The initial probe index is computed as hash mod the table size. Subsequent
probe indices are computed as explained in Objects/dictobject.c.
-To improve cache locality, each probe is done in pairs.
-After the probe is examined, an adjacent entry is then examined as well.
-The likelihood is that an adjacent entry is in the same cache line and
-can be examined more cheaply than another probe elsewhere in memory.
+To improve cache locality, each probe inspects nearby entries before
+moving on to probes elsewhere in memory. Depending on alignment and the
+size of a cache line, the nearby entries are cheaper to inspect than
+other probes elsewhere in memory. This probe strategy reduces the cost
+of hash collisions.
All arithmetic on hash should ignore overflow.
if (entry->key == dummy && freeslot == NULL)
freeslot = entry;
+ entry = &table[j ^ 2];
+ if (entry->key == NULL)
+ break;
+ if (entry->key == key)
+ return entry;
+ if (entry->hash == hash && entry->key != dummy) {
+ PyObject *startkey = entry->key;
+ Py_INCREF(startkey);
+ cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
+ Py_DECREF(startkey);
+ if (cmp < 0)
+ return NULL;
+ if (table != so->table || entry->key != startkey)
+ return set_lookkey(so, key, hash);
+ if (cmp > 0)
+ return entry;
+ }
+ if (entry->key == dummy && freeslot == NULL)
+ freeslot = entry;
+
i = i * 5 + perturb + 1;
j = i & mask;
perturb >>= PERTURB_SHIFT;
if (entry->key == dummy && freeslot == NULL)
freeslot = entry;
+ entry = &table[j ^ 2];
+ if (entry->key == NULL)
+ break;
+ if (entry->key == key
+ || (entry->hash == hash
+ && entry->key != dummy
+ && unicode_eq(entry->key, key)))
+ return entry;
+ if (entry->key == dummy && freeslot == NULL)
+ freeslot = entry;
+
i = i * 5 + perturb + 1;
j = i & mask;
perturb >>= PERTURB_SHIFT;
if (entry->key == NULL)
break;
entry = &table[j ^ 1];
+ if (entry->key == NULL)
+ break;
+ entry = &table[j ^ 2];
if (entry->key == NULL)
break;
i = i * 5 + perturb + 1;