = 0;
int op; /* Opcode of pRight */
return 0;
}
assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
- pColl = sqlite3ExprCollSeq(pParse, pLeft);
- if( pColl==0 ) return 0; /* Happens when LHS has an undefined collation */
- if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
- (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
- /* IMP: R-09003-32046 For the GLOB operator, the column must use the
- ** default BINARY collating sequence.
- ** IMP: R-41408-28306 For the LIKE operator, if case_sensitive_like mode
- ** is enabled then the column must use the default BINARY collating
- ** sequence, or if case_sensitive_like mode is disabled then the column
- ** must use the built-in NOCASE collating sequence.
- */
- return 0;
- }
pRight = pList->a[0].pExpr;
op = pRight->op;
}
if( op==TK_VARIABLE ){
Vdbe *pReprepare = pParse->pReprepare;
- pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
+ int iCol = pRight->iColumn;
+ pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
z = (char *)sqlite3_value_text(pVal);
}
- sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn);
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */
assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
}else if( op==TK_STRING ){
z = pRight->u.zToken;
while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
cnt++;
}
- if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
+ if( cnt!=0 && 255!=(u8)z[cnt-1] ){
Expr *pPrefix;
- *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
+ *pisComplete = c==wc[0] && z[cnt+1]==0;
pPrefix = sqlite3Expr(db, TK_STRING, z);
if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
*ppPrefix = pPrefix;
if( op==TK_VARIABLE ){
Vdbe *v = pParse->pVdbe;
- sqlite3VdbeSetVarmask(v, pRight->iColumn);
+ sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */
if( *pisComplete && pRight->u.zToken[1] ){
/* If the rhs of the LIKE expression is a variable, and the current
** value of the variable means there is no need to invoke the LIKE
/* At this point, okToChngToIN is true if original pTerm satisfies
** case 1. In that case, construct a new virtual term that is
** pTerm converted into an IN operator.
+ **
+ ** EV: R-00211-15100
*/
if( okToChngToIN ){
Expr *pDup; /* A transient duplicate expression */
Expr *pNewExpr2;
int idxNew1;
int idxNew2;
+ CollSeq *pColl; /* Collating sequence to use */
pLeft = pExpr->x.pList->a[1].pExpr;
pStr2 = sqlite3ExprDup(db, pStr1, 0);
** inequality. To avoid this, make sure to also run the full
** LIKE on all candidate expressions by clearing the isComplete flag
*/
- if( c=='A'-1 ) isComplete = 0;
+ if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */
+
c = sqlite3UpperToLower[c];
}
*pC = c + 1;
}
- pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
+ pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
+ pStr1, 0);
idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
testcase( idxNew1==0 );
exprAnalyze(pSrc, pWC, idxNew1);
- pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
+ pStr2, 0);
idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
testcase( idxNew2==0 );
exprAnalyze(pSrc, pWC, idxNew2);
** Required because bestIndex() is called by bestOrClauseIndex()
*/
static void bestIndex(
- Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
+ Parse*, WhereClause*, struct SrcList_item*,
+ Bitmask, Bitmask, ExprList*, WhereCost*);
/*
** This routine attempts to find an scanning strategy that can be used
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
ExprList *pOrderBy, /* The ORDER BY clause */
WhereCost *pCost /* Lowest cost query plan */
){
));
if( pOrTerm->eOperator==WO_AND ){
WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
- bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
+ bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
}else if( pOrTerm->leftCursor==iCur ){
WhereClause tempWC;
tempWC.pParse = pWC->pParse;
tempWC.op = TK_AND;
tempWC.a = pOrTerm;
tempWC.nTerm = 1;
- bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
+ bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
}else{
continue;
}
assert( pParse->nQueryLoop >= (double)1 );
pTable = pSrc->pTab;
- nTableRow = pTable->pIndex ? pTable->pIndex->aiRowEst[0] : 1000000;
+ nTableRow = pTable->nRowEst;
logN = estLog(nTableRow);
costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
if( costTempIdx>=pCost->rCost ){
sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
}
}
- sqlite3DbFree(pParse->db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
pVtab->zErrMsg = 0;
for(i=0; i<p->nConstraint; i++){
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
+ Bitmask notReady, /* Mask of cursors not available for index */
+ Bitmask notValid, /* Cursors not valid for any purpose */
ExprList *pOrderBy, /* The order by clause */
WhereCost *pCost, /* Lowest cost query plan */
sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
/* Try to find a more efficient access pattern by using multiple indexes
** to optimize an OR expression within the WHERE clause.
*/
- bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
assert( pExpr->op!=TK_VARIABLE );
if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
int iVar = pExpr->iColumn;
- sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */
*pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
return SQLITE_OK;
}
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
ExprList *pOrderBy, /* The ORDER BY clause */
WhereCost *pCost /* Lowest cost query plan */
){
sPk.nColumn = 1;
sPk.aiColumn = &aiColumnPk;
sPk.aiRowEst = aiRowEstPk;
- aiRowEstPk[1] = 1;
sPk.onError = OE_Replace;
sPk.pTable = pSrc->pTab;
+ aiRowEstPk[0] = pSrc->pTab->nRowEst;
+ aiRowEstPk[1] = 1;
pFirst = pSrc->pTab->pIndex;
if( pSrc->notIndexed==0 ){
sPk.pNext = pFirst;
}
- /* The aiRowEstPk[0] is an estimate of the total number of rows in the
- ** table. Get this information from the ANALYZE information if it is
- ** available. If not available, assume the table 1 million rows in size.
- */
- if( pFirst ){
- assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
- aiRowEstPk[0] = pFirst->aiRowEst[0];
- }else{
- aiRowEstPk[0] = 1000000;
- }
pProbe = &sPk;
wsFlagMask = ~(
WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
** with this step if we already know this index will not be chosen.
** Also, never reduce the output row count below 2 using this step.
**
- ** Do not reduce the output row count if pSrc is the only table that
- ** is notReady; if notReady is a power of two. This will be the case
- ** when the main sqlite3WhereBegin() loop is scanning for a table with
- ** and "optimal" index, and on such a scan the output row count
- ** reduction is not valid because it does not update the "pCost->used"
- ** bitmap. The notReady bitmap will also be a power of two when we
- ** are scanning for the last table in a 64-way join. We are willing
- ** to bypass this optimization in that corner case.
+ ** It is critical that the notValid mask be used here instead of
+ ** the notReady mask. When computing an "optimal" index, the notReady
+ ** mask will only have one bit set - the bit for the current table.
+ ** The notValid mask, on the other hand, always has all bits set for
+ ** tables that are not in outer loops. If notReady is used here instead
+ ** of notValid, then a optimal index that depends on inner joins loops
+ ** might be selected even when there exists an optimal index that has
+ ** no such dependency.
*/
- if( nRow>2 && cost<=pCost->rCost && (notReady & (notReady-1))!=0 ){
+ if( nRow>2 && cost<=pCost->rCost ){
int k; /* Loop counter */
int nSkipEq = nEq; /* Number of == constraints to skip */
int nSkipRange = nBound; /* Number of < constraints to skip */
thisTab = getMask(pWC->pMaskSet, iCur);
for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
- if( (pTerm->prereqAll & notReady)!=thisTab ) continue;
+ if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
if( nSkipEq ){
/* Ignore the first nEq equality matches since the index
pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
));
- bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
pCost->plan.wsFlags |= eqTermMask;
}
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
ExprList *pOrderBy, /* The ORDER BY clause */
WhereCost *pCost /* Lowest cost query plan */
){
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pSrc->pTab) ){
sqlite3_index_info *p = 0;
- bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
+ bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
if( p->needToFreeIdxStr ){
sqlite3_free(p->idxStr);
}
}else
#endif
{
- bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
+ bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
}
}
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
+** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
+** completely satisfied by indices.
+**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
/* The following true for indices with redundant columns.
** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
if( r1!=regBase+j ){
if( nReg==1 ){
assert( pTerm->pExpr!=0 );
assert( pTerm->leftCursor==iCur );
assert( omitTable==0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
addrNxt = pLevel->addrNxt;
sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
+ testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
pX = pStart->pExpr;
assert( pX!=0 );
assert( pStart->leftCursor==iCur );
pX = pEnd->pExpr;
assert( pX!=0 );
assert( pEnd->leftCursor==iCur );
+ testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
memEndValue = ++pParse->nMem;
sqlite3ExprCode(pParse, pX->pRight, memEndValue);
if( pX->op==TK_LT || pX->op==TK_GT ){
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
- int aStartOp[] = {
+ static const u8 aStartOp[] = {
0,
0,
OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
};
- int aEndOp[] = {
+ static const u8 aEndOp[] = {
OP_Noop, /* 0: (!end_constraints) */
OP_IdxGE, /* 1: (end_constraints && !bRev) */
OP_IdxLT /* 2: (end_constraints && bRev) */
};
- int nEq = pLevel->plan.nEq;
+ int nEq = pLevel->plan.nEq; /* Number of == or IN terms */
int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
int regBase; /* Base register holding constraint values */
int r1; /* Temp register */
int endEq; /* True if range end uses ==, >= or <= */
int start_constraints; /* Start of range is constrained */
int nConstraint; /* Number of constraint terms */
- Index *pIdx; /* The index we will be using */
- int iIdxCur; /* The VDBE cursor for the index */
- int nExtraReg = 0; /* Number of extra registers needed */
- int op; /* Instruction opcode */
+ Index *pIdx; /* The index we will be using */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int nExtraReg = 0; /* Number of extra registers needed */
+ int op; /* Instruction opcode */
char *zStartAff; /* Affinity for start of range constraint */
char *zEndAff; /* Affinity for end of range constraint */
}
}
nConstraint++;
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
}else if( isMinQuery ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
nConstraint++;
}
codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
nConstraint++;
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
}
sqlite3DbFree(pParse->db, zStartAff);
sqlite3DbFree(pParse->db, zEndAff);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
+ **
+ ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
+ ** the use of indices become tests that are evaluated against each row of
+ ** the relevant input tables.
*/
k = 0;
for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
Expr *pE;
- testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
testcase( pTerm->wtFlags & TERM_CODED );
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( (pTerm->prereqAll & notReady)!=0 ){
VdbeComment((v, "record LEFT JOIN hit"));
sqlite3ExprCacheClear(pParse);
for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
- testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
testcase( pTerm->wtFlags & TERM_CODED );
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( (pTerm->prereqAll & notReady)!=0 ){
initMaskSet(pMaskSet);
whereClauseInit(pWC, pParse, pMaskSet);
sqlite3ExprCodeConstants(pParse, pWhere);
- whereSplit(pWC, pWhere, TK_AND);
+ whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
int bestJ = -1; /* The value of j */
Bitmask m; /* Bitmask value for j or bestJ */
int isOptimal; /* Iterator for optimal/non-optimal search */
+ int nUnconstrained; /* Number tables without INDEXED BY */
+ Bitmask notIndexed; /* Mask of tables that cannot use an index */
memset(&bestPlan, 0, sizeof(bestPlan));
bestPlan.rCost = SQLITE_BIG_DBL;
** other FROM clause terms that are notReady. If no notReady terms are
** used then the "optimal" query plan works.
**
+ ** Note that the WhereCost.nRow parameter for an optimal scan might
+ ** not be as small as it would be if the table really were the innermost
+ ** join. The nRow value can be reduced by WHERE clause constraints
+ ** that do not use indices. But this nRow reduction only happens if the
+ ** table really is the innermost join.
+ **
** The second loop iteration is only performed if no optimal scan
- ** strategies were found by the first loop. This 2nd iteration is used to
- ** search for the lowest cost scan overall.
+ ** strategies were found by the first iteration. This second iteration
+ ** is used to search for the lowest cost scan overall.
**
** Previous versions of SQLite performed only the second iteration -
** the next outermost loop was always that with the lowest overall
**
** The best strategy is to iterate through table t1 first. However it
** is not possible to determine this with a simple greedy algorithm.
- ** However, since the cost of a linear scan through table t2 is the same
+ ** Since the cost of a linear scan through table t2 is the same
** as the cost of a linear scan through table t1, a simple greedy
** algorithm may choose to use t2 for the outer loop, which is a much
** costlier approach.
*/
- for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){
- Bitmask mask; /* Mask of tables not yet ready */
+ nUnconstrained = 0;
+ notIndexed = 0;
+ for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
+ Bitmask mask; /* Mask of tables not yet ready */
for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
int doNotReorder; /* True if this table should not be reordered */
WhereCost sCost; /* Cost information from best[Virtual]Index() */
}
mask = (isOptimal ? m : notReady);
pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
+ if( pTabItem->pIndex==0 ) nUnconstrained++;
assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTabItem->pTab) ){
sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
- bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
+ bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
+ &sCost, pp);
}else
#endif
{
- bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
+ bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
+ &sCost);
}
assert( isOptimal || (sCost.used¬Ready)==0 );
- if( (sCost.used¬Ready)==0
- && (bestJ<0 || sCost.rCost<bestPlan.rCost
- || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow))
+ /* If an INDEXED BY clause is present, then the plan must use that
+ ** index if it uses any index at all */
+ assert( pTabItem->pIndex==0
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
+ || sCost.plan.u.pIdx==pTabItem->pIndex );
+
+ if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
+ notIndexed |= m;
+ }
+
+ /* Conditions under which this table becomes the best so far:
+ **
+ ** (1) The table must not depend on other tables that have not
+ ** yet run.
+ **
+ ** (2) A full-table-scan plan cannot supercede another plan unless
+ ** it is an "optimal" plan as defined above.
+ **
+ ** (3) All tables have an INDEXED BY clause or this table lacks an
+ ** INDEXED BY clause or this table uses the specific
+ ** index specified by its INDEXED BY clause. This rule ensures
+ ** that a best-so-far is always selected even if an impossible
+ ** combination of INDEXED BY clauses are given. The error
+ ** will be detected and relayed back to the application later.
+ ** The NEVER() comes about because rule (2) above prevents
+ ** An indexable full-table-scan from reaching rule (3).
+ **
+ ** (4) The plan cost must be lower than prior plans or else the
+ ** cost must be the same and the number of rows must be lower.
+ */
+ if( (sCost.used¬Ready)==0 /* (1) */
+ && (bestJ<0 || (notIndexed&m)!=0 /* (2) */
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
+ && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */
+ || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
+ && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */
+ || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow))
){
WHERETRACE(("... best so far with cost=%g and nRow=%g\n",
sCost.rCost, sCost.nRow));
break;
case 195: /* expr ::= expr COLLATE ids */
{
- yygotominor.yy118.pExpr = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy118.pExpr, &yymsp[0].minor.yy0);
+ yygotominor.yy118.pExpr = sqlite3ExprSetCollByToken(pParse, yymsp[-2].minor.yy118.pExpr, &yymsp[0].minor.yy0);
yygotominor.yy118.zStart = yymsp[-2].minor.yy118.zStart;
yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
Expr *p = 0;
if( yymsp[-1].minor.yy0.n>0 ){
p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
+ sqlite3ExprSetCollByToken(pParse, p, &yymsp[-1].minor.yy0);
}
yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, p);
sqlite3ExprListSetName(pParse,yygotominor.yy322,&yymsp[-2].minor.yy0,1);
Expr *p = 0;
if( yymsp[-1].minor.yy0.n>0 ){
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
+ sqlite3ExprSetCollByToken(pParse, p, &yymsp[-1].minor.yy0);
}
yygotominor.yy322 = sqlite3ExprListAppend(pParse,0, p);
sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3DbFree(db, pParse->apVtabLock);
+ sqlite3_free(pParse->apVtabLock);
#endif
if( !IN_DECLARE_VTAB ){
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
** will take responsibility for freeing the Table structure.
*/
- sqlite3DeleteTable(pParse->pNewTable);
+ sqlite3DeleteTable(db, pParse->pNewTable);
}
sqlite3DeleteTrigger(db, pParse->pNewTrigger);
while( pParse->pZombieTab ){
Table *p = pParse->pZombieTab;
pParse->pZombieTab = p->pNextZombie;
- sqlite3DeleteTable(p);
+ sqlite3DeleteTable(db, p);
}
if( nErr>0 && pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
/************** Continuing where we left off in main.c ***********************/
#endif
-/*
-** The version of the library
-*/
#ifndef SQLITE_AMALGAMATION
+/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
+** contains the text of SQLITE_VERSION macro.
+*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
#endif
+
+/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
+** a pointer to the to the sqlite3_version[] string constant.
+*/
SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
+
+/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
+** pointer to a string constant whose value is the same as the
+** SQLITE_SOURCE_ID C preprocessor macro.
+*/
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
+
+/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
+** returns an integer equal to SQLITE_VERSION_NUMBER.
+*/
SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+
+/* IMPLEMENTATION-OF: R-54823-41343 The sqlite3_threadsafe() function returns
+** zero if and only if SQLite was compiled mutexing code omitted due to
+** the SQLITE_THREADSAFE compile-time option being set to 0.
+*/
SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
** sqlite3_initialize(). The recursive calls normally come through
** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
** recursive calls might also be possible.
+ **
+ ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
+ ** to the xInit method, so the xInit method need not be threadsafe.
+ **
+ ** The following mutex is what serializes access to the appdef pcache xInit
+ ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
+ ** call to sqlite3PcacheInitialize().
*/
sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
sz = 0;
pStart = 0;
}else if( pBuf==0 ){
- sz = ROUND8(sz);
+ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
sqlite3BeginBenignMalloc();
- pStart = sqlite3Malloc( sz*cnt );
+ pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */
sqlite3EndBenignMalloc();
}else{
- sz = ROUNDDOWN8(sz);
+ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
pStart = pBuf;
}
db->lookaside.pStart = pStart;
va_start(ap, op);
switch( op ){
case SQLITE_DBCONFIG_LOOKASIDE: {
- void *pBuf = va_arg(ap, void*);
- int sz = va_arg(ap, int);
- int cnt = va_arg(ap, int);
+ void *pBuf = va_arg(ap, void*); /* IMP: R-21112-12275 */
+ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
+ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
rc = setupLookaside(db, pBuf, sz, cnt);
break;
}
default: {
- rc = SQLITE_ERROR;
+ rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
break;
}
}
db->isTransactionSavepoint = 0;
}
+/*
+** Invoke the destructor function associated with FuncDef p, if any. Except,
+** if this is not the last copy of the function, do not invoke it. Multiple
+** copies of a single function are created when create_function() is called
+** with SQLITE_ANY as the encoding.
+*/
+static void functionDestroy(sqlite3 *db, FuncDef *p){
+ FuncDestructor *pDestructor = p->pDestructor;
+ if( pDestructor ){
+ pDestructor->nRef--;
+ if( pDestructor->nRef==0 ){
+ pDestructor->xDestroy(pDestructor->pUserData);
+ sqlite3DbFree(db, pDestructor);
+ }
+ }
+}
+
/*
** Close an existing SQLite database
*/
SQLITE_API int sqlite3_close(sqlite3 *db){
- HashElem *i;
+ HashElem *i; /* Hash table iterator */
int j;
if( !db ){
for(p=db->aFunc.a[j]; p; p=pHash){
pHash = p->pHash;
while( p ){
+ functionDestroy(db, p);
pNext = p->pNext;
sqlite3DbFree(db, p);
p = pNext;
void *pUserData,
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
- void (*xFinal)(sqlite3_context*)
+ void (*xFinal)(sqlite3_context*),
+ FuncDestructor *pDestructor
){
FuncDef *p;
int nName;
}else if( enc==SQLITE_ANY ){
int rc;
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
- pUserData, xFunc, xStep, xFinal);
+ pUserData, xFunc, xStep, xFinal, pDestructor);
if( rc==SQLITE_OK ){
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
- pUserData, xFunc, xStep, xFinal);
+ pUserData, xFunc, xStep, xFinal, pDestructor);
}
if( rc!=SQLITE_OK ){
return rc;
if( !p ){
return SQLITE_NOMEM;
}
+
+ /* If an older version of the function with a configured destructor is
+ ** being replaced invoke the destructor function here. */
+ functionDestroy(db, p);
+
+ if( pDestructor ){
+ pDestructor->nRef++;
+ }
+ p->pDestructor = pDestructor;
p->flags = 0;
p->xFunc = xFunc;
p->xStep = xStep;
*/
SQLITE_API int sqlite3_create_function(
sqlite3 *db,
- const char *zFunctionName,
+ const char *zFunc,
int nArg,
int enc,
void *p,
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*)
){
- int rc;
+ return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
+ xFinal, 0);
+}
+
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xDestroy)(void *)
+){
+ int rc = SQLITE_ERROR;
+ FuncDestructor *pArg = 0;
sqlite3_mutex_enter(db->mutex);
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
+ if( xDestroy ){
+ pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
+ if( !pArg ){
+ xDestroy(p);
+ goto out;
+ }
+ pArg->xDestroy = xDestroy;
+ pArg->pUserData = p;
+ }
+ rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
+ if( pArg && pArg->nRef==0 ){
+ assert( rc!=SQLITE_OK );
+ xDestroy(p);
+ sqlite3DbFree(db, pArg);
+ }
+
+ out:
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
- rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
+ rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
sqlite3DbFree(db, zFunc8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
sqlite3_mutex_enter(db->mutex);
if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
- 0, sqlite3InvalidFunction, 0, 0);
+ 0, sqlite3InvalidFunction, 0, 0, 0);
}
rc = sqlite3ApiExit(db, SQLITE_OK);
sqlite3_mutex_leave(db->mutex);
** configured by this function.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
-#ifndef SQLITE_OMIT_WAL
+#ifdef SQLITE_OMIT_WAL
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(nFrame);
+#else
if( nFrame>0 ){
sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
}else{
for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- if( sqlite3BtreeIsInReadTrans(pBt) ){
- rc = SQLITE_LOCKED;
- }else{
- sqlite3BtreeEnter(pBt);
- rc = sqlite3PagerCheckpoint(sqlite3BtreePager(pBt));
- sqlite3BtreeLeave(pBt);
- }
- }
+ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt);
}
}
#endif
}
-/*
-** This routine is called to create a connection to a database BTree
-** driver. If zFilename is the name of a file, then that file is
-** opened and used. If zFilename is the magic name ":memory:" then
-** the database is stored in memory (and is thus forgotten as soon as
-** the connection is closed.) If zFilename is NULL then the database
-** is a "virtual" database for transient use only and is deleted as
-** soon as the connection is closed.
-**
-** A virtual database can be either a disk file (that is automatically
-** deleted when the file is closed) or it an be held entirely in memory.
-** The sqlite3TempInMemory() function is used to determine which.
-*/
-SQLITE_PRIVATE int sqlite3BtreeFactory(
- sqlite3 *db, /* Main database when opening aux otherwise 0 */
- const char *zFilename, /* Name of the file containing the BTree database */
- int omitJournal, /* if TRUE then do not journal this file */
- int nCache, /* How many pages in the page cache */
- int vfsFlags, /* Flags passed through to vfsOpen */
- Btree **ppBtree /* Pointer to new Btree object written here */
-){
- int btFlags = 0;
- int rc;
-
- assert( sqlite3_mutex_held(db->mutex) );
- assert( ppBtree != 0);
- if( omitJournal ){
- btFlags |= BTREE_OMIT_JOURNAL;
- }
- if( db->flags & SQLITE_NoReadlock ){
- btFlags |= BTREE_NO_READLOCK;
- }
-#ifndef SQLITE_OMIT_MEMORYDB
- if( zFilename==0 && sqlite3TempInMemory(db) ){
- zFilename = ":memory:";
- }
-#endif
-
- if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
- vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
- }
- rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
-
- /* If the B-Tree was successfully opened, set the pager-cache size to the
- ** default value. Except, if the call to BtreeOpen() returned a handle
- ** open on an existing shared pager-cache, do not change the pager-cache
- ** size.
- */
- if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){
- sqlite3BtreeSetCacheSize(*ppBtree, nCache);
- }
- return rc;
-}
-
/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
int oldLimit;
+
+
+ /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
+ ** there is a hard upper bound set at compile-time by a C preprocessor
+ ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
+ ** "_MAX_".)
+ */
+ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
+ assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
+ assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
+ assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
+ assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
+ assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
+ assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
+ SQLITE_MAX_LIKE_PATTERN_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
+ assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
+ assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
+
+
if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
return -1;
}
oldLimit = db->aLimit[limitId];
- if( newLimit>=0 ){
+ if( newLimit>=0 ){ /* IMP: R-52476-28732 */
if( newLimit>aHardLimit[limitId] ){
- newLimit = aHardLimit[limitId];
+ newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
}
db->aLimit[limitId] = newLimit;
}
- return oldLimit;
+ return oldLimit; /* IMP: R-53341-35419 */
}
/*
if( rc ) return rc;
#endif
+ /* Only allow sensible combinations of bits in the flags argument.
+ ** Throw an error if any non-sense combination is used. If we
+ ** do not block illegal combinations here, it could trigger
+ ** assert() statements in deeper layers. Sensible combinations
+ ** are:
+ **
+ ** 1: SQLITE_OPEN_READONLY
+ ** 2: SQLITE_OPEN_READWRITE
+ ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
+ */
+ assert( SQLITE_OPEN_READONLY == 0x01 );
+ assert( SQLITE_OPEN_READWRITE == 0x02 );
+ assert( SQLITE_OPEN_CREATE == 0x04 );
+ testcase( (1<<(flags&7))==0x02 ); /* READONLY */
+ testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
+ testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
+ if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE;
+
if( sqlite3GlobalConfig.bCoreMutex==0 ){
isThreadsafe = 0;
}else if( flags & SQLITE_OPEN_NOMUTEX ){
SQLITE_OPEN_SUBJOURNAL |
SQLITE_OPEN_MASTER_JOURNAL |
SQLITE_OPEN_NOMUTEX |
- SQLITE_OPEN_FULLMUTEX
+ SQLITE_OPEN_FULLMUTEX |
+ SQLITE_OPEN_WAL
);
/* Allocate the sqlite data structure */
/* Open the backend database driver */
db->openFlags = flags;
- rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
- flags | SQLITE_OPEN_MAIN_DB,
- &db->aDb[0].pBt);
+ rc = sqlite3BtreeOpen(zFilename, db, &db->aDb[0].pBt, 0,
+ flags | SQLITE_OPEN_MAIN_DB);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_IOERR_NOMEM ){
rc = SQLITE_NOMEM;
break;
}
+ /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
+ **
+ ** Pass pFree into sqlite3ScratchFree().
+ ** If sz>0 then allocate a scratch buffer into pNew.
+ */
+ case SQLITE_TESTCTRL_SCRATCHMALLOC: {
+ void *pFree, **ppNew;
+ int sz;
+ sz = va_arg(ap, int);
+ ppNew = va_arg(ap, void**);
+ pFree = va_arg(ap, void*);
+ if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
+ sqlite3ScratchFree(pFree);
+ break;
+ }
+
}
va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
if( (!aDyn && nArg==(int)ArraySize(aStatic))
- || (aDyn && nArg==(int)(sqlite3DbMallocSize(db, aDyn)/sizeof(void*)))
+ || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*)))
){
/* The aArg[] array needs to grow. */
void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, sqlite3_stmt **);
SQLITE_PRIVATE int sqlite3Fts3MatchinfoDocsizeLocal(Fts3Cursor*, u32*);
SQLITE_PRIVATE int sqlite3Fts3MatchinfoDocsizeGlobal(Fts3Cursor*, u32*);
+SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *);
/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
#define FTS3_SEGMENT_REQUIRE_POS 0x00000001
return rc;
}
+ rc = sqlite3Fts3ReadLock(p);
+ if( rc!=SQLITE_OK ) return rc;
+
rc = evalFts3Expr(p, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
pCsr->pNextId = pCsr->aDoclist;
pCsr->iPrevId = 0;
const char *zName /* New name of table */
){
Fts3Table *p = (Fts3Table *)pVtab;
- sqlite3 *db; /* Database connection */
+ sqlite3 *db = p->db; /* Database connection */
int rc; /* Return Code */
-
- db = p->db;
- rc = SQLITE_OK;
+
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
fts3DbExec(&rc, db,
"ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
p->zDb, p->zName, zName
** used to retrieve the respective implementations.
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
-** to by the argument to point a the "simple" tokenizer implementation.
+** to by the argument to point to the "simple" tokenizer implementation.
** Function ...PorterTokenizerModule() sets *pModule to point to the
** porter tokenizer/stemmer implementation.
*/
** negative values).
*/
static int fts3isspace(char c){
- return (c&0x80)==0 ? isspace(c) : 0;
+ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}
/*
static int simpleDelim(simple_tokenizer *t, unsigned char c){
return c<0x80 && t->delim[c];
}
+static int fts3_isalnum(int x){
+ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
+}
/*
** Create a new tokenizer instance.
/* Mark non-alphanumeric ASCII characters as delimiters */
int i;
for(i=1; i<0x80; i++){
- t->delim[i] = !isalnum(i) ? -1 : 0;
+ t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
}
}
** case-insensitivity.
*/
unsigned char ch = p[iStartOffset+i];
- c->pToken[i] = (char)(ch<0x80 ? tolower(ch) : ch);
+ c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
}
*ppToken = c->pToken;
*pnBytes = n;
return SQLITE_OK;
}
+/*
+** This function ensures that the caller has obtained a shared-cache
+** table-lock on the %_content table. This is required before reading
+** data from the fts3 table. If this lock is not acquired first, then
+** the caller may end up holding read-locks on the %_segments and %_segdir
+** tables, but no read-lock on the %_content table. If this happens
+** a second connection will be able to write to the fts3 table, but
+** attempting to commit those writes might return SQLITE_LOCKED or
+** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain
+** write-locks on the %_segments and %_segdir ** tables).
+**
+** We try to avoid this because if FTS3 returns any error when committing
+** a transaction, the whole transaction will be rolled back. And this is
+** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
+** still happen if the user reads data directly from the %_segments or
+** %_segdir tables instead of going through FTS3 though.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *p){
+ int rc; /* Return code */
+ sqlite3_stmt *pStmt; /* Statement used to obtain lock */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pStmt, 1);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ }
+ return rc;
+}
+
/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** algorithms packaged as an SQLite virtual table module.
*/
+/*
+** Database Format of R-Tree Tables
+** --------------------------------
+**
+** The data structure for a single virtual r-tree table is stored in three
+** native SQLite tables declared as follows. In each case, the '%' character
+** in the table name is replaced with the user-supplied name of the r-tree
+** table.
+**
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
+**
+** The data for each node of the r-tree structure is stored in the %_node
+** table. For each node that is not the root node of the r-tree, there is
+** an entry in the %_parent table associating the node with its parent.
+** And for each row of data in the table, there is an entry in the %_rowid
+** table that maps from the entries rowid to the id of the node that it
+** is stored on.
+**
+** The root node of an r-tree always exists, even if the r-tree table is
+** empty. The nodeno of the root node is always 1. All other nodes in the
+** table must be the same size as the root node. The content of each node
+** is formatted as follows:
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
/*
#define AssignCells splitNodeStartree
#endif
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
#ifndef SQLITE_CORE
SQLITE_EXTENSION_INIT1
#ifndef SQLITE_AMALGAMATION
+#include "sqlite3rtree.h"
typedef sqlite3_int64 i64;
typedef unsigned char u8;
typedef unsigned int u32;
typedef struct RtreeNode RtreeNode;
typedef struct RtreeCell RtreeCell;
typedef struct RtreeConstraint RtreeConstraint;
+typedef struct RtreeMatchArg RtreeMatchArg;
+typedef struct RtreeGeomCallback RtreeGeomCallback;
typedef union RtreeCoord RtreeCoord;
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
#define RTREE_MAXCELLS 51
+/*
+** The smallest possible node-size is (512-64)==448 bytes. And the largest
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
+** Therefore all non-root nodes must contain at least 3 entries. Since
+** 2^40 is greater than 2^64, an r-tree structure always has a depth of
+** 40 or less.
+*/
+#define RTREE_MAX_DEPTH 40
+
/*
** An rtree cursor object.
*/
** A search constraint.
*/
struct RtreeConstraint {
- int iCoord; /* Index of constrained coordinate */
- int op; /* Constraining operation */
- double rValue; /* Constraint value. */
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ double rValue; /* Constraint value. */
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */
};
/* Possible values for RtreeConstraint.op */
-#define RTREE_EQ 0x41
-#define RTREE_LE 0x42
-#define RTREE_LT 0x43
-#define RTREE_GE 0x44
-#define RTREE_GT 0x45
+#define RTREE_EQ 0x41
+#define RTREE_LE 0x42
+#define RTREE_LT 0x43
+#define RTREE_GE 0x44
+#define RTREE_GT 0x45
+#define RTREE_MATCH 0x46
/*
** An rtree structure node.
-**
-** Data format (RtreeNode.zData):
-**
-** 1. If the node is the root node (node 1), then the first 2 bytes
-** of the node contain the tree depth as a big-endian integer.
-** For non-root nodes, the first 2 bytes are left unused.
-**
-** 2. The next 2 bytes contain the number of entries currently
-** stored in the node.
-**
-** 3. The remainder of the node contains the node entries. Each entry
-** consists of a single 8-byte integer followed by an even number
-** of 4-byte coordinates. For leaf nodes the integer is the rowid
-** of a record. For internal nodes it is the node number of a
-** child page.
*/
struct RtreeNode {
RtreeNode *pParent; /* Parent node */
RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
};
+
+/*
+** Value for the first field of every RtreeMatchArg object. The MATCH
+** operator tests that the first field of a blob operand matches this
+** value to avoid operating on invalid blobs (which could cause a segfault).
+*/
+#define RTREE_GEOMETRY_MAGIC 0x891245AB
+
+/*
+** An instance of this structure must be supplied as a blob argument to
+** the right-hand-side of an SQL MATCH operator used to constrain an
+** r-tree query.
+*/
+struct RtreeMatchArg {
+ u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ void *pContext;
+ int nParam;
+ double aParam[1];
+};
+
+/*
+** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
+** a single instance of the following structure is allocated. It is used
+** as the context for the user-function created by by s_r_g_c(). The object
+** is eventually deleted by the destructor mechanism provided by
+** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
+** the geometry callback function).
+*/
+struct RtreeGeomCallback {
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ void *pContext;
+};
+
#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
** Clear the content of node p (set all bytes to 0x00).
*/
static void nodeZero(Rtree *pRtree, RtreeNode *p){
- if( p ){
- memset(&p->zData[2], 0, pRtree->iNodeSize-2);
- p->isDirty = 1;
- }
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
}
/*
*/
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
RtreeNode *p;
- assert( iNode!=0 );
for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
return p;
}
** Add node pNode to the node hash table.
*/
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
- if( pNode ){
- int iHash;
- assert( pNode->pNext==0 );
- iHash = nodeHash(pNode->iNode);
- pNode->pNext = pRtree->aHash[iHash];
- pRtree->aHash[iHash] = pNode;
- }
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
}
/*
** assigned a node number when nodeWrite() is called to write the
** node contents out to the database.
*/
-static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
RtreeNode *pNode;
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
if( pNode ){
- memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0));
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
pNode->zData = (u8 *)&pNode[1];
pNode->nRef = 1;
pNode->pParent = pParent;
RtreeNode **ppNode /* OUT: Acquired node */
){
int rc;
+ int rc2 = SQLITE_OK;
RtreeNode *pNode;
/* Check if the requested node is already in the hash table. If so,
return SQLITE_OK;
}
- pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
- if( !pNode ){
- *ppNode = 0;
- return SQLITE_NOMEM;
- }
- pNode->pParent = pParent;
- pNode->zData = (u8 *)&pNode[1];
- pNode->nRef = 1;
- pNode->iNode = iNode;
- pNode->isDirty = 0;
- pNode->pNext = 0;
-
sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
rc = sqlite3_step(pRtree->pReadNode);
if( rc==SQLITE_ROW ){
const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
- assert( sqlite3_column_bytes(pRtree->pReadNode, 0)==pRtree->iNodeSize );
- memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
- nodeReference(pParent);
- }else{
- sqlite3_free(pNode);
- pNode = 0;
+ if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
+ if( !pNode ){
+ rc2 = SQLITE_NOMEM;
+ }else{
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
+ nodeReference(pParent);
+ }
+ }
}
-
- *ppNode = pNode;
rc = sqlite3_reset(pRtree->pReadNode);
+ if( rc==SQLITE_OK ) rc = rc2;
- if( rc==SQLITE_OK && iNode==1 ){
+ /* If the root node was just loaded, set pRtree->iDepth to the height
+ ** of the r-tree structure. A height of zero means all data is stored on
+ ** the root node. A height of one means the children of the root node
+ ** are the leaves, and so on. If the depth as specified on the root node
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
+ */
+ if( pNode && iNode==1 ){
pRtree->iDepth = readInt16(pNode->zData);
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){
+ rc = SQLITE_CORRUPT;
+ }
}
- assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) );
- nodeHashInsert(pRtree, pNode);
+ /* If no error has occurred so far, check if the "number of entries"
+ ** field on the node is too large. If so, set the return code to
+ ** SQLITE_CORRUPT.
+ */
+ if( pNode && rc==SQLITE_OK ){
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
+ rc = SQLITE_CORRUPT;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pNode!=0 ){
+ nodeHashInsert(pRtree, pNode);
+ }else{
+ rc = SQLITE_CORRUPT;
+ }
+ *ppNode = pNode;
+ }else{
+ sqlite3_free(pNode);
+ *ppNode = 0;
+ }
return rc;
}
nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
nCell = NCELL(pNode);
- assert(nCell<=nMaxCell);
-
+ assert( nCell<=nMaxCell );
if( nCell<nMaxCell ){
nodeOverwriteCell(pRtree, pNode, pCell, nCell);
writeInt16(&pNode->zData[2], nCell+1);
return rc;
}
+
+/*
+** Free the RtreeCursor.aConstraint[] array and its contents.
+*/
+static void freeCursorConstraints(RtreeCursor *pCsr){
+ if( pCsr->aConstraint ){
+ int i; /* Used to iterate through constraint array */
+ for(i=0; i<pCsr->nConstraint; i++){
+ sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
+ if( pGeom ){
+ if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
+ sqlite3_free(pGeom);
+ }
+ }
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ }
+}
+
/*
** Rtree virtual table module xClose method.
*/
Rtree *pRtree = (Rtree *)(cur->pVtab);
int rc;
RtreeCursor *pCsr = (RtreeCursor *)cur;
- sqlite3_free(pCsr->aConstraint);
+ freeCursorConstraints(pCsr);
rc = nodeRelease(pRtree, pCsr->pNode);
sqlite3_free(pCsr);
return rc;
return (pCsr->pNode==0);
}
+/*
+** The r-tree constraint passed as the second argument to this function is
+** guaranteed to be a MATCH constraint.
+*/
+static int testRtreeGeom(
+ Rtree *pRtree, /* R-Tree object */
+ RtreeConstraint *pConstraint, /* MATCH constraint to test */
+ RtreeCell *pCell, /* Cell to test */
+ int *pbRes /* OUT: Test result */
+){
+ int i;
+ double aCoord[RTREE_MAX_DIMENSIONS*2];
+ int nCoord = pRtree->nDim*2;
+
+ assert( pConstraint->op==RTREE_MATCH );
+ assert( pConstraint->pGeom );
+
+ for(i=0; i<nCoord; i++){
+ aCoord[i] = DCOORD(pCell->aCoord[i]);
+ }
+ return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
+}
+
/*
** Cursor pCursor currently points to a cell in a non-leaf page.
-** Return true if the sub-tree headed by the cell is filtered
+** Set *pbEof to true if the sub-tree headed by the cell is filtered
** (excluded) by the constraints in the pCursor->aConstraint[]
** array, or false otherwise.
+**
+** Return SQLITE_OK if successful or an SQLite error code if an error
+** occurs within a geometry callback.
*/
-static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
+static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
RtreeCell cell;
int ii;
int bRes = 0;
double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
- || p->op==RTREE_GT || p->op==RTREE_EQ
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
);
switch( p->op ){
- case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break;
- case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break;
- case RTREE_EQ:
+ case RTREE_LE: case RTREE_LT:
+ bRes = p->rValue<cell_min;
+ break;
+
+ case RTREE_GE: case RTREE_GT:
+ bRes = p->rValue>cell_max;
+ break;
+
+ case RTREE_EQ:
bRes = (p->rValue>cell_max || p->rValue<cell_min);
break;
+
+ default: {
+ int rc;
+ assert( p->op==RTREE_MATCH );
+ rc = testRtreeGeom(pRtree, p, &cell, &bRes);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ bRes = !bRes;
+ break;
+ }
}
}
- return bRes;
+ *pbEof = bRes;
+ return SQLITE_OK;
}
/*
-** Return true if the cell that cursor pCursor currently points to
+** Test if the cell that cursor pCursor currently points to
** would be filtered (excluded) by the constraints in the
-** pCursor->aConstraint[] array, or false otherwise.
+** pCursor->aConstraint[] array. If so, set *pbEof to true before
+** returning. If the cell is not filtered (excluded) by the constraints,
+** set pbEof to zero.
+**
+** Return SQLITE_OK if successful or an SQLite error code if an error
+** occurs within a geometry callback.
**
** This function assumes that the cell is part of a leaf node.
*/
-static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
+static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
RtreeCell cell;
int ii;
+ *pbEof = 0;
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
for(ii=0; ii<pCursor->nConstraint; ii++){
double coord = DCOORD(cell.aCoord[p->iCoord]);
int res;
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
- || p->op==RTREE_GT || p->op==RTREE_EQ
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
);
switch( p->op ){
case RTREE_LE: res = (coord<=p->rValue); break;
case RTREE_GE: res = (coord>=p->rValue); break;
case RTREE_GT: res = (coord>p->rValue); break;
case RTREE_EQ: res = (coord==p->rValue); break;
+ default: {
+ int rc;
+ assert( p->op==RTREE_MATCH );
+ rc = testRtreeGeom(pRtree, p, &cell, &res);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ break;
+ }
}
- if( !res ) return 1;
+ if( !res ){
+ *pbEof = 1;
+ return SQLITE_OK;
+ }
}
- return 0;
+ return SQLITE_OK;
}
/*
assert( iHeight>=0 );
if( iHeight==0 ){
- isEof = testRtreeEntry(pRtree, pCursor);
+ rc = testRtreeEntry(pRtree, pCursor, &isEof);
}else{
- isEof = testRtreeCell(pRtree, pCursor);
+ rc = testRtreeCell(pRtree, pCursor, &isEof);
}
- if( isEof || iHeight==0 ){
+ if( rc!=SQLITE_OK || isEof || iHeight==0 ){
*pEof = isEof;
- return SQLITE_OK;
+ return rc;
}
iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
** One of the cells in node pNode is guaranteed to have a 64-bit
** integer value equal to iRowid. Return the index of this cell.
*/
-static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){
+static int nodeRowidIndex(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ i64 iRowid,
+ int *piIndex
+){
int ii;
- for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){
- assert( ii<(NCELL(pNode)-1) );
+ int nCell = NCELL(pNode);
+ for(ii=0; ii<nCell; ii++){
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
+ *piIndex = ii;
+ return SQLITE_OK;
+ }
}
- return ii;
+ return SQLITE_CORRUPT;
}
/*
** Return the index of the cell containing a pointer to node pNode
** in its parent. If pNode is the root node, return -1.
*/
-static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
RtreeNode *pParent = pNode->pParent;
if( pParent ){
- return nodeRowidIndex(pRtree, pParent, pNode->iNode);
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
}
- return -1;
+ *piIndex = -1;
+ return SQLITE_OK;
}
/*
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
int rc = SQLITE_OK;
+ /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
+ ** already at EOF. It is against the rules to call the xNext() method of
+ ** a cursor that has already reached EOF.
+ */
+ assert( pCsr->pNode );
+
if( pCsr->iStrategy==1 ){
/* This "scan" is a direct lookup by rowid. There is no next entry. */
nodeRelease(pRtree, pCsr->pNode);
pCsr->pNode = 0;
- }
-
- else if( pCsr->pNode ){
+ }else{
/* Move to the next entry that matches the configured constraints. */
int iHeight = 0;
while( pCsr->pNode ){
}
}
pCsr->pNode = pNode->pParent;
- pCsr->iCell = nodeParentIndex(pRtree, pNode);
+ rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
nodeReference(pCsr->pNode);
nodeRelease(pRtree, pNode);
iHeight++;
return rc;
}
+/*
+** This function is called to configure the RtreeConstraint object passed
+** as the second argument for a MATCH constraint. The value passed as the
+** first argument to this function is the right-hand operand to the MATCH
+** operator.
+*/
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
+ RtreeMatchArg *p;
+ sqlite3_rtree_geometry *pGeom;
+ int nBlob;
+
+ /* Check that value is actually a blob. */
+ if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR;
+
+ /* Check that the blob is roughly the right size. */
+ nBlob = sqlite3_value_bytes(pValue);
+ if( nBlob<sizeof(RtreeMatchArg)
+ || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
+ ){
+ return SQLITE_ERROR;
+ }
+
+ pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
+ sizeof(sqlite3_rtree_geometry) + nBlob
+ );
+ if( !pGeom ) return SQLITE_NOMEM;
+ memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
+ p = (RtreeMatchArg *)&pGeom[1];
+
+ memcpy(p, sqlite3_value_blob(pValue), nBlob);
+ if( p->magic!=RTREE_GEOMETRY_MAGIC
+ || nBlob!=(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
+ ){
+ sqlite3_free(pGeom);
+ return SQLITE_ERROR;
+ }
+
+ pGeom->pContext = p->pContext;
+ pGeom->nParam = p->nParam;
+ pGeom->aParam = p->aParam;
+
+ pCons->xGeom = p->xGeom;
+ pCons->pGeom = pGeom;
+ return SQLITE_OK;
+}
/*
** Rtree virtual table module xFilter method.
rtreeReference(pRtree);
- sqlite3_free(pCsr->aConstraint);
- pCsr->aConstraint = 0;
+ freeCursorConstraints(pCsr);
pCsr->iStrategy = idxNum;
if( idxNum==1 ){
i64 iRowid = sqlite3_value_int64(argv[0]);
rc = findLeafNode(pRtree, iRowid, &pLeaf);
pCsr->pNode = pLeaf;
- if( pLeaf && rc==SQLITE_OK ){
- pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid);
+ if( pLeaf ){
+ assert( rc==SQLITE_OK );
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
}
}else{
/* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
if( !pCsr->aConstraint ){
rc = SQLITE_NOMEM;
}else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 );
for(ii=0; ii<argc; ii++){
RtreeConstraint *p = &pCsr->aConstraint[ii];
p->op = idxStr[ii*2];
p->iCoord = idxStr[ii*2+1]-'a';
- p->rValue = sqlite3_value_double(argv[ii]);
+ if( p->op==RTREE_MATCH ){
+ /* A MATCH operator. The right-hand-side must be a blob that
+ ** can be cast into an RtreeMatchArg object. One created using
+ ** an sqlite3_rtree_geometry_callback() SQL user function.
+ */
+ rc = deserializeGeometry(argv[ii], p);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ }else{
+ p->rValue = sqlite3_value_double(argv[ii]);
+ }
}
}
}
** idxNum idxStr Strategy
** ------------------------------------------------
** 1 Unused Direct lookup by rowid.
-** 2 See below R-tree query.
-** 3 Unused Full table scan.
+** 2 See below R-tree query or full-table scan.
** ------------------------------------------------
**
-** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy
+** If strategy 1 is used, then idxStr is not meaningful. If strategy
** 2 is used, idxStr is formatted to contain 2 bytes for each
** constraint used. The first two bytes of idxStr correspond to
** the constraint in sqlite3_index_info.aConstraintUsage[] with
** < 0x43 ('C')
** >= 0x44 ('D')
** > 0x45 ('E')
+** MATCH 0x46 ('F')
** ----------------------
**
** The second of each pair of bytes identifies the coordinate column
return SQLITE_OK;
}
- if( p->usable && p->iColumn>0 ){
+ if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
+ int j, opmsk;
+ static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
u8 op = 0;
switch( p->op ){
case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ default:
+ assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
+ op = RTREE_MATCH;
+ break;
}
- if( op ){
- /* Make sure this particular constraint has not been used before.
- ** If it has been used before, ignore it.
- **
- ** A <= or < can be used if there is a prior >= or >.
- ** A >= or > can be used if there is a prior < or <=.
- ** A <= or < is disqualified if there is a prior <=, <, or ==.
- ** A >= or > is disqualified if there is a prior >=, >, or ==.
- ** A == is disqualifed if there is any prior constraint.
- */
- int j, opmsk;
- static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
- assert( compatible[RTREE_EQ & 7]==0 );
- assert( compatible[RTREE_LT & 7]==1 );
- assert( compatible[RTREE_LE & 7]==1 );
- assert( compatible[RTREE_GT & 7]==2 );
- assert( compatible[RTREE_GE & 7]==2 );
- cCol = p->iColumn - 1 + 'a';
- opmsk = compatible[op & 7];
- for(j=0; j<iIdx; j+=2){
- if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
- op = 0;
- break;
- }
+ assert( op!=0 );
+
+ /* Make sure this particular constraint has not been used before.
+ ** If it has been used before, ignore it.
+ **
+ ** A <= or < can be used if there is a prior >= or >.
+ ** A >= or > can be used if there is a prior < or <=.
+ ** A <= or < is disqualified if there is a prior <=, <, or ==.
+ ** A >= or > is disqualified if there is a prior >=, >, or ==.
+ ** A == is disqualifed if there is any prior constraint.
+ */
+ assert( compatible[RTREE_EQ & 7]==0 );
+ assert( compatible[RTREE_LT & 7]==1 );
+ assert( compatible[RTREE_LE & 7]==1 );
+ assert( compatible[RTREE_GT & 7]==2 );
+ assert( compatible[RTREE_GE & 7]==2 );
+ cCol = p->iColumn - 1 + 'a';
+ opmsk = compatible[op & 7];
+ for(j=0; j<iIdx; j+=2){
+ if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
+ op = 0;
+ break;
}
}
if( op ){
int ii;
float overlap = 0.0;
for(ii=0; ii<nCell; ii++){
- if( ii!=iExclude ){
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii!=iExclude )
+#else
+ assert( iExclude==-1 );
+#endif
+ {
int jj;
float o = 1.0;
for(jj=0; jj<(pRtree->nDim*2); jj+=2){
** the smallest area.
*/
for(iCell=0; iCell<nCell; iCell++){
+ int bBest = 0;
float growth;
float area;
float overlap = 0.0;
nodeGetCell(pRtree, pNode, iCell, &cell);
growth = cellGrowth(pRtree, &cell, pCell);
area = cellArea(pRtree, &cell);
+
#if VARIANT_RSTARTREE_CHOOSESUBTREE
if( ii==(pRtree->iDepth-1) ){
overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
}
-#endif
if( (iCell==0)
|| (overlap<fMinOverlap)
|| (overlap==fMinOverlap && growth<fMinGrowth)
|| (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
){
+ bBest = 1;
+ }
+#else
+ if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
+ bBest = 1;
+ }
+#endif
+ if( bBest ){
fMinOverlap = overlap;
fMinGrowth = growth;
fMinArea = area;
** the node pNode. This function updates the bounding box cells in
** all ancestor elements.
*/
-static void AdjustTree(
+static int AdjustTree(
Rtree *pRtree, /* Rtree table */
RtreeNode *pNode, /* Adjust ancestry of this node. */
RtreeCell *pCell /* This cell was just inserted */
){
RtreeNode *p = pNode;
while( p->pParent ){
- RtreeCell cell;
RtreeNode *pParent = p->pParent;
- int iCell = nodeParentIndex(pRtree, p);
+ RtreeCell cell;
+ int iCell;
+
+ if( nodeParentIndex(pRtree, p, &iCell) ){
+ return SQLITE_CORRUPT;
+ }
nodeGetCell(pRtree, pParent, iCell, &cell);
if( !cellContains(pRtree, &cell, pCell) ){
p = pParent;
}
+ return SQLITE_OK;
}
/*
nCell++;
if( pNode->iNode==1 ){
- pRight = nodeNew(pRtree, pNode, 1);
- pLeft = nodeNew(pRtree, pNode, 1);
+ pRight = nodeNew(pRtree, pNode);
+ pLeft = nodeNew(pRtree, pNode);
pRtree->iDepth++;
pNode->isDirty = 1;
writeInt16(pNode->zData, pRtree->iDepth);
}else{
pLeft = pNode;
- pRight = nodeNew(pRtree, pLeft->pParent, 1);
+ pRight = nodeNew(pRtree, pLeft->pParent);
nodeReference(pLeft);
}
goto splitnode_out;
}
- /* Ensure both child nodes have node numbers assigned to them. */
- if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)))
+ /* Ensure both child nodes have node numbers assigned to them by calling
+ ** nodeWrite(). Node pRight always needs a node number, as it was created
+ ** by nodeNew() above. But node pLeft sometimes already has a node number.
+ ** In this case avoid the all to nodeWrite().
+ */
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
|| (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
){
goto splitnode_out;
}
}else{
RtreeNode *pParent = pLeft->pParent;
- int iCell = nodeParentIndex(pRtree, pLeft);
- nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
- AdjustTree(pRtree, pParent, &leftbbox);
+ int iCell;
+ rc = nodeParentIndex(pRtree, pLeft, &iCell);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ rc = AdjustTree(pRtree, pParent, &leftbbox);
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
}
if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
goto splitnode_out;
return rc;
}
+/*
+** If node pLeaf is not the root of the r-tree and its pParent pointer is
+** still NULL, load all ancestor nodes of pLeaf into memory and populate
+** the pLeaf->pParent chain all the way up to the root node.
+**
+** This operation is required when a row is deleted (or updated - an update
+** is implemented as a delete followed by an insert). SQLite provides the
+** rowid of the row to delete, which can be used to find the leaf on which
+** the entry resides (argument pLeaf). Once the leaf is located, this
+** function is called to determine its ancestry.
+*/
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
int rc = SQLITE_OK;
- if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){
- sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode);
- if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){
- i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
- rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent);
- }else{
- rc = SQLITE_ERROR;
- }
- sqlite3_reset(pRtree->pReadParent);
- if( rc==SQLITE_OK ){
- rc = fixLeafParent(pRtree, pLeaf->pParent);
+ RtreeNode *pChild = pLeaf;
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
+ rc = sqlite3_step(pRtree->pReadParent);
+ if( rc==SQLITE_ROW ){
+ RtreeNode *pTest; /* Used to test for reference loops */
+ i64 iNode; /* Node number of parent node */
+
+ /* Before setting pChild->pParent, test that we are not creating a
+ ** loop of references (as we would if, say, pChild==pParent). We don't
+ ** want to do this as it leads to a memory leak when trying to delete
+ ** the referenced counted node structures.
+ */
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
+ if( !pTest ){
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
+ }
}
+ rc = sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT;
+ pChild = pChild->pParent;
}
return rc;
}
static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
int rc;
+ int rc2;
RtreeNode *pParent;
int iCell;
assert( pNode->nRef==1 );
/* Remove the entry in the parent cell. */
- iCell = nodeParentIndex(pRtree, pNode);
- pParent = pNode->pParent;
- pNode->pParent = 0;
- if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1))
- || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent))
- ){
+ rc = nodeParentIndex(pRtree, pNode, &iCell);
+ if( rc==SQLITE_OK ){
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
+ }
+ rc2 = nodeRelease(pRtree, pParent);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ if( rc!=SQLITE_OK ){
return rc;
}
return SQLITE_OK;
}
-static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
RtreeNode *pParent = pNode->pParent;
+ int rc = SQLITE_OK;
if( pParent ){
int ii;
int nCell = NCELL(pNode);
cellUnion(pRtree, &box, &cell);
}
box.iRowid = pNode->iNode;
- ii = nodeParentIndex(pRtree, pNode);
- nodeOverwriteCell(pRtree, pParent, &box, ii);
- fixBoundingBox(pRtree, pParent);
+ rc = nodeParentIndex(pRtree, pNode, &ii);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ rc = fixBoundingBox(pRtree, pParent);
+ }
}
+ return rc;
}
/*
** cell, adjust the r-tree data structure if required.
*/
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ RtreeNode *pParent;
int rc;
if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
** cell in the parent node so that it tightly contains the updated
** node.
*/
- if( pNode->iNode!=1 ){
- RtreeNode *pParent = pNode->pParent;
- if( (pParent->iNode!=1 || NCELL(pParent)!=1)
- && (NCELL(pNode)<RTREE_MINCELLS(pRtree))
- ){
+ pParent = pNode->pParent;
+ assert( pParent || pNode->iNode==1 );
+ if( pParent ){
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
rc = removeNode(pRtree, pNode, iHeight);
}else{
- fixBoundingBox(pRtree, pNode);
+ rc = fixBoundingBox(pRtree, pNode);
}
}
}
}
if( rc==SQLITE_OK ){
- fixBoundingBox(pRtree, pNode);
+ rc = fixBoundingBox(pRtree, pNode);
}
for(; rc==SQLITE_OK && ii<nCell; ii++){
/* Find a node to store this cell in. pNode->iNode currently contains
rc = SplitNode(pRtree, pNode, pCell, iHeight);
#endif
}else{
- AdjustTree(pRtree, pNode, pCell);
- if( iHeight==0 ){
- rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
- }else{
- rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ rc = AdjustTree(pRtree, pNode, pCell);
+ if( rc==SQLITE_OK ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
}
}
return rc;
rtreeReference(pRtree);
assert(nData>=1);
- assert(hashIsEmpty(pRtree));
/* If azData[0] is not an SQL NULL value, it is the rowid of a
** record to delete from the r-tree table. The following block does
/* Delete the cell in question from the leaf node. */
if( rc==SQLITE_OK ){
int rc2;
- iCell = nodeRowidIndex(pRtree, pLeaf, iDelete);
- rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
+ if( rc==SQLITE_OK ){
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ }
rc2 = nodeRelease(pRtree, pLeaf);
if( rc==SQLITE_OK ){
rc = rc2;
** the root node (the operation that Gutman's paper says to perform
** in this scenario).
*/
- if( rc==SQLITE_OK && pRtree->iDepth>0 ){
- if( rc==SQLITE_OK && NCELL(pRoot)==1 ){
- RtreeNode *pChild;
- i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
- rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
- if( rc==SQLITE_OK ){
- rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
- }
- if( rc==SQLITE_OK ){
- pRtree->iDepth--;
- writeInt16(pRoot->zData, pRtree->iDepth);
- pRoot->isDirty = 1;
- }
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
+ int rc2;
+ RtreeNode *pChild;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ rc2 = nodeRelease(pRtree, pChild);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
}
}
Rtree *pRtree;
int nDb; /* Length of string argv[1] */
int nName; /* Length of string argv[2] */
- int eCoordType = (int)pAux;
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
const char *aErrMsg[] = {
0, /* 0 */
** function "rtreenode".
*/
SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
- int rc = SQLITE_OK;
+ const int utf8 = SQLITE_UTF8;
+ int rc;
- if( rc==SQLITE_OK ){
- int utf8 = SQLITE_UTF8;
- rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
- }
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
if( rc==SQLITE_OK ){
int utf8 = SQLITE_UTF8;
rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
return rc;
}
+/*
+** A version of sqlite3_free() that can be used as a callback. This is used
+** in two places - as the destructor for the blob value returned by the
+** invocation of a geometry function, and as the destructor for the geometry
+** functions themselves.
+*/
+static void doSqlite3Free(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
+** scalar user function. This C function is the callback used for all such
+** registered SQL functions.
+**
+** The scalar user functions return a blob that is interpreted by r-tree
+** table MATCH operators.
+*/
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
+ RtreeMatchArg *pBlob;
+ int nBlob;
+
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
+ pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
+ if( !pBlob ){
+ sqlite3_result_error_nomem(ctx);
+ }else{
+ int i;
+ pBlob->magic = RTREE_GEOMETRY_MAGIC;
+ pBlob->xGeom = pGeomCtx->xGeom;
+ pBlob->pContext = pGeomCtx->pContext;
+ pBlob->nParam = nArg;
+ for(i=0; i<nArg; i++){
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
+ }
+ sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
+ }
+}
+
+/*
+** Register a new geometry function for use with the r-tree MATCH operator.
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
+ void *pContext
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ) return SQLITE_NOMEM;
+ pGeomCtx->xGeom = xGeom;
+ pGeomCtx->pContext = pContext;
+
+ /* Create the new user-function. Register a destructor function to delete
+ ** the context object when it is no longer required. */
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
+ );
+}
+
#if !SQLITE_CORE
SQLITE_API int sqlite3_extension_init(
sqlite3 *db,
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_icu.c ********************************************/
+
+#if defined(_MSC_VER) && _MSC_VER < 1300
+#pragma optimize("", on)
+#endif