/// We may create a new instruction, so remember it because it
/// must be deleted when the pass is finished.
- SmallPtrSet<MachineInstr *, 4> NewMIs;
+ DenseMap<MachineInstr*, MachineInstr *> NewMIs;
/// Ordered list of DAG postprocessing steps.
std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
void computeNodeOrder(NodeSetType &NodeSets);
void checkValidNodeOrder(const NodeSetType &Circuits) const;
bool schedulePipeline(SMSchedule &Schedule);
- void generatePipelinedLoop(SMSchedule &Schedule);
- void generateProlog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
- MBBVectorTy &PrologBBs);
- void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
- MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
- void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum,
- unsigned CurStageNum, bool IsLast);
- void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum,
- unsigned CurStageNum, bool IsLast);
- void removeDeadInstructions(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs);
- void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule);
- void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
- MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule, ValueMapTy *VRMap);
bool computeDelta(MachineInstr &MI, unsigned &Delta);
- void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
- unsigned Num);
- MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum);
- MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum,
- SMSchedule &Schedule);
- void updateInstruction(MachineInstr *NewMI, bool LastDef,
- unsigned CurStageNum, unsigned InstrStageNum,
- SMSchedule &Schedule, ValueMapTy *VRMap);
MachineInstr *findDefInLoop(unsigned Reg);
- unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
- unsigned LoopStage, ValueMapTy *VRMap,
- MachineBasicBlock *BB);
- void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap);
- void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
- InstrMapTy &InstrMap, unsigned CurStageNum,
- unsigned PhiNum, MachineInstr *Phi,
- unsigned OldReg, unsigned NewReg,
- unsigned PrevReg = 0);
bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
unsigned &OffsetPos, unsigned &NewBase,
int64_t &NewOffset);
/// Map from instruction to execution cycle.
std::map<SUnit *, int> InstrToCycle;
- /// Map for each register and the max difference between its uses and def.
- /// The first element in the pair is the max difference in stages. The
- /// second is true if the register defines a Phi value and loop value is
- /// scheduled before the Phi.
- std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
-
/// Keep track of the first cycle value in the schedule. It starts
/// as zero, but the algorithm allows negative values.
int FirstCycle = 0;
void reset() {
ScheduledInstrs.clear();
InstrToCycle.clear();
- RegToStageDiff.clear();
FirstCycle = 0;
LastCycle = 0;
InitiationInterval = 0;
return (LastCycle - FirstCycle) / InitiationInterval;
}
- /// Return the max. number of stages/iterations that can occur between a
- /// register definition and its uses.
- unsigned getStagesForReg(int Reg, unsigned CurStage) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
- return 1;
- return Stages.first;
- }
-
- /// The number of stages for a Phi is a little different than other
- /// instructions. The minimum value computed in RegToStageDiff is 1
- /// because we assume the Phi is needed for at least 1 iteration.
- /// This is not the case if the loop value is scheduled prior to the
- /// Phi in the same stage. This function returns the number of stages
- /// or iterations needed between the Phi definition and any uses.
- unsigned getStagesForPhi(int Reg) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if (Stages.second)
- return Stages.first;
- return Stages.first - 1;
- }
-
/// Return the instructions that are scheduled at the specified cycle.
std::deque<SUnit *> &getInstructions(int cycle) {
return ScheduledInstrs[cycle];
--- /dev/null
+//===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Software pipelining (SWP) is an instruction scheduling technique for loops
+// that overlaps loop iterations and exploits ILP via compiler transformations.
+//
+// There are multiple methods for analyzing a loop and creating a schedule.
+// An example algorithm is Swing Modulo Scheduling (implemented by the
+// MachinePipeliner). The details of how a schedule is arrived at are irrelevant
+// for the task of actually rewriting a loop to adhere to the schedule, which
+// is what this file does.
+//
+// A schedule is, for every instruction in a block, a Cycle and a Stage. Note
+// that we only support single-block loops, so "block" and "loop" can be used
+// interchangably.
+//
+// The Cycle of an instruction defines a partial order of the instructions in
+// the remapped loop. Instructions within a cycle must not consume the output
+// of any instruction in the same cycle. Cycle information is assumed to have
+// been calculated such that the processor will execute instructions in
+// lock-step (for example in a VLIW ISA).
+//
+// The Stage of an instruction defines the mapping between logical loop
+// iterations and pipelined loop iterations. An example (unrolled) pipeline
+// may look something like:
+//
+// I0[0] Execute instruction I0 of iteration 0
+// I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1
+// I1[1], I0[2]
+// I1[2], I0[3]
+//
+// In the schedule for this unrolled sequence we would say that I0 was scheduled
+// in stage 0 and I1 in stage 1:
+//
+// loop:
+// [stage 0] x = I0
+// [stage 1] I1 x (from stage 0)
+//
+// And to actually generate valid code we must insert a phi:
+//
+// loop:
+// x' = phi(x)
+// x = I0
+// I1 x'
+//
+// This is a simple example; the rules for how to generate correct code given
+// an arbitrary schedule containing loop-carried values are complex.
+//
+// Note that these examples only mention the steady-state kernel of the
+// generated loop; prologs and epilogs must be generated also that prime and
+// flush the pipeline. Doing so is nontrivial.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
+#define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include <vector>
+
+namespace llvm {
+class MachineBasicBlock;
+class MachineInstr;
+class LiveIntervals;
+
+/// Represents a schedule for a single-block loop. For every instruction we
+/// maintain a Cycle and Stage.
+class ModuloSchedule {
+private:
+ /// The block containing the loop instructions.
+ MachineLoop *Loop;
+
+ /// The instructions to be generated, in total order. Cycle provides a partial
+ /// order; the total order within cycles has been decided by the schedule
+ /// producer.
+ std::vector<MachineInstr *> ScheduledInstrs;
+
+ /// The cycle for each instruction.
+ DenseMap<MachineInstr *, int> Cycle;
+
+ /// The stage for each instruction.
+ DenseMap<MachineInstr *, int> Stage;
+
+ /// The number of stages in this schedule (Max(Stage) + 1).
+ int NumStages;
+
+public:
+ /// Create a new ModuloSchedule.
+ /// \arg ScheduledInstrs The new loop instructions, in total resequenced
+ /// order.
+ /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
+ /// not need to start at zero. ScheduledInstrs must be partially ordered by
+ /// Cycle.
+ /// \arg Stage Stage index for all instructions in ScheduleInstrs.
+ ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
+ std::vector<MachineInstr *> ScheduledInstrs,
+ DenseMap<MachineInstr *, int> Cycle,
+ DenseMap<MachineInstr *, int> Stage)
+ : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
+ Stage(std::move(Stage)) {
+ NumStages = 0;
+ for (auto &KV : this->Stage)
+ NumStages = std::max(NumStages, KV.second);
+ ++NumStages;
+ }
+
+ /// Return the single-block loop being scheduled.
+ MachineLoop *getLoop() const { return Loop; }
+
+ /// Return the number of stages contained in this schedule, which is the
+ /// largest stage index + 1.
+ int getNumStages() const { return NumStages; }
+
+ /// Return the first cycle in the schedule, which is the cycle index of the
+ /// first instruction.
+ int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
+
+ /// Return the final cycle in the schedule, which is the cycle index of the
+ /// last instruction.
+ int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
+
+ /// Return the stage that MI is scheduled in, or -1.
+ int getStage(MachineInstr *MI) {
+ auto I = Stage.find(MI);
+ return I == Stage.end() ? -1 : I->second;
+ }
+
+ /// Return the cycle that MI is scheduled at, or -1.
+ int getCycle(MachineInstr *MI) {
+ auto I = Cycle.find(MI);
+ return I == Cycle.end() ? -1 : I->second;
+ }
+
+ /// Return the rescheduled instructions in order.
+ ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
+};
+
+/// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
+/// rewriting the old loop and inserting prologs and epilogs as required.
+class ModuloScheduleExpander {
+public:
+ using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
+
+private:
+ using ValueMapTy = DenseMap<unsigned, unsigned>;
+ using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
+ using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
+
+ ModuloSchedule &Schedule;
+ MachineFunction &MF;
+ const TargetSubtargetInfo &ST;
+ MachineRegisterInfo &MRI;
+ const TargetInstrInfo *TII;
+ LiveIntervals &LIS;
+
+ MachineBasicBlock *BB;
+ MachineBasicBlock *Preheader;
+
+ /// Map for each register and the max difference between its uses and def.
+ /// The first element in the pair is the max difference in stages. The
+ /// second is true if the register defines a Phi value and loop value is
+ /// scheduled before the Phi.
+ std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
+
+ /// Instructions to change when emitting the final schedule.
+ InstrChangesTy InstrChanges;
+
+ void generatePipelinedLoop();
+ void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
+ void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap, MBBVectorTy &EpilogBBs,
+ MBBVectorTy &PrologBBs);
+ void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum,
+ bool IsLast);
+ void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum, bool IsLast);
+ void removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs);
+ void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
+ void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
+ MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
+ ValueMapTy *VRMap);
+ bool computeDelta(MachineInstr &MI, unsigned &Delta);
+ void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
+ unsigned Num);
+ MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum);
+ MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum);
+ void updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum, unsigned InstrStageNum,
+ ValueMapTy *VRMap);
+ MachineInstr *findDefInLoop(unsigned Reg);
+ unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
+ unsigned LoopStage, ValueMapTy *VRMap,
+ MachineBasicBlock *BB);
+ void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
+ ValueMapTy *VRMap, InstrMapTy &InstrMap);
+ void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
+ unsigned CurStageNum, unsigned PhiNum,
+ MachineInstr *Phi, unsigned OldReg,
+ unsigned NewReg, unsigned PrevReg = 0);
+ bool isLoopCarried(MachineInstr &Phi);
+
+ /// Return the max. number of stages/iterations that can occur between a
+ /// register definition and its uses.
+ unsigned getStagesForReg(int Reg, unsigned CurStage) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
+ Stages.second)
+ return 1;
+ return Stages.first;
+ }
+
+ /// The number of stages for a Phi is a little different than other
+ /// instructions. The minimum value computed in RegToStageDiff is 1
+ /// because we assume the Phi is needed for at least 1 iteration.
+ /// This is not the case if the loop value is scheduled prior to the
+ /// Phi in the same stage. This function returns the number of stages
+ /// or iterations needed between the Phi definition and any uses.
+ unsigned getStagesForPhi(int Reg) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (Stages.second)
+ return Stages.first;
+ return Stages.first - 1;
+ }
+
+public:
+ /// Create a new ModuloScheduleExpander.
+ /// \arg InstrChanges Modifications to make to instructions with memory
+ /// operands.
+ /// FIXME: InstrChanges is opaque and is an implementation detail of an
+ /// optimization in MachinePipeliner that crosses abstraction boundaries.
+ ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
+ LiveIntervals &LIS, InstrChangesTy InstrChanges)
+ : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
+ TII(ST.getInstrInfo()), LIS(LIS),
+ InstrChanges(std::move(InstrChanges)) {}
+
+ /// Performs the actual expansion.
+ void expand();
+};
+
+} // end namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp
MachineVerifier.cpp
+ ModuloSchedule.cpp
PatchableFunction.cpp
MIRPrinter.cpp
MIRPrintingPass.cpp
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
return;
}
- generatePipelinedLoop(Schedule);
+ // Generate the schedule as a ModuloSchedule.
+ DenseMap<MachineInstr *, int> Cycles, Stages;
+ std::vector<MachineInstr *> OrderedInsts;
+ for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
+ ++Cycle) {
+ for (SUnit *SU : Schedule.getInstructions(Cycle)) {
+ OrderedInsts.push_back(SU->getInstr());
+ Cycles[SU->getInstr()] = Cycle;
+ Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
+ }
+ }
+ DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
+ for (auto &KV : NewMIs) {
+ Cycles[KV.first] = Cycles[KV.second];
+ Stages[KV.first] = Stages[KV.second];
+ NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
+ }
+
+ ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
+ std::move(Stages));
+ ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
+ MSE.expand();
++NumPipelined;
}
/// Clean up after the software pipeliner runs.
void SwingSchedulerDAG::finishBlock() {
- for (MachineInstr *I : NewMIs)
- MF.DeleteMachineInstr(I);
+ for (auto &KV : NewMIs)
+ MF.DeleteMachineInstr(KV.second);
NewMIs.clear();
// Call the superclass.
assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
}
-/// Return the Phi register value that comes from the incoming block.
-static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() != LoopBB)
- return Phi.getOperand(i).getReg();
- return 0;
-}
-
/// Return the Phi register value that comes the loop block.
static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
return scheduleFound && Schedule.getMaxStageCount() > 0;
}
-/// Given a schedule for the loop, generate a new version of the loop,
-/// and replace the old version. This function generates a prolog
-/// that contains the initial iterations in the pipeline, and kernel
-/// loop, and the epilogue that contains the code for the final
-/// iterations.
-void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
- // Create a new basic block for the kernel and add it to the CFG.
- MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
-
- unsigned MaxStageCount = Schedule.getMaxStageCount();
-
- // Remember the registers that are used in different stages. The index is
- // the iteration, or stage, that the instruction is scheduled in. This is
- // a map between register names in the original block and the names created
- // in each stage of the pipelined loop.
- ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
- InstrMapTy InstrMap;
-
- SmallVector<MachineBasicBlock *, 4> PrologBBs;
-
- MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
- assert(PreheaderBB != nullptr &&
- "Need to add code to handle loops w/o preheader");
- // Generate the prolog instructions that set up the pipeline.
- generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
- MF.insert(BB->getIterator(), KernelBB);
-
- // Rearrange the instructions to generate the new, pipelined loop,
- // and update register names as needed.
- for (int Cycle = Schedule.getFirstCycle(),
- LastCycle = Schedule.getFinalCycle();
- Cycle <= LastCycle; ++Cycle) {
- std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
- // This inner loop schedules each instruction in the cycle.
- for (SUnit *CI : CycleInstrs) {
- if (CI->getInstr()->isPHI())
- continue;
- unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
- MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
- updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
- KernelBB->push_back(NewMI);
- InstrMap[NewMI] = CI->getInstr();
- }
- }
-
- // Copy any terminator instructions to the new kernel, and update
- // names as needed.
- for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
- E = BB->instr_end();
- I != E; ++I) {
- MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
- updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
- KernelBB->push_back(NewMI);
- InstrMap[NewMI] = &*I;
- }
-
- KernelBB->transferSuccessors(BB);
- KernelBB->replaceSuccessor(BB, KernelBB);
-
- generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
- VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
- generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
- InstrMap, MaxStageCount, MaxStageCount, false);
-
- LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
-
- SmallVector<MachineBasicBlock *, 4> EpilogBBs;
- // Generate the epilog instructions to complete the pipeline.
- generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
- PrologBBs);
-
- // We need this step because the register allocation doesn't handle some
- // situations well, so we insert copies to help out.
- splitLifetimes(KernelBB, EpilogBBs, Schedule);
-
- // Remove dead instructions due to loop induction variables.
- removeDeadInstructions(KernelBB, EpilogBBs);
-
- // Add branches between prolog and epilog blocks.
- addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
-
- // Remove the original loop since it's no longer referenced.
- for (auto &I : *BB)
- LIS.RemoveMachineInstrFromMaps(I);
- BB->clear();
- BB->eraseFromParent();
-
- delete[] VRMap;
-}
-
-/// Generate the pipeline prolog code.
-void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap,
- MBBVectorTy &PrologBBs) {
- MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
- assert(PreheaderBB != nullptr &&
- "Need to add code to handle loops w/o preheader");
- MachineBasicBlock *PredBB = PreheaderBB;
- InstrMapTy InstrMap;
-
- // Generate a basic block for each stage, not including the last stage,
- // which will be generated in the kernel. Each basic block may contain
- // instructions from multiple stages/iterations.
- for (unsigned i = 0; i < LastStage; ++i) {
- // Create and insert the prolog basic block prior to the original loop
- // basic block. The original loop is removed later.
- MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
- PrologBBs.push_back(NewBB);
- MF.insert(BB->getIterator(), NewBB);
- NewBB->transferSuccessors(PredBB);
- PredBB->addSuccessor(NewBB);
- PredBB = NewBB;
-
- // Generate instructions for each appropriate stage. Process instructions
- // in original program order.
- for (int StageNum = i; StageNum >= 0; --StageNum) {
- for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
- BBE = BB->getFirstTerminator();
- BBI != BBE; ++BBI) {
- if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
- if (BBI->isPHI())
- continue;
- MachineInstr *NewMI =
- cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
- updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
- VRMap);
- NewBB->push_back(NewMI);
- InstrMap[NewMI] = &*BBI;
- }
- }
- }
- rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
- LLVM_DEBUG({
- dbgs() << "prolog:\n";
- NewBB->dump();
- });
- }
-
- PredBB->replaceSuccessor(BB, KernelBB);
-
- // Check if we need to remove the branch from the preheader to the original
- // loop, and replace it with a branch to the new loop.
- unsigned numBranches = TII->removeBranch(*PreheaderBB);
- if (numBranches) {
- SmallVector<MachineOperand, 0> Cond;
- TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
- }
-}
-
-/// Generate the pipeline epilog code. The epilog code finishes the iterations
-/// that were started in either the prolog or the kernel. We create a basic
-/// block for each stage that needs to complete.
-void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap,
- MBBVectorTy &EpilogBBs,
- MBBVectorTy &PrologBBs) {
- // We need to change the branch from the kernel to the first epilog block, so
- // this call to analyze branch uses the kernel rather than the original BB.
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
- SmallVector<MachineOperand, 4> Cond;
- bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
- assert(!checkBranch && "generateEpilog must be able to analyze the branch");
- if (checkBranch)
- return;
-
- MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
- if (*LoopExitI == KernelBB)
- ++LoopExitI;
- assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
- MachineBasicBlock *LoopExitBB = *LoopExitI;
-
- MachineBasicBlock *PredBB = KernelBB;
- MachineBasicBlock *EpilogStart = LoopExitBB;
- InstrMapTy InstrMap;
-
- // Generate a basic block for each stage, not including the last stage,
- // which was generated for the kernel. Each basic block may contain
- // instructions from multiple stages/iterations.
- int EpilogStage = LastStage + 1;
- for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
- MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
- EpilogBBs.push_back(NewBB);
- MF.insert(BB->getIterator(), NewBB);
-
- PredBB->replaceSuccessor(LoopExitBB, NewBB);
- NewBB->addSuccessor(LoopExitBB);
-
- if (EpilogStart == LoopExitBB)
- EpilogStart = NewBB;
-
- // Add instructions to the epilog depending on the current block.
- // Process instructions in original program order.
- for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
- for (auto &BBI : *BB) {
- if (BBI.isPHI())
- continue;
- MachineInstr *In = &BBI;
- if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
- // Instructions with memoperands in the epilog are updated with
- // conservative values.
- MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
- updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
- NewBB->push_back(NewMI);
- InstrMap[NewMI] = In;
- }
- }
- }
- generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
- VRMap, InstrMap, LastStage, EpilogStage, i == 1);
- generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
- InstrMap, LastStage, EpilogStage, i == 1);
- PredBB = NewBB;
-
- LLVM_DEBUG({
- dbgs() << "epilog:\n";
- NewBB->dump();
- });
- }
-
- // Fix any Phi nodes in the loop exit block.
- LoopExitBB->replacePhiUsesWith(BB, PredBB);
-
- // Create a branch to the new epilog from the kernel.
- // Remove the original branch and add a new branch to the epilog.
- TII->removeBranch(*KernelBB);
- TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
- // Add a branch to the loop exit.
- if (EpilogBBs.size() > 0) {
- MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
- SmallVector<MachineOperand, 4> Cond1;
- TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
- }
-}
-
-/// Replace all uses of FromReg that appear outside the specified
-/// basic block with ToReg.
-static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
- MachineBasicBlock *MBB,
- MachineRegisterInfo &MRI,
- LiveIntervals &LIS) {
- for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
- E = MRI.use_end();
- I != E;) {
- MachineOperand &O = *I;
- ++I;
- if (O.getParent()->getParent() != MBB)
- O.setReg(ToReg);
- }
- if (!LIS.hasInterval(ToReg))
- LIS.createEmptyInterval(ToReg);
-}
-
-/// Return true if the register has a use that occurs outside the
-/// specified loop.
-static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
- MachineRegisterInfo &MRI) {
- for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
- E = MRI.use_end();
- I != E; ++I)
- if (I->getParent()->getParent() != BB)
- return true;
- return false;
-}
-
-/// Generate Phis for the specific block in the generated pipelined code.
-/// This function looks at the Phis from the original code to guide the
-/// creation of new Phis.
-void SwingSchedulerDAG::generateExistingPhis(
- MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
- MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
- bool IsLast) {
- // Compute the stage number for the initial value of the Phi, which
- // comes from the prolog. The prolog to use depends on to which kernel/
- // epilog that we're adding the Phi.
- unsigned PrologStage = 0;
- unsigned PrevStage = 0;
- bool InKernel = (LastStageNum == CurStageNum);
- if (InKernel) {
- PrologStage = LastStageNum - 1;
- PrevStage = CurStageNum;
- } else {
- PrologStage = LastStageNum - (CurStageNum - LastStageNum);
- PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
- }
-
- for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
- BBE = BB->getFirstNonPHI();
- BBI != BBE; ++BBI) {
- Register Def = BBI->getOperand(0).getReg();
-
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(*BBI, BB, InitVal, LoopVal);
-
- unsigned PhiOp1 = 0;
- // The Phi value from the loop body typically is defined in the loop, but
- // not always. So, we need to check if the value is defined in the loop.
- unsigned PhiOp2 = LoopVal;
- if (VRMap[LastStageNum].count(LoopVal))
- PhiOp2 = VRMap[LastStageNum][LoopVal];
-
- int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
- int LoopValStage =
- Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
- unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
- if (NumStages == 0) {
- // We don't need to generate a Phi anymore, but we need to rename any uses
- // of the Phi value.
- unsigned NewReg = VRMap[PrevStage][LoopVal];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
- Def, InitVal, NewReg);
- if (VRMap[CurStageNum].count(LoopVal))
- VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
- }
- // Adjust the number of Phis needed depending on the number of prologs left,
- // and the distance from where the Phi is first scheduled. The number of
- // Phis cannot exceed the number of prolog stages. Each stage can
- // potentially define two values.
- unsigned MaxPhis = PrologStage + 2;
- if (!InKernel && (int)PrologStage <= LoopValStage)
- MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
- unsigned NumPhis = std::min(NumStages, MaxPhis);
-
- unsigned NewReg = 0;
- unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
- // In the epilog, we may need to look back one stage to get the correct
- // Phi name because the epilog and prolog blocks execute the same stage.
- // The correct name is from the previous block only when the Phi has
- // been completely scheduled prior to the epilog, and Phi value is not
- // needed in multiple stages.
- int StageDiff = 0;
- if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
- NumPhis == 1)
- StageDiff = 1;
- // Adjust the computations below when the phi and the loop definition
- // are scheduled in different stages.
- if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
- StageDiff = StageScheduled - LoopValStage;
- for (unsigned np = 0; np < NumPhis; ++np) {
- // If the Phi hasn't been scheduled, then use the initial Phi operand
- // value. Otherwise, use the scheduled version of the instruction. This
- // is a little complicated when a Phi references another Phi.
- if (np > PrologStage || StageScheduled >= (int)LastStageNum)
- PhiOp1 = InitVal;
- // Check if the Phi has already been scheduled in a prolog stage.
- else if (PrologStage >= AccessStage + StageDiff + np &&
- VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
- PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
- // Check if the Phi has already been scheduled, but the loop instruction
- // is either another Phi, or doesn't occur in the loop.
- else if (PrologStage >= AccessStage + StageDiff + np) {
- // If the Phi references another Phi, we need to examine the other
- // Phi to get the correct value.
- PhiOp1 = LoopVal;
- MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
- int Indirects = 1;
- while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
- int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
- if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
- PhiOp1 = getInitPhiReg(*InstOp1, BB);
- else
- PhiOp1 = getLoopPhiReg(*InstOp1, BB);
- InstOp1 = MRI.getVRegDef(PhiOp1);
- int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
- int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
- if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
- VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
- PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
- break;
- }
- ++Indirects;
- }
- } else
- PhiOp1 = InitVal;
- // If this references a generated Phi in the kernel, get the Phi operand
- // from the incoming block.
- if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
- if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
- PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
-
- MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
- bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
- // In the epilog, a map lookup is needed to get the value from the kernel,
- // or previous epilog block. How is does this depends on if the
- // instruction is scheduled in the previous block.
- if (!InKernel) {
- int StageDiffAdj = 0;
- if (LoopValStage != -1 && StageScheduled > LoopValStage)
- StageDiffAdj = StageScheduled - LoopValStage;
- // Use the loop value defined in the kernel, unless the kernel
- // contains the last definition of the Phi.
- if (np == 0 && PrevStage == LastStageNum &&
- (StageScheduled != 0 || LoopValStage != 0) &&
- VRMap[PrevStage - StageDiffAdj].count(LoopVal))
- PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
- // Use the value defined by the Phi. We add one because we switch
- // from looking at the loop value to the Phi definition.
- else if (np > 0 && PrevStage == LastStageNum &&
- VRMap[PrevStage - np + 1].count(Def))
- PhiOp2 = VRMap[PrevStage - np + 1][Def];
- // Use the loop value defined in the kernel.
- else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
- VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
- PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
- // Use the value defined by the Phi, unless we're generating the first
- // epilog and the Phi refers to a Phi in a different stage.
- else if (VRMap[PrevStage - np].count(Def) &&
- (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled)))
- PhiOp2 = VRMap[PrevStage - np][Def];
- }
-
- // Check if we can reuse an existing Phi. This occurs when a Phi
- // references another Phi, and the other Phi is scheduled in an
- // earlier stage. We can try to reuse an existing Phi up until the last
- // stage of the current Phi.
- if (LoopDefIsPhi) {
- if (static_cast<int>(PrologStage - np) >= StageScheduled) {
- int LVNumStages = Schedule.getStagesForPhi(LoopVal);
- int StageDiff = (StageScheduled - LoopValStage);
- LVNumStages -= StageDiff;
- // Make sure the loop value Phi has been processed already.
- if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
- NewReg = PhiOp2;
- unsigned ReuseStage = CurStageNum;
- if (Schedule.isLoopCarried(this, *PhiInst))
- ReuseStage -= LVNumStages;
- // Check if the Phi to reuse has been generated yet. If not, then
- // there is nothing to reuse.
- if (VRMap[ReuseStage - np].count(LoopVal)) {
- NewReg = VRMap[ReuseStage - np][LoopVal];
-
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, Def, NewReg);
- // Update the map with the new Phi name.
- VRMap[CurStageNum - np][Def] = NewReg;
- PhiOp2 = NewReg;
- if (VRMap[LastStageNum - np - 1].count(LoopVal))
- PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
-
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
- continue;
- }
- }
- }
- if (InKernel && StageDiff > 0 &&
- VRMap[CurStageNum - StageDiff - np].count(LoopVal))
- PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
- }
-
- const TargetRegisterClass *RC = MRI.getRegClass(Def);
- NewReg = MRI.createVirtualRegister(RC);
-
- MachineInstrBuilder NewPhi =
- BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
- TII->get(TargetOpcode::PHI), NewReg);
- NewPhi.addReg(PhiOp1).addMBB(BB1);
- NewPhi.addReg(PhiOp2).addMBB(BB2);
- if (np == 0)
- InstrMap[NewPhi] = &*BBI;
-
- // We define the Phis after creating the new pipelined code, so
- // we need to rename the Phi values in scheduled instructions.
-
- unsigned PrevReg = 0;
- if (InKernel && VRMap[PrevStage - np].count(LoopVal))
- PrevReg = VRMap[PrevStage - np][LoopVal];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
- Def, NewReg, PrevReg);
- // If the Phi has been scheduled, use the new name for rewriting.
- if (VRMap[CurStageNum - np].count(Def)) {
- unsigned R = VRMap[CurStageNum - np][Def];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
- R, NewReg);
- }
-
- // Check if we need to rename any uses that occurs after the loop. The
- // register to replace depends on whether the Phi is scheduled in the
- // epilog.
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
-
- // In the kernel, a dependent Phi uses the value from this Phi.
- if (InKernel)
- PhiOp2 = NewReg;
-
- // Update the map with the new Phi name.
- VRMap[CurStageNum - np][Def] = NewReg;
- }
-
- while (NumPhis++ < NumStages) {
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
- &*BBI, Def, NewReg, 0);
- }
-
- // Check if we need to rename a Phi that has been eliminated due to
- // scheduling.
- if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
- replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
- }
-}
-
-/// Generate Phis for the specified block in the generated pipelined code.
-/// These are new Phis needed because the definition is scheduled after the
-/// use in the pipelined sequence.
-void SwingSchedulerDAG::generatePhis(
- MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
- MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
- bool IsLast) {
- // Compute the stage number that contains the initial Phi value, and
- // the Phi from the previous stage.
- unsigned PrologStage = 0;
- unsigned PrevStage = 0;
- unsigned StageDiff = CurStageNum - LastStageNum;
- bool InKernel = (StageDiff == 0);
- if (InKernel) {
- PrologStage = LastStageNum - 1;
- PrevStage = CurStageNum;
- } else {
- PrologStage = LastStageNum - StageDiff;
- PrevStage = LastStageNum + StageDiff - 1;
- }
-
- for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
- BBE = BB->instr_end();
- BBI != BBE; ++BBI) {
- for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = BBI->getOperand(i);
- if (!MO.isReg() || !MO.isDef() ||
- !Register::isVirtualRegister(MO.getReg()))
- continue;
-
- int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
- assert(StageScheduled != -1 && "Expecting scheduled instruction.");
- Register Def = MO.getReg();
- unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
- // An instruction scheduled in stage 0 and is used after the loop
- // requires a phi in the epilog for the last definition from either
- // the kernel or prolog.
- if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
- hasUseAfterLoop(Def, BB, MRI))
- NumPhis = 1;
- if (!InKernel && (unsigned)StageScheduled > PrologStage)
- continue;
-
- unsigned PhiOp2 = VRMap[PrevStage][Def];
- if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
- if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
- PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
- // The number of Phis can't exceed the number of prolog stages. The
- // prolog stage number is zero based.
- if (NumPhis > PrologStage + 1 - StageScheduled)
- NumPhis = PrologStage + 1 - StageScheduled;
- for (unsigned np = 0; np < NumPhis; ++np) {
- unsigned PhiOp1 = VRMap[PrologStage][Def];
- if (np <= PrologStage)
- PhiOp1 = VRMap[PrologStage - np][Def];
- if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
- if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
- PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
- if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
- PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
- }
- if (!InKernel)
- PhiOp2 = VRMap[PrevStage - np][Def];
-
- const TargetRegisterClass *RC = MRI.getRegClass(Def);
- Register NewReg = MRI.createVirtualRegister(RC);
-
- MachineInstrBuilder NewPhi =
- BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
- TII->get(TargetOpcode::PHI), NewReg);
- NewPhi.addReg(PhiOp1).addMBB(BB1);
- NewPhi.addReg(PhiOp2).addMBB(BB2);
- if (np == 0)
- InstrMap[NewPhi] = &*BBI;
-
- // Rewrite uses and update the map. The actions depend upon whether
- // we generating code for the kernel or epilog blocks.
- if (InKernel) {
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, PhiOp1, NewReg);
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, PhiOp2, NewReg);
-
- PhiOp2 = NewReg;
- VRMap[PrevStage - np - 1][Def] = NewReg;
- } else {
- VRMap[CurStageNum - np][Def] = NewReg;
- if (np == NumPhis - 1)
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, Def, NewReg);
- }
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
- }
- }
- }
-}
-
-/// Remove instructions that generate values with no uses.
-/// Typically, these are induction variable operations that generate values
-/// used in the loop itself. A dead instruction has a definition with
-/// no uses, or uses that occur in the original loop only.
-void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs) {
- // For each epilog block, check that the value defined by each instruction
- // is used. If not, delete it.
- for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
- MBE = EpilogBBs.rend();
- MBB != MBE; ++MBB)
- for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
- ME = (*MBB)->instr_rend();
- MI != ME;) {
- // From DeadMachineInstructionElem. Don't delete inline assembly.
- if (MI->isInlineAsm()) {
- ++MI;
- continue;
- }
- bool SawStore = false;
- // Check if it's safe to remove the instruction due to side effects.
- // We can, and want to, remove Phis here.
- if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
- ++MI;
- continue;
- }
- bool used = true;
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- if (!MOI->isReg() || !MOI->isDef())
- continue;
- Register reg = MOI->getReg();
- // Assume physical registers are used, unless they are marked dead.
- if (Register::isPhysicalRegister(reg)) {
- used = !MOI->isDead();
- if (used)
- break;
- continue;
- }
- unsigned realUses = 0;
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
- EI = MRI.use_end();
- UI != EI; ++UI) {
- // Check if there are any uses that occur only in the original
- // loop. If so, that's not a real use.
- if (UI->getParent()->getParent() != BB) {
- realUses++;
- used = true;
- break;
- }
- }
- if (realUses > 0)
- break;
- used = false;
- }
- if (!used) {
- LIS.RemoveMachineInstrFromMaps(*MI);
- MI++->eraseFromParent();
- continue;
- }
- ++MI;
- }
- // In the kernel block, check if we can remove a Phi that generates a value
- // used in an instruction removed in the epilog block.
- for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
- BBE = KernelBB->getFirstNonPHI();
- BBI != BBE;) {
- MachineInstr *MI = &*BBI;
- ++BBI;
- Register reg = MI->getOperand(0).getReg();
- if (MRI.use_begin(reg) == MRI.use_end()) {
- LIS.RemoveMachineInstrFromMaps(*MI);
- MI->eraseFromParent();
- }
- }
-}
-
-/// For loop carried definitions, we split the lifetime of a virtual register
-/// that has uses past the definition in the next iteration. A copy with a new
-/// virtual register is inserted before the definition, which helps with
-/// generating a better register assignment.
-///
-/// v1 = phi(a, v2) v1 = phi(a, v2)
-/// v2 = phi(b, v3) v2 = phi(b, v3)
-/// v3 = .. v4 = copy v1
-/// .. = V1 v3 = ..
-/// .. = v4
-void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- for (auto &PHI : KernelBB->phis()) {
- Register Def = PHI.getOperand(0).getReg();
- // Check for any Phi definition that used as an operand of another Phi
- // in the same block.
- for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
- E = MRI.use_instr_end();
- I != E; ++I) {
- if (I->isPHI() && I->getParent() == KernelBB) {
- // Get the loop carried definition.
- unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
- if (!LCDef)
- continue;
- MachineInstr *MI = MRI.getVRegDef(LCDef);
- if (!MI || MI->getParent() != KernelBB || MI->isPHI())
- continue;
- // Search through the rest of the block looking for uses of the Phi
- // definition. If one occurs, then split the lifetime.
- unsigned SplitReg = 0;
- for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
- KernelBB->instr_end()))
- if (BBJ.readsRegister(Def)) {
- // We split the lifetime when we find the first use.
- if (SplitReg == 0) {
- SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
- BuildMI(*KernelBB, MI, MI->getDebugLoc(),
- TII->get(TargetOpcode::COPY), SplitReg)
- .addReg(Def);
- }
- BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
- }
- if (!SplitReg)
- continue;
- // Search through each of the epilog blocks for any uses to be renamed.
- for (auto &Epilog : EpilogBBs)
- for (auto &I : *Epilog)
- if (I.readsRegister(Def))
- I.substituteRegister(Def, SplitReg, 0, *TRI);
- break;
- }
- }
- }
-}
-
-/// Remove the incoming block from the Phis in a basic block.
-static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
- for (MachineInstr &MI : *BB) {
- if (!MI.isPHI())
- break;
- for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
- if (MI.getOperand(i + 1).getMBB() == Incoming) {
- MI.RemoveOperand(i + 1);
- MI.RemoveOperand(i);
- break;
- }
- }
-}
-
-/// Create branches from each prolog basic block to the appropriate epilog
-/// block. These edges are needed if the loop ends before reaching the
-/// kernel.
-void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB,
- MBBVectorTy &PrologBBs,
- MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule, ValueMapTy *VRMap) {
- assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
- MachineInstr *IndVar = Pass.LI.LoopInductionVar;
- MachineInstr *Cmp = Pass.LI.LoopCompare;
- MachineBasicBlock *LastPro = KernelBB;
- MachineBasicBlock *LastEpi = KernelBB;
-
- // Start from the blocks connected to the kernel and work "out"
- // to the first prolog and the last epilog blocks.
- SmallVector<MachineInstr *, 4> PrevInsts;
- unsigned MaxIter = PrologBBs.size() - 1;
- unsigned LC = UINT_MAX;
- unsigned LCMin = UINT_MAX;
- for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
- // Add branches to the prolog that go to the corresponding
- // epilog, and the fall-thru prolog/kernel block.
- MachineBasicBlock *Prolog = PrologBBs[j];
- MachineBasicBlock *Epilog = EpilogBBs[i];
- // We've executed one iteration, so decrement the loop count and check for
- // the loop end.
- SmallVector<MachineOperand, 4> Cond;
- // Check if the LOOP0 has already been removed. If so, then there is no need
- // to reduce the trip count.
- if (LC != 0)
- LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond,
- PrevInsts, j, MaxIter);
-
- // Record the value of the first trip count, which is used to determine if
- // branches and blocks can be removed for constant trip counts.
- if (LCMin == UINT_MAX)
- LCMin = LC;
-
- unsigned numAdded = 0;
- if (Register::isVirtualRegister(LC)) {
- Prolog->addSuccessor(Epilog);
- numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
- } else if (j >= LCMin) {
- Prolog->addSuccessor(Epilog);
- Prolog->removeSuccessor(LastPro);
- LastEpi->removeSuccessor(Epilog);
- numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
- removePhis(Epilog, LastEpi);
- // Remove the blocks that are no longer referenced.
- if (LastPro != LastEpi) {
- LastEpi->clear();
- LastEpi->eraseFromParent();
- }
- LastPro->clear();
- LastPro->eraseFromParent();
- } else {
- numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
- removePhis(Epilog, Prolog);
- }
- LastPro = Prolog;
- LastEpi = Epilog;
- for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
- E = Prolog->instr_rend();
- I != E && numAdded > 0; ++I, --numAdded)
- updateInstruction(&*I, false, j, 0, Schedule, VRMap);
- }
-}
-
/// Return true if we can compute the amount the instruction changes
/// during each iteration. Set Delta to the amount of the change.
bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
return true;
}
-/// Update the memory operand with a new offset when the pipeliner
-/// generates a new copy of the instruction that refers to a
-/// different memory location.
-void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
- MachineInstr &OldMI, unsigned Num) {
- if (Num == 0)
- return;
- // If the instruction has memory operands, then adjust the offset
- // when the instruction appears in different stages.
- if (NewMI.memoperands_empty())
- return;
- SmallVector<MachineMemOperand *, 2> NewMMOs;
- for (MachineMemOperand *MMO : NewMI.memoperands()) {
- // TODO: Figure out whether isAtomic is really necessary (see D57601).
- if (MMO->isVolatile() || MMO->isAtomic() ||
- (MMO->isInvariant() && MMO->isDereferenceable()) ||
- (!MMO->getValue())) {
- NewMMOs.push_back(MMO);
- continue;
- }
- unsigned Delta;
- if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
- int64_t AdjOffset = Delta * Num;
- NewMMOs.push_back(
- MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
- } else {
- NewMMOs.push_back(
- MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
- }
- }
- NewMI.setMemRefs(MF, NewMMOs);
-}
-
-/// Clone the instruction for the new pipelined loop and update the
-/// memory operands, if needed.
-MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
- unsigned CurStageNum,
- unsigned InstStageNum) {
- MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
- // Check for tied operands in inline asm instructions. This should be handled
- // elsewhere, but I'm not sure of the best solution.
- if (OldMI->isInlineAsm())
- for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
- const auto &MO = OldMI->getOperand(i);
- if (MO.isReg() && MO.isUse())
- break;
- unsigned UseIdx;
- if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
- NewMI->tieOperands(i, UseIdx);
- }
- updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
- return NewMI;
-}
-
-/// Clone the instruction for the new pipelined loop. If needed, this
-/// function updates the instruction using the values saved in the
-/// InstrChanges structure.
-MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
- unsigned CurStageNum,
- unsigned InstStageNum,
- SMSchedule &Schedule) {
- MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(getSUnit(OldMI));
- if (It != InstrChanges.end()) {
- std::pair<unsigned, int64_t> RegAndOffset = It->second;
- unsigned BasePos, OffsetPos;
- if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
- return nullptr;
- int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
- MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
- if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
- NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- }
- updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
- return NewMI;
-}
-
-/// Update the machine instruction with new virtual registers. This
-/// function may change the defintions and/or uses.
-void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
- unsigned CurStageNum,
- unsigned InstrStageNum,
- SMSchedule &Schedule,
- ValueMapTy *VRMap) {
- for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = NewMI->getOperand(i);
- if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
- continue;
- Register reg = MO.getReg();
- if (MO.isDef()) {
- // Create a new virtual register for the definition.
- const TargetRegisterClass *RC = MRI.getRegClass(reg);
- Register NewReg = MRI.createVirtualRegister(RC);
- MO.setReg(NewReg);
- VRMap[CurStageNum][reg] = NewReg;
- if (LastDef)
- replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
- } else if (MO.isUse()) {
- MachineInstr *Def = MRI.getVRegDef(reg);
- // Compute the stage that contains the last definition for instruction.
- int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
- unsigned StageNum = CurStageNum;
- if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
- // Compute the difference in stages between the defintion and the use.
- unsigned StageDiff = (InstrStageNum - DefStageNum);
- // Make an adjustment to get the last definition.
- StageNum -= StageDiff;
- }
- if (VRMap[StageNum].count(reg))
- MO.setReg(VRMap[StageNum][reg]);
- }
- }
-}
-
-/// Return the instruction in the loop that defines the register.
-/// If the definition is a Phi, then follow the Phi operand to
-/// the instruction in the loop.
-MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
- SmallPtrSet<MachineInstr *, 8> Visited;
- MachineInstr *Def = MRI.getVRegDef(Reg);
- while (Def->isPHI()) {
- if (!Visited.insert(Def).second)
- break;
- for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
- if (Def->getOperand(i + 1).getMBB() == BB) {
- Def = MRI.getVRegDef(Def->getOperand(i).getReg());
- break;
- }
- }
- return Def;
-}
-
-/// Return the new name for the value from the previous stage.
-unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
- unsigned LoopVal, unsigned LoopStage,
- ValueMapTy *VRMap,
- MachineBasicBlock *BB) {
- unsigned PrevVal = 0;
- if (StageNum > PhiStage) {
- MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
- if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
- // The name is defined in the previous stage.
- PrevVal = VRMap[StageNum - 1][LoopVal];
- else if (VRMap[StageNum].count(LoopVal))
- // The previous name is defined in the current stage when the instruction
- // order is swapped.
- PrevVal = VRMap[StageNum][LoopVal];
- else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
- // The loop value hasn't yet been scheduled.
- PrevVal = LoopVal;
- else if (StageNum == PhiStage + 1)
- // The loop value is another phi, which has not been scheduled.
- PrevVal = getInitPhiReg(*LoopInst, BB);
- else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
- // The loop value is another phi, which has been scheduled.
- PrevVal =
- getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
- LoopStage, VRMap, BB);
- }
- return PrevVal;
-}
-
-/// Rewrite the Phi values in the specified block to use the mappings
-/// from the initial operand. Once the Phi is scheduled, we switch
-/// to using the loop value instead of the Phi value, so those names
-/// do not need to be rewritten.
-void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
- unsigned StageNum,
- SMSchedule &Schedule,
- ValueMapTy *VRMap,
- InstrMapTy &InstrMap) {
- for (auto &PHI : BB->phis()) {
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(PHI, BB, InitVal, LoopVal);
- Register PhiDef = PHI.getOperand(0).getReg();
-
- unsigned PhiStage =
- (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
- unsigned LoopStage =
- (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
- unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
- if (NumPhis > StageNum)
- NumPhis = StageNum;
- for (unsigned np = 0; np <= NumPhis; ++np) {
- unsigned NewVal =
- getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
- if (!NewVal)
- NewVal = InitVal;
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
- PhiDef, NewVal);
- }
- }
-}
-
-/// Rewrite a previously scheduled instruction to use the register value
-/// from the new instruction. Make sure the instruction occurs in the
-/// basic block, and we don't change the uses in the new instruction.
-void SwingSchedulerDAG::rewriteScheduledInstr(
- MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
- unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
- unsigned NewReg, unsigned PrevReg) {
- bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
- int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
- // Rewrite uses that have been scheduled already to use the new
- // Phi register.
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
- EI = MRI.use_end();
- UI != EI;) {
- MachineOperand &UseOp = *UI;
- MachineInstr *UseMI = UseOp.getParent();
- ++UI;
- if (UseMI->getParent() != BB)
- continue;
- if (UseMI->isPHI()) {
- if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
- continue;
- if (getLoopPhiReg(*UseMI, BB) != OldReg)
- continue;
- }
- InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
- assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
- SUnit *OrigMISU = getSUnit(OrigInstr->second);
- int StageSched = Schedule.stageScheduled(OrigMISU);
- int CycleSched = Schedule.cycleScheduled(OrigMISU);
- unsigned ReplaceReg = 0;
- // This is the stage for the scheduled instruction.
- if (StagePhi == StageSched && Phi->isPHI()) {
- int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
- if (PrevReg && InProlog)
- ReplaceReg = PrevReg;
- else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
- (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
- ReplaceReg = PrevReg;
- else
- ReplaceReg = NewReg;
- }
- // The scheduled instruction occurs before the scheduled Phi, and the
- // Phi is not loop carried.
- if (!InProlog && StagePhi + 1 == StageSched &&
- !Schedule.isLoopCarried(this, *Phi))
- ReplaceReg = NewReg;
- if (StagePhi > StageSched && Phi->isPHI())
- ReplaceReg = NewReg;
- if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
- ReplaceReg = NewReg;
- if (ReplaceReg) {
- MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
- UseOp.setReg(ReplaceReg);
- }
- }
-}
-
/// Check if we can change the instruction to use an offset value from the
/// previous iteration. If so, return true and set the base and offset values
/// so that we can rewrite the load, if necessary.
NewMI->getOperand(OffsetPos).setImm(NewOffset);
SU->setInstr(NewMI);
MISUnitMap[NewMI] = SU;
- NewMIs.insert(NewMI);
+ NewMIs[MI] = NewMI;
}
}
}
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
+MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
/// Return true for an order or output dependence that is loop carried
/// potentially. A dependence is loop carried if the destination defines a valu
/// that may be used or defined by the source in a subsequent iteration.
NewMI->getOperand(OffsetPos).setImm(NewOffset);
SU->setInstr(NewMI);
MISUnitMap[NewMI] = SU;
- NewMIs.insert(NewMI);
+ NewMIs[MI] = NewMI;
}
}
OverlapReg = 0;
ScheduledInstrs[cycle].push_front(*I);
}
}
- // Iterate over the definitions in each instruction, and compute the
- // stage difference for each use. Keep the maximum value.
- for (auto &I : InstrToCycle) {
- int DefStage = stageScheduled(I.first);
- MachineInstr *MI = I.first->getInstr();
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- MachineOperand &Op = MI->getOperand(i);
- if (!Op.isReg() || !Op.isDef())
- continue;
-
- Register Reg = Op.getReg();
- unsigned MaxDiff = 0;
- bool PhiIsSwapped = false;
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
- EI = MRI.use_end();
- UI != EI; ++UI) {
- MachineOperand &UseOp = *UI;
- MachineInstr *UseMI = UseOp.getParent();
- SUnit *SUnitUse = SSD->getSUnit(UseMI);
- int UseStage = stageScheduled(SUnitUse);
- unsigned Diff = 0;
- if (UseStage != -1 && UseStage >= DefStage)
- Diff = UseStage - DefStage;
- if (MI->isPHI()) {
- if (isLoopCarried(SSD, *MI))
- ++Diff;
- else
- PhiIsSwapped = true;
- }
- MaxDiff = std::max(Diff, MaxDiff);
- }
- RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
- }
- }
// Erase all the elements in the later stages. Only one iteration should
// remain in the scheduled list, and it contains all the instructions.
return DFAResources->clearResources();
std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
}
-
--- /dev/null
+//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/ModuloSchedule.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "pipeliner"
+using namespace llvm;
+
+/// Return the register values for the operands of a Phi instruction.
+/// This function assume the instruction is a Phi.
+static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
+ unsigned &InitVal, unsigned &LoopVal) {
+ assert(Phi.isPHI() && "Expecting a Phi.");
+
+ InitVal = 0;
+ LoopVal = 0;
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != Loop)
+ InitVal = Phi.getOperand(i).getReg();
+ else
+ LoopVal = Phi.getOperand(i).getReg();
+
+ assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
+}
+
+/// Return the Phi register value that comes from the incoming block.
+static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return the Phi register value that comes the loop block.
+static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() == LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+void ModuloScheduleExpander::expand() {
+ BB = Schedule.getLoop()->getTopBlock();
+ Preheader = *BB->pred_begin();
+ if (Preheader == BB)
+ Preheader = *std::next(BB->pred_begin());
+
+ // Iterate over the definitions in each instruction, and compute the
+ // stage difference for each use. Keep the maximum value.
+ for (MachineInstr *MI : Schedule.getInstructions()) {
+ int DefStage = Schedule.getStage(MI);
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+
+ Register Reg = Op.getReg();
+ unsigned MaxDiff = 0;
+ bool PhiIsSwapped = false;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ int UseStage = Schedule.getStage(UseMI);
+ unsigned Diff = 0;
+ if (UseStage != -1 && UseStage >= DefStage)
+ Diff = UseStage - DefStage;
+ if (MI->isPHI()) {
+ if (isLoopCarried(*MI))
+ ++Diff;
+ else
+ PhiIsSwapped = true;
+ }
+ MaxDiff = std::max(Diff, MaxDiff);
+ }
+ RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
+ }
+ }
+
+ generatePipelinedLoop();
+}
+
+void ModuloScheduleExpander::generatePipelinedLoop() {
+ // Create a new basic block for the kernel and add it to the CFG.
+ MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+
+ unsigned MaxStageCount = Schedule.getNumStages() - 1;
+
+ // Remember the registers that are used in different stages. The index is
+ // the iteration, or stage, that the instruction is scheduled in. This is
+ // a map between register names in the original block and the names created
+ // in each stage of the pipelined loop.
+ ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
+ InstrMapTy InstrMap;
+
+ SmallVector<MachineBasicBlock *, 4> PrologBBs;
+
+ // Generate the prolog instructions that set up the pipeline.
+ generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
+ MF.insert(BB->getIterator(), KernelBB);
+
+ // Rearrange the instructions to generate the new, pipelined loop,
+ // and update register names as needed.
+ for (MachineInstr *CI : Schedule.getInstructions()) {
+ if (CI->isPHI())
+ continue;
+ unsigned StageNum = Schedule.getStage(CI);
+ MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
+ updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = CI;
+ }
+
+ // Copy any terminator instructions to the new kernel, and update
+ // names as needed.
+ for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
+ E = BB->instr_end();
+ I != E; ++I) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
+ updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = &*I;
+ }
+
+ KernelBB->transferSuccessors(BB);
+ KernelBB->replaceSuccessor(BB, KernelBB);
+
+ generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
+ InstrMap, MaxStageCount, MaxStageCount, false);
+ generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
+ MaxStageCount, MaxStageCount, false);
+
+ LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
+
+ SmallVector<MachineBasicBlock *, 4> EpilogBBs;
+ // Generate the epilog instructions to complete the pipeline.
+ generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
+
+ // We need this step because the register allocation doesn't handle some
+ // situations well, so we insert copies to help out.
+ splitLifetimes(KernelBB, EpilogBBs);
+
+ // Remove dead instructions due to loop induction variables.
+ removeDeadInstructions(KernelBB, EpilogBBs);
+
+ // Add branches between prolog and epilog blocks.
+ addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
+
+ // Remove the original loop since it's no longer referenced.
+ for (auto &I : *BB)
+ LIS.RemoveMachineInstrFromMaps(I);
+ BB->clear();
+ BB->eraseFromParent();
+
+ delete[] VRMap;
+}
+
+/// Generate the pipeline prolog code.
+void ModuloScheduleExpander::generateProlog(unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs) {
+ MachineBasicBlock *PredBB = Preheader;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which will be generated in the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ for (unsigned i = 0; i < LastStage; ++i) {
+ // Create and insert the prolog basic block prior to the original loop
+ // basic block. The original loop is removed later.
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+ PrologBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+ NewBB->transferSuccessors(PredBB);
+ PredBB->addSuccessor(NewBB);
+ PredBB = NewBB;
+
+ // Generate instructions for each appropriate stage. Process instructions
+ // in original program order.
+ for (int StageNum = i; StageNum >= 0; --StageNum) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstTerminator();
+ BBI != BBE; ++BBI) {
+ if (Schedule.getStage(&*BBI) == StageNum) {
+ if (BBI->isPHI())
+ continue;
+ MachineInstr *NewMI =
+ cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
+ updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = &*BBI;
+ }
+ }
+ }
+ rewritePhiValues(NewBB, i, VRMap, InstrMap);
+ LLVM_DEBUG({
+ dbgs() << "prolog:\n";
+ NewBB->dump();
+ });
+ }
+
+ PredBB->replaceSuccessor(BB, KernelBB);
+
+ // Check if we need to remove the branch from the preheader to the original
+ // loop, and replace it with a branch to the new loop.
+ unsigned numBranches = TII->removeBranch(*Preheader);
+ if (numBranches) {
+ SmallVector<MachineOperand, 0> Cond;
+ TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
+ }
+}
+
+/// Generate the pipeline epilog code. The epilog code finishes the iterations
+/// that were started in either the prolog or the kernel. We create a basic
+/// block for each stage that needs to complete.
+void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs,
+ MBBVectorTy &PrologBBs) {
+ // We need to change the branch from the kernel to the first epilog block, so
+ // this call to analyze branch uses the kernel rather than the original BB.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
+ assert(!checkBranch && "generateEpilog must be able to analyze the branch");
+ if (checkBranch)
+ return;
+
+ MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
+ if (*LoopExitI == KernelBB)
+ ++LoopExitI;
+ assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
+ MachineBasicBlock *LoopExitBB = *LoopExitI;
+
+ MachineBasicBlock *PredBB = KernelBB;
+ MachineBasicBlock *EpilogStart = LoopExitBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which was generated for the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ int EpilogStage = LastStage + 1;
+ for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
+ EpilogBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+
+ PredBB->replaceSuccessor(LoopExitBB, NewBB);
+ NewBB->addSuccessor(LoopExitBB);
+
+ if (EpilogStart == LoopExitBB)
+ EpilogStart = NewBB;
+
+ // Add instructions to the epilog depending on the current block.
+ // Process instructions in original program order.
+ for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
+ for (auto &BBI : *BB) {
+ if (BBI.isPHI())
+ continue;
+ MachineInstr *In = &BBI;
+ if ((unsigned)Schedule.getStage(In) == StageNum) {
+ // Instructions with memoperands in the epilog are updated with
+ // conservative values.
+ MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
+ updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = In;
+ }
+ }
+ }
+ generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
+ InstrMap, LastStage, EpilogStage, i == 1);
+ generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
+ LastStage, EpilogStage, i == 1);
+ PredBB = NewBB;
+
+ LLVM_DEBUG({
+ dbgs() << "epilog:\n";
+ NewBB->dump();
+ });
+ }
+
+ // Fix any Phi nodes in the loop exit block.
+ LoopExitBB->replacePhiUsesWith(BB, PredBB);
+
+ // Create a branch to the new epilog from the kernel.
+ // Remove the original branch and add a new branch to the epilog.
+ TII->removeBranch(*KernelBB);
+ TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
+ // Add a branch to the loop exit.
+ if (EpilogBBs.size() > 0) {
+ MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
+ SmallVector<MachineOperand, 4> Cond1;
+ TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
+ }
+}
+
+/// Replace all uses of FromReg that appear outside the specified
+/// basic block with ToReg.
+static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
+ MachineBasicBlock *MBB,
+ MachineRegisterInfo &MRI,
+ LiveIntervals &LIS) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
+ E = MRI.use_end();
+ I != E;) {
+ MachineOperand &O = *I;
+ ++I;
+ if (O.getParent()->getParent() != MBB)
+ O.setReg(ToReg);
+ }
+ if (!LIS.hasInterval(ToReg))
+ LIS.createEmptyInterval(ToReg);
+}
+
+/// Return true if the register has a use that occurs outside the
+/// specified loop.
+static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
+ MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
+ E = MRI.use_end();
+ I != E; ++I)
+ if (I->getParent()->getParent() != BB)
+ return true;
+ return false;
+}
+
+/// Generate Phis for the specific block in the generated pipelined code.
+/// This function looks at the Phis from the original code to guide the
+/// creation of new Phis.
+void ModuloScheduleExpander::generateExistingPhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
+ // Compute the stage number for the initial value of the Phi, which
+ // comes from the prolog. The prolog to use depends on to which kernel/
+ // epilog that we're adding the Phi.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ bool InKernel = (LastStageNum == CurStageNum);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - (CurStageNum - LastStageNum);
+ PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ Register Def = BBI->getOperand(0).getReg();
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+
+ unsigned PhiOp1 = 0;
+ // The Phi value from the loop body typically is defined in the loop, but
+ // not always. So, we need to check if the value is defined in the loop.
+ unsigned PhiOp2 = LoopVal;
+ if (VRMap[LastStageNum].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum][LoopVal];
+
+ int StageScheduled = Schedule.getStage(&*BBI);
+ int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
+ unsigned NumStages = getStagesForReg(Def, CurStageNum);
+ if (NumStages == 0) {
+ // We don't need to generate a Phi anymore, but we need to rename any uses
+ // of the Phi value.
+ unsigned NewReg = VRMap[PrevStage][LoopVal];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
+ InitVal, NewReg);
+ if (VRMap[CurStageNum].count(LoopVal))
+ VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
+ }
+ // Adjust the number of Phis needed depending on the number of prologs left,
+ // and the distance from where the Phi is first scheduled. The number of
+ // Phis cannot exceed the number of prolog stages. Each stage can
+ // potentially define two values.
+ unsigned MaxPhis = PrologStage + 2;
+ if (!InKernel && (int)PrologStage <= LoopValStage)
+ MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
+ unsigned NumPhis = std::min(NumStages, MaxPhis);
+
+ unsigned NewReg = 0;
+ unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
+ // In the epilog, we may need to look back one stage to get the correct
+ // Phi name because the epilog and prolog blocks execute the same stage.
+ // The correct name is from the previous block only when the Phi has
+ // been completely scheduled prior to the epilog, and Phi value is not
+ // needed in multiple stages.
+ int StageDiff = 0;
+ if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
+ NumPhis == 1)
+ StageDiff = 1;
+ // Adjust the computations below when the phi and the loop definition
+ // are scheduled in different stages.
+ if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiff = StageScheduled - LoopValStage;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ // If the Phi hasn't been scheduled, then use the initial Phi operand
+ // value. Otherwise, use the scheduled version of the instruction. This
+ // is a little complicated when a Phi references another Phi.
+ if (np > PrologStage || StageScheduled >= (int)LastStageNum)
+ PhiOp1 = InitVal;
+ // Check if the Phi has already been scheduled in a prolog stage.
+ else if (PrologStage >= AccessStage + StageDiff + np &&
+ VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
+ PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
+ // Check if the Phi has already been scheduled, but the loop instruction
+ // is either another Phi, or doesn't occur in the loop.
+ else if (PrologStage >= AccessStage + StageDiff + np) {
+ // If the Phi references another Phi, we need to examine the other
+ // Phi to get the correct value.
+ PhiOp1 = LoopVal;
+ MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
+ int Indirects = 1;
+ while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
+ int PhiStage = Schedule.getStage(InstOp1);
+ if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
+ PhiOp1 = getInitPhiReg(*InstOp1, BB);
+ else
+ PhiOp1 = getLoopPhiReg(*InstOp1, BB);
+ InstOp1 = MRI.getVRegDef(PhiOp1);
+ int PhiOpStage = Schedule.getStage(InstOp1);
+ int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
+ if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
+ VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
+ PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
+ break;
+ }
+ ++Indirects;
+ }
+ } else
+ PhiOp1 = InitVal;
+ // If this references a generated Phi in the kernel, get the Phi operand
+ // from the incoming block.
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+
+ MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
+ bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
+ // In the epilog, a map lookup is needed to get the value from the kernel,
+ // or previous epilog block. How is does this depends on if the
+ // instruction is scheduled in the previous block.
+ if (!InKernel) {
+ int StageDiffAdj = 0;
+ if (LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiffAdj = StageScheduled - LoopValStage;
+ // Use the loop value defined in the kernel, unless the kernel
+ // contains the last definition of the Phi.
+ if (np == 0 && PrevStage == LastStageNum &&
+ (StageScheduled != 0 || LoopValStage != 0) &&
+ VRMap[PrevStage - StageDiffAdj].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
+ // Use the value defined by the Phi. We add one because we switch
+ // from looking at the loop value to the Phi definition.
+ else if (np > 0 && PrevStage == LastStageNum &&
+ VRMap[PrevStage - np + 1].count(Def))
+ PhiOp2 = VRMap[PrevStage - np + 1][Def];
+ // Use the loop value defined in the kernel.
+ else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
+ VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
+ // Use the value defined by the Phi, unless we're generating the first
+ // epilog and the Phi refers to a Phi in a different stage.
+ else if (VRMap[PrevStage - np].count(Def) &&
+ (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
+ (LoopValStage == StageScheduled)))
+ PhiOp2 = VRMap[PrevStage - np][Def];
+ }
+
+ // Check if we can reuse an existing Phi. This occurs when a Phi
+ // references another Phi, and the other Phi is scheduled in an
+ // earlier stage. We can try to reuse an existing Phi up until the last
+ // stage of the current Phi.
+ if (LoopDefIsPhi) {
+ if (static_cast<int>(PrologStage - np) >= StageScheduled) {
+ int LVNumStages = getStagesForPhi(LoopVal);
+ int StageDiff = (StageScheduled - LoopValStage);
+ LVNumStages -= StageDiff;
+ // Make sure the loop value Phi has been processed already.
+ if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
+ NewReg = PhiOp2;
+ unsigned ReuseStage = CurStageNum;
+ if (isLoopCarried(*PhiInst))
+ ReuseStage -= LVNumStages;
+ // Check if the Phi to reuse has been generated yet. If not, then
+ // there is nothing to reuse.
+ if (VRMap[ReuseStage - np].count(LoopVal)) {
+ NewReg = VRMap[ReuseStage - np][LoopVal];
+
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
+ Def, NewReg);
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ PhiOp2 = NewReg;
+ if (VRMap[LastStageNum - np - 1].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
+
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ continue;
+ }
+ }
+ }
+ if (InKernel && StageDiff > 0 &&
+ VRMap[CurStageNum - StageDiff - np].count(LoopVal))
+ PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
+ }
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // We define the Phis after creating the new pipelined code, so
+ // we need to rename the Phi values in scheduled instructions.
+
+ unsigned PrevReg = 0;
+ if (InKernel && VRMap[PrevStage - np].count(LoopVal))
+ PrevReg = VRMap[PrevStage - np][LoopVal];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
+ NewReg, PrevReg);
+ // If the Phi has been scheduled, use the new name for rewriting.
+ if (VRMap[CurStageNum - np].count(Def)) {
+ unsigned R = VRMap[CurStageNum - np][Def];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
+ NewReg);
+ }
+
+ // Check if we need to rename any uses that occurs after the loop. The
+ // register to replace depends on whether the Phi is scheduled in the
+ // epilog.
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+
+ // In the kernel, a dependent Phi uses the value from this Phi.
+ if (InKernel)
+ PhiOp2 = NewReg;
+
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ }
+
+ while (NumPhis++ < NumStages) {
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
+ NewReg, 0);
+ }
+
+ // Check if we need to rename a Phi that has been eliminated due to
+ // scheduling.
+ if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
+ replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
+ }
+}
+
+/// Generate Phis for the specified block in the generated pipelined code.
+/// These are new Phis needed because the definition is scheduled after the
+/// use in the pipelined sequence.
+void ModuloScheduleExpander::generatePhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
+ // Compute the stage number that contains the initial Phi value, and
+ // the Phi from the previous stage.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ unsigned StageDiff = CurStageNum - LastStageNum;
+ bool InKernel = (StageDiff == 0);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - StageDiff;
+ PrevStage = LastStageNum + StageDiff - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
+ BBE = BB->instr_end();
+ BBI != BBE; ++BBI) {
+ for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = BBI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() ||
+ !Register::isVirtualRegister(MO.getReg()))
+ continue;
+
+ int StageScheduled = Schedule.getStage(&*BBI);
+ assert(StageScheduled != -1 && "Expecting scheduled instruction.");
+ Register Def = MO.getReg();
+ unsigned NumPhis = getStagesForReg(Def, CurStageNum);
+ // An instruction scheduled in stage 0 and is used after the loop
+ // requires a phi in the epilog for the last definition from either
+ // the kernel or prolog.
+ if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
+ hasUseAfterLoop(Def, BB, MRI))
+ NumPhis = 1;
+ if (!InKernel && (unsigned)StageScheduled > PrologStage)
+ continue;
+
+ unsigned PhiOp2 = VRMap[PrevStage][Def];
+ if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
+ if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
+ PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
+ // The number of Phis can't exceed the number of prolog stages. The
+ // prolog stage number is zero based.
+ if (NumPhis > PrologStage + 1 - StageScheduled)
+ NumPhis = PrologStage + 1 - StageScheduled;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ unsigned PhiOp1 = VRMap[PrologStage][Def];
+ if (np <= PrologStage)
+ PhiOp1 = VRMap[PrologStage - np][Def];
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+ if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
+ }
+ if (!InKernel)
+ PhiOp2 = VRMap[PrevStage - np][Def];
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ Register NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // Rewrite uses and update the map. The actions depend upon whether
+ // we generating code for the kernel or epilog blocks.
+ if (InKernel) {
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
+ NewReg);
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
+ NewReg);
+
+ PhiOp2 = NewReg;
+ VRMap[PrevStage - np - 1][Def] = NewReg;
+ } else {
+ VRMap[CurStageNum - np][Def] = NewReg;
+ if (np == NumPhis - 1)
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
+ NewReg);
+ }
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ }
+ }
+ }
+}
+
+/// Remove instructions that generate values with no uses.
+/// Typically, these are induction variable operations that generate values
+/// used in the loop itself. A dead instruction has a definition with
+/// no uses, or uses that occur in the original loop only.
+void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ // For each epilog block, check that the value defined by each instruction
+ // is used. If not, delete it.
+ for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
+ MBE = EpilogBBs.rend();
+ MBB != MBE; ++MBB)
+ for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
+ ME = (*MBB)->instr_rend();
+ MI != ME;) {
+ // From DeadMachineInstructionElem. Don't delete inline assembly.
+ if (MI->isInlineAsm()) {
+ ++MI;
+ continue;
+ }
+ bool SawStore = false;
+ // Check if it's safe to remove the instruction due to side effects.
+ // We can, and want to, remove Phis here.
+ if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
+ ++MI;
+ continue;
+ }
+ bool used = true;
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ Register reg = MOI->getReg();
+ // Assume physical registers are used, unless they are marked dead.
+ if (Register::isPhysicalRegister(reg)) {
+ used = !MOI->isDead();
+ if (used)
+ break;
+ continue;
+ }
+ unsigned realUses = 0;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ // Check if there are any uses that occur only in the original
+ // loop. If so, that's not a real use.
+ if (UI->getParent()->getParent() != BB) {
+ realUses++;
+ used = true;
+ break;
+ }
+ }
+ if (realUses > 0)
+ break;
+ used = false;
+ }
+ if (!used) {
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI++->eraseFromParent();
+ continue;
+ }
+ ++MI;
+ }
+ // In the kernel block, check if we can remove a Phi that generates a value
+ // used in an instruction removed in the epilog block.
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBE = KernelBB->getFirstNonPHI();
+ BBI != BBE;) {
+ MachineInstr *MI = &*BBI;
+ ++BBI;
+ Register reg = MI->getOperand(0).getReg();
+ if (MRI.use_begin(reg) == MRI.use_end()) {
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ }
+ }
+}
+
+/// For loop carried definitions, we split the lifetime of a virtual register
+/// that has uses past the definition in the next iteration. A copy with a new
+/// virtual register is inserted before the definition, which helps with
+/// generating a better register assignment.
+///
+/// v1 = phi(a, v2) v1 = phi(a, v2)
+/// v2 = phi(b, v3) v2 = phi(b, v3)
+/// v3 = .. v4 = copy v1
+/// .. = V1 v3 = ..
+/// .. = v4
+void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (auto &PHI : KernelBB->phis()) {
+ Register Def = PHI.getOperand(0).getReg();
+ // Check for any Phi definition that used as an operand of another Phi
+ // in the same block.
+ for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
+ E = MRI.use_instr_end();
+ I != E; ++I) {
+ if (I->isPHI() && I->getParent() == KernelBB) {
+ // Get the loop carried definition.
+ unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
+ if (!LCDef)
+ continue;
+ MachineInstr *MI = MRI.getVRegDef(LCDef);
+ if (!MI || MI->getParent() != KernelBB || MI->isPHI())
+ continue;
+ // Search through the rest of the block looking for uses of the Phi
+ // definition. If one occurs, then split the lifetime.
+ unsigned SplitReg = 0;
+ for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
+ KernelBB->instr_end()))
+ if (BBJ.readsRegister(Def)) {
+ // We split the lifetime when we find the first use.
+ if (SplitReg == 0) {
+ SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
+ BuildMI(*KernelBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), SplitReg)
+ .addReg(Def);
+ }
+ BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
+ }
+ if (!SplitReg)
+ continue;
+ // Search through each of the epilog blocks for any uses to be renamed.
+ for (auto &Epilog : EpilogBBs)
+ for (auto &I : *Epilog)
+ if (I.readsRegister(Def))
+ I.substituteRegister(Def, SplitReg, 0, *TRI);
+ break;
+ }
+ }
+ }
+}
+
+/// Remove the incoming block from the Phis in a basic block.
+static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
+ for (MachineInstr &MI : *BB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
+ if (MI.getOperand(i + 1).getMBB() == Incoming) {
+ MI.RemoveOperand(i + 1);
+ MI.RemoveOperand(i);
+ break;
+ }
+ }
+}
+
+/// Create branches from each prolog basic block to the appropriate epilog
+/// block. These edges are needed if the loop ends before reaching the
+/// kernel.
+void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
+ MBBVectorTy &PrologBBs,
+ MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ ValueMapTy *VRMap) {
+ assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
+ MachineInstr *IndVar;
+ MachineInstr *Cmp;
+ if (TII->analyzeLoop(*Schedule.getLoop(), IndVar, Cmp))
+ llvm_unreachable("Must be able to analyze loop!");
+ MachineBasicBlock *LastPro = KernelBB;
+ MachineBasicBlock *LastEpi = KernelBB;
+
+ // Start from the blocks connected to the kernel and work "out"
+ // to the first prolog and the last epilog blocks.
+ SmallVector<MachineInstr *, 4> PrevInsts;
+ unsigned MaxIter = PrologBBs.size() - 1;
+ unsigned LC = UINT_MAX;
+ unsigned LCMin = UINT_MAX;
+ for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
+ // Add branches to the prolog that go to the corresponding
+ // epilog, and the fall-thru prolog/kernel block.
+ MachineBasicBlock *Prolog = PrologBBs[j];
+ MachineBasicBlock *Epilog = EpilogBBs[i];
+ // We've executed one iteration, so decrement the loop count and check for
+ // the loop end.
+ SmallVector<MachineOperand, 4> Cond;
+ // Check if the LOOP0 has already been removed. If so, then there is no need
+ // to reduce the trip count.
+ if (LC != 0)
+ LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond,
+ PrevInsts, j, MaxIter);
+
+ // Record the value of the first trip count, which is used to determine if
+ // branches and blocks can be removed for constant trip counts.
+ if (LCMin == UINT_MAX)
+ LCMin = LC;
+
+ unsigned numAdded = 0;
+ if (Register::isVirtualRegister(LC)) {
+ Prolog->addSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
+ } else if (j >= LCMin) {
+ Prolog->addSuccessor(Epilog);
+ Prolog->removeSuccessor(LastPro);
+ LastEpi->removeSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, LastEpi);
+ // Remove the blocks that are no longer referenced.
+ if (LastPro != LastEpi) {
+ LastEpi->clear();
+ LastEpi->eraseFromParent();
+ }
+ LastPro->clear();
+ LastPro->eraseFromParent();
+ } else {
+ numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, Prolog);
+ }
+ LastPro = Prolog;
+ LastEpi = Epilog;
+ for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
+ E = Prolog->instr_rend();
+ I != E && numAdded > 0; ++I, --numAdded)
+ updateInstruction(&*I, false, j, 0, VRMap);
+ }
+}
+
+/// Return true if we can compute the amount the instruction changes
+/// during each iteration. Set Delta to the amount of the change.
+bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ const MachineOperand *BaseOp;
+ int64_t Offset;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
+ return false;
+
+ if (!BaseOp->isReg())
+ return false;
+
+ Register BaseReg = BaseOp->getReg();
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ // Check if there is a Phi. If so, get the definition in the loop.
+ MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
+ if (BaseDef && BaseDef->isPHI()) {
+ BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
+ BaseDef = MRI.getVRegDef(BaseReg);
+ }
+ if (!BaseDef)
+ return false;
+
+ int D = 0;
+ if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
+ return false;
+
+ Delta = D;
+ return true;
+}
+
+/// Update the memory operand with a new offset when the pipeliner
+/// generates a new copy of the instruction that refers to a
+/// different memory location.
+void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
+ MachineInstr &OldMI,
+ unsigned Num) {
+ if (Num == 0)
+ return;
+ // If the instruction has memory operands, then adjust the offset
+ // when the instruction appears in different stages.
+ if (NewMI.memoperands_empty())
+ return;
+ SmallVector<MachineMemOperand *, 2> NewMMOs;
+ for (MachineMemOperand *MMO : NewMI.memoperands()) {
+ // TODO: Figure out whether isAtomic is really necessary (see D57601).
+ if (MMO->isVolatile() || MMO->isAtomic() ||
+ (MMO->isInvariant() && MMO->isDereferenceable()) ||
+ (!MMO->getValue())) {
+ NewMMOs.push_back(MMO);
+ continue;
+ }
+ unsigned Delta;
+ if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
+ int64_t AdjOffset = Delta * Num;
+ NewMMOs.push_back(
+ MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
+ } else {
+ NewMMOs.push_back(
+ MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
+ }
+ }
+ NewMI.setMemRefs(MF, NewMMOs);
+}
+
+/// Clone the instruction for the new pipelined loop and update the
+/// memory operands, if needed.
+MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ // Check for tied operands in inline asm instructions. This should be handled
+ // elsewhere, but I'm not sure of the best solution.
+ if (OldMI->isInlineAsm())
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ const auto &MO = OldMI->getOperand(i);
+ if (MO.isReg() && MO.isUse())
+ break;
+ unsigned UseIdx;
+ if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
+ NewMI->tieOperands(i, UseIdx);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Clone the instruction for the new pipelined loop. If needed, this
+/// function updates the instruction using the values saved in the
+/// InstrChanges structure.
+MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
+ MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ auto It = InstrChanges.find(OldMI);
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
+ return nullptr;
+ int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
+ MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
+ if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
+ NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Update the machine instruction with new virtual registers. This
+/// function may change the defintions and/or uses.
+void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
+ bool LastDef,
+ unsigned CurStageNum,
+ unsigned InstrStageNum,
+ ValueMapTy *VRMap) {
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
+ continue;
+ Register reg = MO.getReg();
+ if (MO.isDef()) {
+ // Create a new virtual register for the definition.
+ const TargetRegisterClass *RC = MRI.getRegClass(reg);
+ Register NewReg = MRI.createVirtualRegister(RC);
+ MO.setReg(NewReg);
+ VRMap[CurStageNum][reg] = NewReg;
+ if (LastDef)
+ replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
+ } else if (MO.isUse()) {
+ MachineInstr *Def = MRI.getVRegDef(reg);
+ // Compute the stage that contains the last definition for instruction.
+ int DefStageNum = Schedule.getStage(Def);
+ unsigned StageNum = CurStageNum;
+ if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
+ // Compute the difference in stages between the defintion and the use.
+ unsigned StageDiff = (InstrStageNum - DefStageNum);
+ // Make an adjustment to get the last definition.
+ StageNum -= StageDiff;
+ }
+ if (VRMap[StageNum].count(reg))
+ MO.setReg(VRMap[StageNum][reg]);
+ }
+ }
+}
+
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
+MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
+/// Return the new name for the value from the previous stage.
+unsigned ModuloScheduleExpander::getPrevMapVal(
+ unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
+ ValueMapTy *VRMap, MachineBasicBlock *BB) {
+ unsigned PrevVal = 0;
+ if (StageNum > PhiStage) {
+ MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
+ if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
+ // The name is defined in the previous stage.
+ PrevVal = VRMap[StageNum - 1][LoopVal];
+ else if (VRMap[StageNum].count(LoopVal))
+ // The previous name is defined in the current stage when the instruction
+ // order is swapped.
+ PrevVal = VRMap[StageNum][LoopVal];
+ else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
+ // The loop value hasn't yet been scheduled.
+ PrevVal = LoopVal;
+ else if (StageNum == PhiStage + 1)
+ // The loop value is another phi, which has not been scheduled.
+ PrevVal = getInitPhiReg(*LoopInst, BB);
+ else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
+ // The loop value is another phi, which has been scheduled.
+ PrevVal =
+ getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
+ LoopStage, VRMap, BB);
+ }
+ return PrevVal;
+}
+
+/// Rewrite the Phi values in the specified block to use the mappings
+/// from the initial operand. Once the Phi is scheduled, we switch
+/// to using the loop value instead of the Phi value, so those names
+/// do not need to be rewritten.
+void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
+ unsigned StageNum,
+ ValueMapTy *VRMap,
+ InstrMapTy &InstrMap) {
+ for (auto &PHI : BB->phis()) {
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(PHI, BB, InitVal, LoopVal);
+ Register PhiDef = PHI.getOperand(0).getReg();
+
+ unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
+ unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
+ unsigned NumPhis = getStagesForPhi(PhiDef);
+ if (NumPhis > StageNum)
+ NumPhis = StageNum;
+ for (unsigned np = 0; np <= NumPhis; ++np) {
+ unsigned NewVal =
+ getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
+ if (!NewVal)
+ NewVal = InitVal;
+ rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
+ NewVal);
+ }
+ }
+}
+
+/// Rewrite a previously scheduled instruction to use the register value
+/// from the new instruction. Make sure the instruction occurs in the
+/// basic block, and we don't change the uses in the new instruction.
+void ModuloScheduleExpander::rewriteScheduledInstr(
+ MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
+ unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
+ unsigned PrevReg) {
+ bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
+ int StagePhi = Schedule.getStage(Phi) + PhiNum;
+ // Rewrite uses that have been scheduled already to use the new
+ // Phi register.
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
+ EI = MRI.use_end();
+ UI != EI;) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ ++UI;
+ if (UseMI->getParent() != BB)
+ continue;
+ if (UseMI->isPHI()) {
+ if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
+ continue;
+ if (getLoopPhiReg(*UseMI, BB) != OldReg)
+ continue;
+ }
+ InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
+ assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
+ MachineInstr *OrigMI = OrigInstr->second;
+ int StageSched = Schedule.getStage(OrigMI);
+ int CycleSched = Schedule.getCycle(OrigMI);
+ unsigned ReplaceReg = 0;
+ // This is the stage for the scheduled instruction.
+ if (StagePhi == StageSched && Phi->isPHI()) {
+ int CyclePhi = Schedule.getCycle(Phi);
+ if (PrevReg && InProlog)
+ ReplaceReg = PrevReg;
+ else if (PrevReg && !isLoopCarried(*Phi) &&
+ (CyclePhi <= CycleSched || OrigMI->isPHI()))
+ ReplaceReg = PrevReg;
+ else
+ ReplaceReg = NewReg;
+ }
+ // The scheduled instruction occurs before the scheduled Phi, and the
+ // Phi is not loop carried.
+ if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
+ ReplaceReg = NewReg;
+ if (StagePhi > StageSched && Phi->isPHI())
+ ReplaceReg = NewReg;
+ if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
+ ReplaceReg = NewReg;
+ if (ReplaceReg) {
+ MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
+ UseOp.setReg(ReplaceReg);
+ }
+ }
+}
+
+bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
+ if (!Phi.isPHI())
+ return false;
+ unsigned DefCycle = Schedule.getCycle(&Phi);
+ int DefStage = Schedule.getStage(&Phi);
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
+ MachineInstr *Use = MRI.getVRegDef(LoopVal);
+ if (!Use || Use->isPHI())
+ return true;
+ unsigned LoopCycle = Schedule.getCycle(Use);
+ int LoopStage = Schedule.getStage(Use);
+ return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
+}