#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
-#include <math.h>
+#include <cmath>
// ICU PATCH: Customize header file paths for ICU.
namespace double_conversion {
Bignum::Bignum()
- : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
+ : bigits_buffer_(), bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
for (int i = 0; i < kBigitCapacity; ++i) {
bigits_[i] = 0;
}
mask >>= 2;
uint64_t this_value = base;
- bool delayed_multipliciation = false;
+ bool delayed_multiplication = false;
const uint64_t max_32bits = 0xFFFFFFFF;
while (mask != 0 && this_value <= max_32bits) {
this_value = this_value * this_value;
// Verify that there is enough space in this_value to perform the
// multiplication. The first bit_size bits must be 0.
if ((power_exponent & mask) != 0) {
+ ASSERT(bit_size > 0);
uint64_t base_bits_mask =
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
bool high_bits_zero = (this_value & base_bits_mask) == 0;
if (high_bits_zero) {
this_value *= base;
} else {
- delayed_multipliciation = true;
+ delayed_multiplication = true;
}
}
mask >>= 1;
}
AssignUInt64(this_value);
- if (delayed_multipliciation) {
+ if (delayed_multiplication) {
MultiplyByUInt32(base);
}
// The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
int exponent_;
- DISALLOW_COPY_AND_ASSIGN(Bignum);
+ DC_DISALLOW_COPY_AND_ASSIGN(Bignum);
};
} // namespace double_conversion
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
-#include <stdarg.h>
-#include <limits.h>
-#include <math.h>
+#include <climits>
+#include <cmath>
+#include <cstdarg>
// ICU PATCH: Customize header file paths for ICU.
(biased_exponent << kPhysicalSignificandSize);
}
- DISALLOW_COPY_AND_ASSIGN(Double);
+ DC_DISALLOW_COPY_AND_ASSIGN(Double);
};
class Single {
const uint32_t d32_;
- DISALLOW_COPY_AND_ASSIGN(Single);
+ DC_DISALLOW_COPY_AND_ASSIGN(Single);
};
} // namespace double_conversion
#ifndef DOUBLE_CONVERSION_UTILS_H_
#define DOUBLE_CONVERSION_UTILS_H_
-#include <stdlib.h>
-#include <string.h>
+#include <cstdlib>
+#include <cstring>
// ICU PATCH: Use U_ASSERT instead of <assert.h>
#include "uassert.h"
// the output of the division with the expected result. (Inlining must be
// disabled.)
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
-// ICU PATCH: Enable ARM32 & ARM64 builds for Windows with 'defined(_M_ARM) || defined(_M_ARM64)'.
+//
+// For example:
+/*
+// -- in div.c
+double Div_double(double x, double y) { return x / y; }
+
+// -- in main.c
+double Div_double(double x, double y); // Forward declaration.
+
+int main(int argc, char** argv) {
+ return Div_double(89255.0, 1e22) == 89255e-22;
+}
+*/
+// Run as follows ./main || echo "correct"
+//
+// If it prints "correct" then the architecture should be here, in the "correct" section.
#if defined(_M_X64) || defined(__x86_64__) || \
defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
defined(__hppa__) || defined(__ia64__) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
defined(_MIPS_ARCH_MIPS32R2) || \
- defined(__AARCH64EL__) || defined(__aarch64__) || \
- defined(__riscv)
+ defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
+ defined(__riscv) || \
+ defined(__or1k__) || defined(__arc__) || \
+ defined(__EMSCRIPTEN__)
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
-#elif defined(__mc68000__)
+#elif defined(__mc68000__) || \
+ defined(__pnacl__) || defined(__native_client__)
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#if defined(_WIN32)
#error Target architecture was not detected as supported by Double-Conversion.
#endif
-#if defined(__GNUC__)
-#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
-#else
-#define DOUBLE_CONVERSION_UNUSED
-#endif
-
#if defined(_WIN32) && !defined(__MINGW32__)
typedef signed char int8_t;
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class
-#ifndef DISALLOW_COPY_AND_ASSIGN
-#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
+#ifndef DC_DISALLOW_COPY_AND_ASSIGN
+#define DC_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
#endif
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
-#ifndef DISALLOW_IMPLICIT_CONSTRUCTORS
-#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+#ifndef DC_DISALLOW_IMPLICIT_CONSTRUCTORS
+#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
- DISALLOW_COPY_AND_ASSIGN(TypeName)
+ DC_DISALLOW_COPY_AND_ASSIGN(TypeName)
#endif
// ICU PATCH: Wrap in ICU namespace
bool is_finalized() const { return position_ < 0; }
- DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
};
// The type-based aliasing rule allows the compiler to assume that pointers of
inline Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
- DOUBLE_CONVERSION_UNUSED
- typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
+#if __cplusplus >= 201103L
+ static_assert(sizeof(Dest) == sizeof(Source),
+ "source and destination size mismatch");
+#else
+ typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
+#endif
Dest dest;
memmove(&dest, &source, sizeof(dest));
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
-#include <limits.h>
-#include <math.h>
+#include <climits>
+#include <locale>
+#include <cmath>
// ICU PATCH: Customize header file paths for ICU.
// The file fixed-dtoa.h is not needed.
}
+namespace {
+
+inline char ToLower(char ch) {
+ static const std::ctype<char>& cType =
+ std::use_facet<std::ctype<char> >(std::locale::classic());
+ return cType.tolower(ch);
+}
+
+inline char Pass(char ch) {
+ return ch;
+}
+
+template <class Iterator, class Converter>
+static inline bool ConsumeSubStringImpl(Iterator* current,
+ Iterator end,
+ const char* substring,
+ Converter converter) {
+ ASSERT(converter(**current) == *substring);
+ for (substring++; *substring != '\0'; substring++) {
+ ++*current;
+ if (*current == end || converter(**current) != *substring) {
+ return false;
+ }
+ }
+ ++*current;
+ return true;
+}
+
// Consumes the given substring from the iterator.
// Returns false, if the substring does not match.
template <class Iterator>
static bool ConsumeSubString(Iterator* current,
Iterator end,
- const char* substring) {
- ASSERT(**current == *substring);
- for (substring++; *substring != '\0'; substring++) {
- ++*current;
- if (*current == end || **current != *substring) return false;
+ const char* substring,
+ bool allow_case_insensibility) {
+ if (allow_case_insensibility) {
+ return ConsumeSubStringImpl(current, end, substring, ToLower);
+ } else {
+ return ConsumeSubStringImpl(current, end, substring, Pass);
}
- ++*current;
- return true;
}
+// Consumes first character of the str is equal to ch
+inline bool ConsumeFirstCharacter(char ch,
+ const char* str,
+ bool case_insensibility) {
+ return case_insensibility ? ToLower(ch) == str[0] : ch == str[0];
+}
+} // namespace
// Maximum number of significant digits in decimal representation.
// The longest possible double in decimal representation is
// because it constant-propagated the radix and concluded that the last
// condition was always true. By moving it into a separate function the
// compiler wouldn't warn anymore.
-#if _MSC_VER
+#ifdef _MSC_VER
#pragma optimize("",off)
static bool IsDecimalDigitForRadix(int c, int radix) {
return '0' <= c && c <= '9' && (c - '0') < radix;
#pragma optimize("",on)
#else
static bool inline IsDecimalDigitForRadix(int c, int radix) {
- return '0' <= c && c <= '9' && (c - '0') < radix;
+ return '0' <= c && c <= '9' && (c - '0') < radix;
}
#endif
// Returns true if 'c' is a character digit that is valid for the given radix.
return radix > 10 && c >= a_character && c < a_character + radix - 10;
}
+// Returns true, when the iterator is equal to end.
+template<class Iterator>
+static bool Advance (Iterator* it, char separator, int base, Iterator& end) {
+ if (separator == StringToDoubleConverter::kNoSeparator) {
+ ++(*it);
+ return *it == end;
+ }
+ if (!isDigit(**it, base)) {
+ ++(*it);
+ return *it == end;
+ }
+ ++(*it);
+ if (*it == end) return true;
+ if (*it + 1 == end) return false;
+ if (**it == separator && isDigit(*(*it + 1), base)) {
+ ++(*it);
+ }
+ return *it == end;
+}
+
+// Checks whether the string in the range start-end is a hex-float string.
+// This function assumes that the leading '0x'/'0X' is already consumed.
+//
+// Hex float strings are of one of the following forms:
+// - hex_digits+ 'p' ('+'|'-')? exponent_digits+
+// - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
+// - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
+template<class Iterator>
+static bool IsHexFloatString(Iterator start,
+ Iterator end,
+ char separator,
+ bool allow_trailing_junk) {
+ ASSERT(start != end);
+
+ Iterator current = start;
+
+ bool saw_digit = false;
+ while (isDigit(*current, 16)) {
+ saw_digit = true;
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (*current == '.') {
+ if (Advance(¤t, separator, 16, end)) return false;
+ while (isDigit(*current, 16)) {
+ saw_digit = true;
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (!saw_digit) return false; // Only the '.', but no digits.
+ }
+ if (*current != 'p' && *current != 'P') return false;
+ if (Advance(¤t, separator, 16, end)) return false;
+ if (*current == '+' || *current == '-') {
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (!isDigit(*current, 10)) return false;
+ if (Advance(¤t, separator, 16, end)) return true;
+ while (isDigit(*current, 10)) {
+ if (Advance(¤t, separator, 16, end)) return true;
+ }
+ return allow_trailing_junk || !AdvanceToNonspace(¤t, end);
+}
+
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+//
+// If parse_as_hex_float is true, then the string must be a valid
+// hex-float.
template <int radix_log_2, class Iterator>
static double RadixStringToIeee(Iterator* current,
Iterator end,
bool sign,
+ char separator,
+ bool parse_as_hex_float,
bool allow_trailing_junk,
double junk_string_value,
bool read_as_double,
bool* result_is_junk) {
ASSERT(*current != end);
+ ASSERT(!parse_as_hex_float ||
+ IsHexFloatString(*current, end, separator, allow_trailing_junk));
const int kDoubleSize = Double::kSignificandSize;
const int kSingleSize = Single::kSignificandSize;
*result_is_junk = true;
+ int64_t number = 0;
+ int exponent = 0;
+ const int radix = (1 << radix_log_2);
+ // Whether we have encountered a '.' and are parsing the decimal digits.
+ // Only relevant if parse_as_hex_float is true.
+ bool post_decimal = false;
+
// Skip leading 0s.
while (**current == '0') {
- ++(*current);
- if (*current == end) {
+ if (Advance(current, separator, radix, end)) {
*result_is_junk = false;
return SignedZero(sign);
}
}
- int64_t number = 0;
- int exponent = 0;
- const int radix = (1 << radix_log_2);
-
- do {
+ while (true) {
int digit;
if (IsDecimalDigitForRadix(**current, radix)) {
digit = static_cast<char>(**current) - '0';
+ if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
digit = static_cast<char>(**current) - 'a' + 10;
+ if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
digit = static_cast<char>(**current) - 'A' + 10;
+ if (post_decimal) exponent -= radix_log_2;
+ } else if (parse_as_hex_float && **current == '.') {
+ post_decimal = true;
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ continue;
+ } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
+ break;
} else {
if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
break;
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
number >>= overflow_bits_count;
- exponent = overflow_bits_count;
+ exponent += overflow_bits_count;
bool zero_tail = true;
for (;;) {
- ++(*current);
- if (*current == end || !isDigit(**current, radix)) break;
+ if (Advance(current, separator, radix, end)) break;
+ if (parse_as_hex_float && **current == '.') {
+ // Just run over the '.'. We are just trying to see whether there is
+ // a non-zero digit somewhere.
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ post_decimal = true;
+ }
+ if (!isDigit(**current, radix)) break;
zero_tail = zero_tail && **current == '0';
- exponent += radix_log_2;
+ if (!post_decimal) exponent += radix_log_2;
}
- if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
+ if (!parse_as_hex_float &&
+ !allow_trailing_junk &&
+ AdvanceToNonspace(current, end)) {
return junk_string_value;
}
}
break;
}
- ++(*current);
- } while (*current != end);
+ if (Advance(current, separator, radix, end)) break;
+ }
ASSERT(number < ((int64_t)1 << kSignificandSize));
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
*result_is_junk = false;
- if (exponent == 0) {
+ if (parse_as_hex_float) {
+ ASSERT(**current == 'p' || **current == 'P');
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ bool is_negative = false;
+ if (**current == '+') {
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ } else if (**current == '-') {
+ is_negative = true;
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ }
+ int written_exponent = 0;
+ while (IsDecimalDigitForRadix(**current, 10)) {
+ written_exponent = 10 * written_exponent + **current - '0';
+ if (Advance(current, separator, radix, end)) break;
+ }
+ if (is_negative) written_exponent = -written_exponent;
+ exponent += written_exponent;
+ }
+
+ if (exponent == 0 || number == 0) {
if (sign) {
if (number == 0) return -0.0;
number = -number;
}
ASSERT(number != 0);
- return Double(DiyFp(number, exponent)).value();
+ double result = Double(DiyFp(number, exponent)).value();
+ return sign ? -result : result;
}
template <class Iterator>
const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
+ const bool allow_case_insensibility = (flags_ & ALLOW_CASE_INSENSIBILITY) != 0;
// To make sure that iterator dereferencing is valid the following
// convention is used:
}
if (infinity_symbol_ != NULL) {
- if (*current == infinity_symbol_[0]) {
- if (!ConsumeSubString(¤t, end, infinity_symbol_)) {
+ if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensibility)) {
+ if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensibility)) {
return junk_string_value_;
}
}
if (nan_symbol_ != NULL) {
- if (*current == nan_symbol_[0]) {
- if (!ConsumeSubString(¤t, end, nan_symbol_)) {
+ if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensibility)) {
+ if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensibility)) {
return junk_string_value_;
}
bool leading_zero = false;
if (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
leading_zero = true;
// It could be hexadecimal value.
- if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+ if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
+ (*current == 'x' || *current == 'X')) {
++current;
- if (current == end || !isDigit(*current, 16)) {
- return junk_string_value_; // "0x".
+
+ bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
+ IsHexFloatString(current, end, separator_, allow_trailing_junk);
+
+ if (current == end) return junk_string_value_; // "0x"
+ if (!parse_as_hex_float && !isDigit(*current, 16)) {
+ return junk_string_value_;
}
bool result_is_junk;
double result = RadixStringToIeee<4>(¤t,
end,
sign,
+ separator_,
+ parse_as_hex_float,
allow_trailing_junk,
junk_string_value_,
read_as_double,
// Ignore leading zeros in the integer part.
while (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
octal = octal && *current < '8';
- ++current;
- if (current == end) goto parsing_done;
+ if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
if (significant_digits == 0) {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
if (significant_digits == 0 && !leading_zero) {
return junk_string_value_;
} else {
// Integer part consists of 0 or is absent. Significant digits start after
// leading zeros (if any).
while (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
// Ignore insignificant digits in the fractional part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
- ++current;
- if (current == end) goto parsing_done;
+ if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
}
if (*current == 'e' || *current == 'E') {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
+ Iterator junk_begin = current;
++current;
if (current == end) {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
++current;
if (current == end) {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
if (current == end || *current < '0' || *current > '9') {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
result = RadixStringToIeee<3>(&start,
buffer + buffer_pos,
sign,
+ separator_,
+ false, // Don't parse as hex_float.
allow_trailing_junk,
junk_string_value_,
read_as_double,
// should be at least kBase10MaximalLength + 1 characters long.
static const int kBase10MaximalLength = 17;
- // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
- // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
- // after it has been casted to a single-precision float. That is, in this
- // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
+ // Converts the given double 'v' to digit characters. 'v' must not be NaN,
+ // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
+ // applies to 'v' after it has been casted to a single-precision float. That
+ // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
+ // -Infinity.
//
// The result should be interpreted as buffer * 10^(point-length).
//
+ // The digits are written to the buffer in the platform's charset, which is
+ // often UTF-8 (with ASCII-range digits) but may be another charset, such
+ // as EBCDIC.
+ //
// The output depends on the given mode:
// - SHORTEST: produce the least amount of digits for which the internal
// identity requirement is still satisfied. If the digits are printed
const int max_trailing_padding_zeroes_in_precision_mode_;
#endif // not needed for ICU
- DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
};
ALLOW_TRAILING_JUNK = 4,
ALLOW_LEADING_SPACES = 8,
ALLOW_TRAILING_SPACES = 16,
- ALLOW_SPACES_AFTER_SIGN = 32
+ ALLOW_SPACES_AFTER_SIGN = 32,
+ ALLOW_CASE_INSENSIBILITY = 64,
+ ALLOW_HEX_FLOATS = 128,
};
+ static const uc16 kNoSeparator = '\0';
+
// Flags should be a bit-or combination of the possible Flags-enum.
// - NO_FLAGS: no special flags.
// - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
// - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
// Ex: StringToDouble("- 123.2") -> -123.2.
// StringToDouble("+ 123.2") -> 123.2
+ // - ALLOW_CASE_INSENSIBILITY: ignore case of characters for special values:
+ // infinity and nan.
+ // - ALLOW_HEX_FLOATS: allows hexadecimal float literals.
+ // This *must* start with "0x" and separate the exponent with "p".
+ // Examples: 0x1.2p3 == 9.0
+ // 0x10.1p0 == 16.0625
+ // ALLOW_HEX and ALLOW_HEX_FLOATS are indendent.
//
// empty_string_value is returned when an empty string is given as input.
// If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
// - they must not have the same first character.
// - they must not start with digits.
//
+ // If the separator character is not kNoSeparator, then that specific
+ // character is ignored when in between two valid digits of the significant.
+ // It is not allowed to appear in the exponent.
+ // It is not allowed to lead or trail the number.
+ // It is not allowed to appear twice next to each other.
+ //
// Examples:
// flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
// empty_string_value = 0.0,
// StringToDouble("01239E45") -> 1239e45.
// StringToDouble("-infinity") -> NaN // junk_string_value.
// StringToDouble("NaN") -> NaN // junk_string_value.
+ //
+ // flags = NO_FLAGS,
+ // separator = ' ':
+ // StringToDouble("1 2 3 4") -> 1234.0
+ // StringToDouble("1 2") -> NaN // junk_string_value
+ // StringToDouble("1 000 000.0") -> 1000000.0
+ // StringToDouble("1.000 000") -> 1.0
+ // StringToDouble("1.0e1 000") -> NaN // junk_string_value
StringToDoubleConverter(int flags,
double empty_string_value,
double junk_string_value,
const char* infinity_symbol,
- const char* nan_symbol)
+ const char* nan_symbol,
+ uc16 separator = kNoSeparator)
: flags_(flags),
empty_string_value_(empty_string_value),
junk_string_value_(junk_string_value),
infinity_symbol_(infinity_symbol),
- nan_symbol_(nan_symbol) {
+ nan_symbol_(nan_symbol),
+ separator_(separator) {
}
// Performs the conversion.
const double junk_string_value_;
const char* const infinity_symbol_;
const char* const nan_symbol_;
+ const uc16 separator_;
template <class Iterator>
double StringToIeee(Iterator start_pointer,
bool read_as_double,
int* processed_characters_count) const;
- DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
};
} // namespace double_conversion
licenses(["notice"])
+exports_files(["LICENSE"])
+
cc_library(
name = "double-conversion",
srcs = [
-cmake_minimum_required(VERSION 2.8.12)
-project(double-conversion)
+cmake_minimum_required(VERSION 3.0)
+project(double-conversion VERSION 3.1.1)
-include(GNUInstallDirs)
+set(headers
+ double-conversion/bignum.h
+ double-conversion/cached-powers.h
+ double-conversion/diy-fp.h
+ double-conversion/double-conversion.h
+ double-conversion/fast-dtoa.h
+ double-conversion/fixed-dtoa.h
+ double-conversion/ieee.h
+ double-conversion/strtod.h
+ double-conversion/utils.h)
-# pick a version #
-set(double-conversion_VERSION 2.0.1)
-set(double-conversion_SOVERSION_MAJOR 1)
-set(double-conversion_SOVERSION_MINOR 0)
-set(double-conversion_SOVERSION_PATCH 0)
-set(double-conversion_SOVERSION
- ${double-conversion_SOVERSION_MAJOR}.${double-conversion_SOVERSION_MINOR}.${double-conversion_SOVERSION_PATCH})
-
-# set suffix for CMake files used for packaging
-if(WIN32 AND NOT CYGWIN)
- set(INSTALL_CMAKE_DIR CMake)
-else()
- set(INSTALL_CMAKE_DIR ${CMAKE_INSTALL_LIBDIR}/cmake/double-conversion)
-endif()
+add_library(double-conversion
+ double-conversion/bignum.cc
+ double-conversion/bignum-dtoa.cc
+ double-conversion/cached-powers.cc
+ double-conversion/diy-fp.cc
+ double-conversion/double-conversion.cc
+ double-conversion/fast-dtoa.cc
+ double-conversion/fixed-dtoa.cc
+ double-conversion/strtod.cc
+ ${headers})
+target_include_directories(
+ double-conversion PUBLIC
+ $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
-# Add src subdirectory
-add_subdirectory(double-conversion)
+# pick a version #
+set_target_properties(double-conversion PROPERTIES VERSION ${PROJECT_VERSION} SOVERSION 3)
-#
# set up testing if requested
option(BUILD_TESTING "Build test programs" OFF)
if(BUILD_TESTING)
add_subdirectory(test)
endif()
-#
-# mention the library target as export library
-export(TARGETS double-conversion
- FILE "${PROJECT_BINARY_DIR}/double-conversionLibraryDepends.cmake")
+####
+# Installation (https://github.com/forexample/package-example)
+
+# Layout. This works for all platforms:
+# * <prefix>/lib/cmake/<PROJECT-NAME>
+# * <prefix>/lib/
+# * <prefix>/include/
+set(config_install_dir "lib/cmake/${PROJECT_NAME}")
+set(include_install_dir "include")
+
+set(generated_dir "${CMAKE_CURRENT_BINARY_DIR}/generated")
+
+# Configuration
+set(version_config "${generated_dir}/${PROJECT_NAME}ConfigVersion.cmake")
+set(project_config "${generated_dir}/${PROJECT_NAME}Config.cmake")
+set(targets_export_name "${PROJECT_NAME}Targets")
+set(namespace "${PROJECT_NAME}::")
+
+# Include module with function 'write_basic_package_version_file'
+include(CMakePackageConfigHelpers)
+
+# Configure '<PROJECT-NAME>ConfigVersion.cmake'
+# Note: PROJECT_VERSION is used as a VERSION
+write_basic_package_version_file(
+ "${version_config}" COMPATIBILITY SameMajorVersion
+)
-#
-# set this build as an importable package
-export(PACKAGE double-conversion)
+# Configure '<PROJECT-NAME>Config.cmake'
+# Use variables:
+# * targets_export_name
+# * PROJECT_NAME
+configure_package_config_file(
+ "cmake/Config.cmake.in"
+ "${project_config}"
+ INSTALL_DESTINATION "${config_install_dir}"
+)
-#
-# make a cmake file -- in this case, all that needs defining
-# is double-conversion_INCLUDE_DIRS
-configure_file(double-conversionBuildTreeSettings.cmake.in
- "${PROJECT_BINARY_DIR}/double-conversionBuildTreeSettings.cmake"
- @ONLY)
+# Targets:
+# * <prefix>/lib/libdouble-conversion.a
+# * header location after install: <prefix>/include/double-conversion/*.h
+# * headers can be included by C++ code `#include <double-conversion/*.h>`
+install(
+ TARGETS double-conversion
+ EXPORT "${targets_export_name}"
+ LIBRARY DESTINATION "lib"
+ ARCHIVE DESTINATION "lib"
+ RUNTIME DESTINATION "bin"
+ INCLUDES DESTINATION "${include_install_dir}"
+)
-#
-# sets up config to be used by CMake find_package
-configure_file(double-conversionConfig.cmake.in
- "${PROJECT_BINARY_DIR}/double-conversionConfig.cmake"
- @ONLY)
-#
-# Export version # checked by find_package
-configure_file(double-conversionConfigVersion.cmake.in
- "${PROJECT_BINARY_DIR}/double-conversionConfigVersion.cmake"
- @ONLY)
-#
-# install config files for find_package
-install(FILES
- "${PROJECT_BINARY_DIR}/double-conversionConfig.cmake"
- "${PROJECT_BINARY_DIR}/double-conversionConfigVersion.cmake"
- DESTINATION "${INSTALL_CMAKE_DIR}" COMPONENT dev)
+# Headers:
+# * double-conversion/*.h -> <prefix>/include/double-conversion/*.h
+install(
+ FILES ${headers}
+ DESTINATION "${include_install_dir}/double-conversion"
+)
+# Config
+# * <prefix>/lib/cmake/double-conversion/double-conversionConfig.cmake
+# * <prefix>/lib/cmake/double-conversion/double-conversionConfigVersion.cmake
+install(
+ FILES "${project_config}" "${version_config}"
+ DESTINATION "${config_install_dir}"
+)
-#
-# generates install cmake files to find libraries in installation.
-install(EXPORT double-conversionLibraryDepends DESTINATION
- "${INSTALL_CMAKE_DIR}" COMPONENT dev)
+# Config
+# * <prefix>/lib/cmake/double-conversion/double-conversionTargets.cmake
+install(
+ EXPORT "${targets_export_name}"
+ NAMESPACE "${namespace}"
+ DESTINATION "${config_install_dir}"
+)
+2018-09-15:
+ Update version numbers. This also updates the shared-library version number.
+
+2018-09-09:
+ Fix bug where large hex literals would lose their minus sign.
+ Added support for separator characters (which adds a new optional
+ argument). Thus increasing the version number to 3.1.0
+ Added support for hexadecimal float literals.
+ Support for more architectures.
+
+2017-12-06:
+ Renamed `DISALLOW_COPY_AND_ASSIGN` and `DISALLOW_IMPLICIT_CONSTRUCTORS`
+ macros to `DC_DISALLOW_COPY_AND_ASSIGN` and
+ `DC_DISALLOW_IMPLICIT_CONSTRUCTORS` to make it easier to integrate the
+ library with other libraries that have similar macros.
+
2017-08-05:
Tagged v3.0.0.
Due to the directory rename switching to a new version number.
+ The API for the library itself hasn't changed.
2017-03-04:
Avoid negative shift. Fixes #41.
env.Replace(CXX = ARGUMENTS.get('CXX', 'g++'))
# for shared lib, requires scons 2.3.0
-env['SHLIBVERSION'] = '1.0.0'
+env['SHLIBVERSION'] = '3.0.0'
CCFLAGS = []
if int(debug):
--- /dev/null
+@PACKAGE_INIT@
+
+include("${CMAKE_CURRENT_LIST_DIR}/@targets_export_name@.cmake")
+check_required_components("@PROJECT_NAME@")
+++ /dev/null
-set(headers
- bignum.h
- cached-powers.h
- diy-fp.h
- double-conversion.h
- fast-dtoa.h
- fixed-dtoa.h
- ieee.h
- strtod.h
- utils.h
- )
-
-add_library(double-conversion
-bignum.cc
-bignum-dtoa.cc
-cached-powers.cc
-diy-fp.cc
-double-conversion.cc
-fast-dtoa.cc
-fixed-dtoa.cc
-strtod.cc
-${headers}
-)
-
-target_include_directories(double-conversion PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/..>)
-
-# Add fPIC on x86_64 when supported.
-include(CheckCXXCompilerFlag)
-check_cxx_compiler_flag(-fPIC CXX_HAS_FPIC)
-
-if(CXX_HAS_FPIC AND CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
- set_target_properties(double-conversion PROPERTIES COMPILE_FLAGS "-fPIC")
-endif()
-
-#
-# associates the list of headers with the library
-# for the purposes of installation/import into other projects
-set_target_properties(double-conversion
- PROPERTIES PUBLIC_HEADER "${headers}")
-
-if (BUILD_SHARED_LIBS)
- set_target_properties(double-conversion
- PROPERTIES VERSION ${double-conversion_SOVERSION}
- SOVERSION ${double-conversion_SOVERSION_MAJOR})
-endif()
-
-#
-# install command to set up library install
-# given the above PUBLIC_HEADER property set, this
-# pulls along all the header files with the library.
-install(TARGETS double-conversion
- EXPORT double-conversionLibraryDepends
- RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}" COMPONENT bin
- LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}" COMPONENT shlib
- ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}" COMPONENT lib
- PUBLIC_HEADER DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}/double-conversion"
- COMPONENT dev)
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <math.h>
+#include <cmath>
-#include "bignum-dtoa.h"
+#include <double-conversion/bignum-dtoa.h>
-#include "bignum.h"
-#include "ieee.h"
+#include <double-conversion/bignum.h>
+#include <double-conversion/ieee.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_BIGNUM_DTOA_H_
#define DOUBLE_CONVERSION_BIGNUM_DTOA_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include "bignum.h"
-#include "utils.h"
+#include <double-conversion/bignum.h>
+#include <double-conversion/utils.h>
namespace double_conversion {
Bignum::Bignum()
- : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
+ : bigits_buffer_(), bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
for (int i = 0; i < kBigitCapacity; ++i) {
bigits_[i] = 0;
}
mask >>= 2;
uint64_t this_value = base;
- bool delayed_multipliciation = false;
+ bool delayed_multiplication = false;
const uint64_t max_32bits = 0xFFFFFFFF;
while (mask != 0 && this_value <= max_32bits) {
this_value = this_value * this_value;
// Verify that there is enough space in this_value to perform the
// multiplication. The first bit_size bits must be 0.
if ((power_exponent & mask) != 0) {
+ ASSERT(bit_size > 0);
uint64_t base_bits_mask =
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
bool high_bits_zero = (this_value & base_bits_mask) == 0;
if (high_bits_zero) {
this_value *= base;
} else {
- delayed_multipliciation = true;
+ delayed_multiplication = true;
}
}
mask >>= 1;
}
AssignUInt64(this_value);
- if (delayed_multipliciation) {
+ if (delayed_multiplication) {
MultiplyByUInt32(base);
}
#ifndef DOUBLE_CONVERSION_BIGNUM_H_
#define DOUBLE_CONVERSION_BIGNUM_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
// The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
int exponent_;
- DISALLOW_COPY_AND_ASSIGN(Bignum);
+ DC_DISALLOW_COPY_AND_ASSIGN(Bignum);
};
} // namespace double_conversion
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <stdarg.h>
-#include <limits.h>
-#include <math.h>
+#include <climits>
+#include <cmath>
+#include <cstdarg>
-#include "utils.h"
+#include <double-conversion/utils.h>
-#include "cached-powers.h"
+#include <double-conversion/cached-powers.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_CACHED_POWERS_H_
#define DOUBLE_CONVERSION_CACHED_POWERS_H_
-#include "diy-fp.h"
+#include <double-conversion/diy-fp.h>
namespace double_conversion {
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include "diy-fp.h"
-#include "utils.h"
+#include <double-conversion/diy-fp.h>
+#include <double-conversion/utils.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_DIY_FP_H_
#define DOUBLE_CONVERSION_DIY_FP_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <limits.h>
-#include <math.h>
+#include <climits>
+#include <locale>
+#include <cmath>
-#include "double-conversion.h"
+#include <double-conversion/double-conversion.h>
-#include "bignum-dtoa.h"
-#include "fast-dtoa.h"
-#include "fixed-dtoa.h"
-#include "ieee.h"
-#include "strtod.h"
-#include "utils.h"
+#include <double-conversion/bignum-dtoa.h>
+#include <double-conversion/fast-dtoa.h>
+#include <double-conversion/fixed-dtoa.h>
+#include <double-conversion/ieee.h>
+#include <double-conversion/strtod.h>
+#include <double-conversion/utils.h>
namespace double_conversion {
}
+namespace {
+
+inline char ToLower(char ch) {
+ static const std::ctype<char>& cType =
+ std::use_facet<std::ctype<char> >(std::locale::classic());
+ return cType.tolower(ch);
+}
+
+inline char Pass(char ch) {
+ return ch;
+}
+
+template <class Iterator, class Converter>
+static inline bool ConsumeSubStringImpl(Iterator* current,
+ Iterator end,
+ const char* substring,
+ Converter converter) {
+ ASSERT(converter(**current) == *substring);
+ for (substring++; *substring != '\0'; substring++) {
+ ++*current;
+ if (*current == end || converter(**current) != *substring) {
+ return false;
+ }
+ }
+ ++*current;
+ return true;
+}
+
// Consumes the given substring from the iterator.
// Returns false, if the substring does not match.
template <class Iterator>
static bool ConsumeSubString(Iterator* current,
Iterator end,
- const char* substring) {
- ASSERT(**current == *substring);
- for (substring++; *substring != '\0'; substring++) {
- ++*current;
- if (*current == end || **current != *substring) return false;
+ const char* substring,
+ bool allow_case_insensibility) {
+ if (allow_case_insensibility) {
+ return ConsumeSubStringImpl(current, end, substring, ToLower);
+ } else {
+ return ConsumeSubStringImpl(current, end, substring, Pass);
}
- ++*current;
- return true;
}
+// Consumes first character of the str is equal to ch
+inline bool ConsumeFirstCharacter(char ch,
+ const char* str,
+ bool case_insensibility) {
+ return case_insensibility ? ToLower(ch) == str[0] : ch == str[0];
+}
+} // namespace
// Maximum number of significant digits in decimal representation.
// The longest possible double in decimal representation is
// because it constant-propagated the radix and concluded that the last
// condition was always true. By moving it into a separate function the
// compiler wouldn't warn anymore.
-#if _MSC_VER
+#ifdef _MSC_VER
#pragma optimize("",off)
static bool IsDecimalDigitForRadix(int c, int radix) {
return '0' <= c && c <= '9' && (c - '0') < radix;
#pragma optimize("",on)
#else
static bool inline IsDecimalDigitForRadix(int c, int radix) {
- return '0' <= c && c <= '9' && (c - '0') < radix;
+ return '0' <= c && c <= '9' && (c - '0') < radix;
}
#endif
// Returns true if 'c' is a character digit that is valid for the given radix.
return radix > 10 && c >= a_character && c < a_character + radix - 10;
}
+// Returns true, when the iterator is equal to end.
+template<class Iterator>
+static bool Advance (Iterator* it, char separator, int base, Iterator& end) {
+ if (separator == StringToDoubleConverter::kNoSeparator) {
+ ++(*it);
+ return *it == end;
+ }
+ if (!isDigit(**it, base)) {
+ ++(*it);
+ return *it == end;
+ }
+ ++(*it);
+ if (*it == end) return true;
+ if (*it + 1 == end) return false;
+ if (**it == separator && isDigit(*(*it + 1), base)) {
+ ++(*it);
+ }
+ return *it == end;
+}
+
+// Checks whether the string in the range start-end is a hex-float string.
+// This function assumes that the leading '0x'/'0X' is already consumed.
+//
+// Hex float strings are of one of the following forms:
+// - hex_digits+ 'p' ('+'|'-')? exponent_digits+
+// - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
+// - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
+template<class Iterator>
+static bool IsHexFloatString(Iterator start,
+ Iterator end,
+ char separator,
+ bool allow_trailing_junk) {
+ ASSERT(start != end);
+
+ Iterator current = start;
+
+ bool saw_digit = false;
+ while (isDigit(*current, 16)) {
+ saw_digit = true;
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (*current == '.') {
+ if (Advance(¤t, separator, 16, end)) return false;
+ while (isDigit(*current, 16)) {
+ saw_digit = true;
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (!saw_digit) return false; // Only the '.', but no digits.
+ }
+ if (*current != 'p' && *current != 'P') return false;
+ if (Advance(¤t, separator, 16, end)) return false;
+ if (*current == '+' || *current == '-') {
+ if (Advance(¤t, separator, 16, end)) return false;
+ }
+ if (!isDigit(*current, 10)) return false;
+ if (Advance(¤t, separator, 16, end)) return true;
+ while (isDigit(*current, 10)) {
+ if (Advance(¤t, separator, 16, end)) return true;
+ }
+ return allow_trailing_junk || !AdvanceToNonspace(¤t, end);
+}
+
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+//
+// If parse_as_hex_float is true, then the string must be a valid
+// hex-float.
template <int radix_log_2, class Iterator>
static double RadixStringToIeee(Iterator* current,
Iterator end,
bool sign,
+ char separator,
+ bool parse_as_hex_float,
bool allow_trailing_junk,
double junk_string_value,
bool read_as_double,
bool* result_is_junk) {
ASSERT(*current != end);
+ ASSERT(!parse_as_hex_float ||
+ IsHexFloatString(*current, end, separator, allow_trailing_junk));
const int kDoubleSize = Double::kSignificandSize;
const int kSingleSize = Single::kSignificandSize;
*result_is_junk = true;
+ int64_t number = 0;
+ int exponent = 0;
+ const int radix = (1 << radix_log_2);
+ // Whether we have encountered a '.' and are parsing the decimal digits.
+ // Only relevant if parse_as_hex_float is true.
+ bool post_decimal = false;
+
// Skip leading 0s.
while (**current == '0') {
- ++(*current);
- if (*current == end) {
+ if (Advance(current, separator, radix, end)) {
*result_is_junk = false;
return SignedZero(sign);
}
}
- int64_t number = 0;
- int exponent = 0;
- const int radix = (1 << radix_log_2);
-
- do {
+ while (true) {
int digit;
if (IsDecimalDigitForRadix(**current, radix)) {
digit = static_cast<char>(**current) - '0';
+ if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
digit = static_cast<char>(**current) - 'a' + 10;
+ if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
digit = static_cast<char>(**current) - 'A' + 10;
+ if (post_decimal) exponent -= radix_log_2;
+ } else if (parse_as_hex_float && **current == '.') {
+ post_decimal = true;
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ continue;
+ } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
+ break;
} else {
if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
break;
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
number >>= overflow_bits_count;
- exponent = overflow_bits_count;
+ exponent += overflow_bits_count;
bool zero_tail = true;
for (;;) {
- ++(*current);
- if (*current == end || !isDigit(**current, radix)) break;
+ if (Advance(current, separator, radix, end)) break;
+ if (parse_as_hex_float && **current == '.') {
+ // Just run over the '.'. We are just trying to see whether there is
+ // a non-zero digit somewhere.
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ post_decimal = true;
+ }
+ if (!isDigit(**current, radix)) break;
zero_tail = zero_tail && **current == '0';
- exponent += radix_log_2;
+ if (!post_decimal) exponent += radix_log_2;
}
- if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
+ if (!parse_as_hex_float &&
+ !allow_trailing_junk &&
+ AdvanceToNonspace(current, end)) {
return junk_string_value;
}
}
break;
}
- ++(*current);
- } while (*current != end);
+ if (Advance(current, separator, radix, end)) break;
+ }
ASSERT(number < ((int64_t)1 << kSignificandSize));
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
*result_is_junk = false;
- if (exponent == 0) {
+ if (parse_as_hex_float) {
+ ASSERT(**current == 'p' || **current == 'P');
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ bool is_negative = false;
+ if (**current == '+') {
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ } else if (**current == '-') {
+ is_negative = true;
+ Advance(current, separator, radix, end);
+ ASSERT(*current != end);
+ }
+ int written_exponent = 0;
+ while (IsDecimalDigitForRadix(**current, 10)) {
+ written_exponent = 10 * written_exponent + **current - '0';
+ if (Advance(current, separator, radix, end)) break;
+ }
+ if (is_negative) written_exponent = -written_exponent;
+ exponent += written_exponent;
+ }
+
+ if (exponent == 0 || number == 0) {
if (sign) {
if (number == 0) return -0.0;
number = -number;
}
ASSERT(number != 0);
- return Double(DiyFp(number, exponent)).value();
+ double result = Double(DiyFp(number, exponent)).value();
+ return sign ? -result : result;
}
-
template <class Iterator>
double StringToDoubleConverter::StringToIeee(
Iterator input,
const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
+ const bool allow_case_insensibility = (flags_ & ALLOW_CASE_INSENSIBILITY) != 0;
// To make sure that iterator dereferencing is valid the following
// convention is used:
}
if (infinity_symbol_ != NULL) {
- if (*current == infinity_symbol_[0]) {
- if (!ConsumeSubString(¤t, end, infinity_symbol_)) {
+ if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensibility)) {
+ if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensibility)) {
return junk_string_value_;
}
}
if (nan_symbol_ != NULL) {
- if (*current == nan_symbol_[0]) {
- if (!ConsumeSubString(¤t, end, nan_symbol_)) {
+ if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensibility)) {
+ if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensibility)) {
return junk_string_value_;
}
bool leading_zero = false;
if (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
leading_zero = true;
// It could be hexadecimal value.
- if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+ if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
+ (*current == 'x' || *current == 'X')) {
++current;
- if (current == end || !isDigit(*current, 16)) {
- return junk_string_value_; // "0x".
+
+ bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
+ IsHexFloatString(current, end, separator_, allow_trailing_junk);
+
+ if (current == end) return junk_string_value_; // "0x"
+ if (!parse_as_hex_float && !isDigit(*current, 16)) {
+ return junk_string_value_;
}
bool result_is_junk;
double result = RadixStringToIeee<4>(¤t,
end,
sign,
+ separator_,
+ parse_as_hex_float,
allow_trailing_junk,
junk_string_value_,
read_as_double,
// Ignore leading zeros in the integer part.
while (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
octal = octal && *current < '8';
- ++current;
- if (current == end) goto parsing_done;
+ if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
if (significant_digits == 0) {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
if (significant_digits == 0 && !leading_zero) {
return junk_string_value_;
} else {
// Integer part consists of 0 or is absent. Significant digits start after
// leading zeros (if any).
while (*current == '0') {
- ++current;
- if (current == end) {
+ if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
// Ignore insignificant digits in the fractional part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
- ++current;
- if (current == end) goto parsing_done;
+ if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
}
if (*current == 'e' || *current == 'E') {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
+ Iterator junk_begin = current;
++current;
if (current == end) {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
++current;
if (current == end) {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
if (current == end || *current < '0' || *current > '9') {
if (allow_trailing_junk) {
+ current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
result = RadixStringToIeee<3>(&start,
buffer + buffer_pos,
sign,
+ separator_,
+ false, // Don't parse as hex_float.
allow_trailing_junk,
junk_string_value_,
read_as_double,
#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
// should be at least kBase10MaximalLength + 1 characters long.
static const int kBase10MaximalLength = 17;
- // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
- // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
- // after it has been casted to a single-precision float. That is, in this
- // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
+ // Converts the given double 'v' to digit characters. 'v' must not be NaN,
+ // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
+ // applies to 'v' after it has been casted to a single-precision float. That
+ // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
+ // -Infinity.
//
// The result should be interpreted as buffer * 10^(point-length).
//
+ // The digits are written to the buffer in the platform's charset, which is
+ // often UTF-8 (with ASCII-range digits) but may be another charset, such
+ // as EBCDIC.
+ //
// The output depends on the given mode:
// - SHORTEST: produce the least amount of digits for which the internal
// identity requirement is still satisfied. If the digits are printed
const int max_leading_padding_zeroes_in_precision_mode_;
const int max_trailing_padding_zeroes_in_precision_mode_;
- DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
};
ALLOW_TRAILING_JUNK = 4,
ALLOW_LEADING_SPACES = 8,
ALLOW_TRAILING_SPACES = 16,
- ALLOW_SPACES_AFTER_SIGN = 32
+ ALLOW_SPACES_AFTER_SIGN = 32,
+ ALLOW_CASE_INSENSIBILITY = 64,
+ ALLOW_HEX_FLOATS = 128,
};
+ static const uc16 kNoSeparator = '\0';
+
// Flags should be a bit-or combination of the possible Flags-enum.
// - NO_FLAGS: no special flags.
// - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
// - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
// Ex: StringToDouble("- 123.2") -> -123.2.
// StringToDouble("+ 123.2") -> 123.2
+ // - ALLOW_CASE_INSENSIBILITY: ignore case of characters for special values:
+ // infinity and nan.
+ // - ALLOW_HEX_FLOATS: allows hexadecimal float literals.
+ // This *must* start with "0x" and separate the exponent with "p".
+ // Examples: 0x1.2p3 == 9.0
+ // 0x10.1p0 == 16.0625
+ // ALLOW_HEX and ALLOW_HEX_FLOATS are indendent.
//
// empty_string_value is returned when an empty string is given as input.
// If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
// - they must not have the same first character.
// - they must not start with digits.
//
+ // If the separator character is not kNoSeparator, then that specific
+ // character is ignored when in between two valid digits of the significant.
+ // It is not allowed to appear in the exponent.
+ // It is not allowed to lead or trail the number.
+ // It is not allowed to appear twice next to each other.
+ //
// Examples:
// flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
// empty_string_value = 0.0,
// StringToDouble("01239E45") -> 1239e45.
// StringToDouble("-infinity") -> NaN // junk_string_value.
// StringToDouble("NaN") -> NaN // junk_string_value.
+ //
+ // flags = NO_FLAGS,
+ // separator = ' ':
+ // StringToDouble("1 2 3 4") -> 1234.0
+ // StringToDouble("1 2") -> NaN // junk_string_value
+ // StringToDouble("1 000 000.0") -> 1000000.0
+ // StringToDouble("1.000 000") -> 1.0
+ // StringToDouble("1.0e1 000") -> NaN // junk_string_value
StringToDoubleConverter(int flags,
double empty_string_value,
double junk_string_value,
const char* infinity_symbol,
- const char* nan_symbol)
+ const char* nan_symbol,
+ uc16 separator = kNoSeparator)
: flags_(flags),
empty_string_value_(empty_string_value),
junk_string_value_(junk_string_value),
infinity_symbol_(infinity_symbol),
- nan_symbol_(nan_symbol) {
+ nan_symbol_(nan_symbol),
+ separator_(separator) {
}
// Performs the conversion.
const double junk_string_value_;
const char* const infinity_symbol_;
const char* const nan_symbol_;
+ const uc16 separator_;
template <class Iterator>
double StringToIeee(Iterator start_pointer,
bool read_as_double,
int* processed_characters_count) const;
- DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
};
} // namespace double_conversion
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include "fast-dtoa.h"
+#include <double-conversion/fast-dtoa.h>
-#include "cached-powers.h"
-#include "diy-fp.h"
-#include "ieee.h"
+#include <double-conversion/cached-powers.h>
+#include <double-conversion/diy-fp.h>
+#include <double-conversion/ieee.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_FAST_DTOA_H_
#define DOUBLE_CONVERSION_FAST_DTOA_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <math.h>
+#include <cmath>
-#include "fixed-dtoa.h"
-#include "ieee.h"
+#include <double-conversion/fixed-dtoa.h>
+#include <double-conversion/ieee.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_FIXED_DTOA_H_
#define DOUBLE_CONVERSION_FIXED_DTOA_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_DOUBLE_H_
#define DOUBLE_CONVERSION_DOUBLE_H_
-#include "diy-fp.h"
+#include <double-conversion/diy-fp.h>
namespace double_conversion {
(biased_exponent << kPhysicalSignificandSize);
}
- DISALLOW_COPY_AND_ASSIGN(Double);
+ DC_DISALLOW_COPY_AND_ASSIGN(Double);
};
class Single {
const uint32_t d32_;
- DISALLOW_COPY_AND_ASSIGN(Single);
+ DC_DISALLOW_COPY_AND_ASSIGN(Single);
};
} // namespace double_conversion
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <stdarg.h>
-#include <limits.h>
+#include <climits>
+#include <cstdarg>
-#include "strtod.h"
-#include "bignum.h"
-#include "cached-powers.h"
-#include "ieee.h"
+#include <double-conversion/bignum.h>
+#include <double-conversion/cached-powers.h>
+#include <double-conversion/ieee.h>
+#include <double-conversion/strtod.h>
namespace double_conversion {
// Note that the ARM simulator is compiled for 32bits. It therefore exhibits
// the same problem.
return false;
-#endif
+#else
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
int read_digits;
// The trimmed input fits into a double.
}
}
return false;
+#endif
}
}
}
+static float SanitizedDoubletof(double d) {
+ ASSERT(d >= 0.0);
+ // ASAN has a sanitize check that disallows casting doubles to floats if
+ // they are too big.
+ // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
+ // The behavior should be covered by IEEE 754, but some projects use this
+ // flag, so work around it.
+ float max_finite = 3.4028234663852885981170418348451692544e+38;
+ // The half-way point between the max-finite and infinity value.
+ // Since infinity has an even significand everything equal or greater than
+ // this value should become infinity.
+ double half_max_finite_infinity =
+ 3.40282356779733661637539395458142568448e+38;
+ if (d >= max_finite) {
+ if (d >= half_max_finite_infinity) {
+ return Single::Infinity();
+ } else {
+ return max_finite;
+ }
+ } else {
+ return static_cast<float>(d);
+ }
+}
+
float Strtof(Vector<const char> buffer, int exponent) {
char copy_buffer[kMaxSignificantDecimalDigits];
Vector<const char> trimmed;
double double_guess;
bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
- float float_guess = static_cast<float>(double_guess);
+ float float_guess = SanitizedDoubletof(double_guess);
if (float_guess == double_guess) {
// This shortcut triggers for integer values.
return float_guess;
double double_next = Double(double_guess).NextDouble();
double double_previous = Double(double_guess).PreviousDouble();
- float f1 = static_cast<float>(double_previous);
+ float f1 = SanitizedDoubletof(double_previous);
float f2 = float_guess;
- float f3 = static_cast<float>(double_next);
+ float f3 = SanitizedDoubletof(double_next);
float f4;
if (is_correct) {
f4 = f3;
} else {
double double_next2 = Double(double_next).NextDouble();
- f4 = static_cast<float>(double_next2);
+ f4 = SanitizedDoubletof(double_next2);
}
(void) f2; // Mark variable as used.
ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
(f1 == f2 && f2 != f3 && f3 == f4) ||
(f1 == f2 && f2 == f3 && f3 != f4));
- // guess and next are the two possible canditates (in the same way that
+ // guess and next are the two possible candidates (in the same way that
// double_guess was the lower candidate for a double-precision guess).
float guess = f1;
float next = f4;
#ifndef DOUBLE_CONVERSION_STRTOD_H_
#define DOUBLE_CONVERSION_STRTOD_H_
-#include "utils.h"
+#include <double-conversion/utils.h>
namespace double_conversion {
#ifndef DOUBLE_CONVERSION_UTILS_H_
#define DOUBLE_CONVERSION_UTILS_H_
-#include <stdlib.h>
-#include <string.h>
+#include <cstdlib>
+#include <cstring>
-#include <assert.h>
+#include <cassert>
#ifndef ASSERT
#define ASSERT(condition) \
assert(condition);
// the output of the division with the expected result. (Inlining must be
// disabled.)
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
+//
+// For example:
+/*
+// -- in div.c
+double Div_double(double x, double y) { return x / y; }
+
+// -- in main.c
+double Div_double(double x, double y); // Forward declaration.
+
+int main(int argc, char** argv) {
+ return Div_double(89255.0, 1e22) == 89255e-22;
+}
+*/
+// Run as follows ./main || echo "correct"
+//
+// If it prints "correct" then the architecture should be here, in the "correct" section.
#if defined(_M_X64) || defined(__x86_64__) || \
- defined(__ARMEL__) || defined(__avr32__) || \
+ defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
defined(__hppa__) || defined(__ia64__) || \
defined(__mips__) || \
defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
defined(_MIPS_ARCH_MIPS32R2) || \
- defined(__AARCH64EL__) || defined(__aarch64__) || \
- defined(__riscv)
+ defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
+ defined(__riscv) || \
+ defined(__or1k__) || defined(__arc__) || \
+ defined(__EMSCRIPTEN__)
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
-#elif defined(__mc68000__)
+#elif defined(__mc68000__) || \
+ defined(__pnacl__) || defined(__native_client__)
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#if defined(_WIN32)
#error Target architecture was not detected as supported by Double-Conversion.
#endif
-#if defined(__GNUC__)
-#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
-#else
-#define DOUBLE_CONVERSION_UNUSED
-#endif
-
#if defined(_WIN32) && !defined(__MINGW32__)
typedef signed char int8_t;
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class
-#ifndef DISALLOW_COPY_AND_ASSIGN
-#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
+#ifndef DC_DISALLOW_COPY_AND_ASSIGN
+#define DC_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
#endif
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
-#ifndef DISALLOW_IMPLICIT_CONSTRUCTORS
-#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+#ifndef DC_DISALLOW_IMPLICIT_CONSTRUCTORS
+#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
- DISALLOW_COPY_AND_ASSIGN(TypeName)
+ DC_DISALLOW_COPY_AND_ASSIGN(TypeName)
#endif
namespace double_conversion {
bool is_finalized() const { return position_ < 0; }
- DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
+ DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
};
// The type-based aliasing rule allows the compiler to assume that pointers of
inline Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
- DOUBLE_CONVERSION_UNUSED
- typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
+#if __cplusplus >= 201103L
+ static_assert(sizeof(Dest) == sizeof(Source),
+ "source and destination size mismatch");
+#else
+ typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
+#endif
Dest dest;
memmove(&dest, &source, sizeof(dest));
+++ /dev/null
-set(double-conversion_INCLUDE_DIRS
- "@PROJECT_SOURCE_DIR@/src")
+++ /dev/null
-# - Config file for the double-conversion package
-# It defines the following variables
-# double-conversion_INCLUDE_DIRS
-# double-conversion_LIBRARIES
-
-get_filename_component(double-conversion_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
-
-if(EXISTS "${double-conversion_CMAKE_DIR}/CMakeCache.txt")
- include("${double-conversion_CMAKE_DIR}/double-conversionBuildTreeSettings.cmake")
-else()
- set(double-conversion_INCLUDE_DIRS "@CMAKE_INSTALL_FULL_INCLUDEDIR@/double-conversion")
-endif()
-
-include("@CMAKE_INSTALL_FULL_LIBDIR@/cmake/double-conversion/double-conversionLibraryDepends.cmake")
-
-set(double-conversion_LIBRARIES double-conversion)
+++ /dev/null
-set(PACKAGE_VERSION "@double-conversion_VERSION@")
-
-# Check whether the requested PACKAGE_FIND_VERSION is compatible
-if("${PACKAGE_VERSION}" VERSION_LESS "${PACKAGE_FIND_VERSION}")
- set(PACKAGE_VERSION_COMPATIBLE FALSE)
-else()
- set(PACKAGE_VERSION_COMPATIBLE TRUE)
- if ("${PACKAGE_VERSION}" VERSION_EQUAL "${PACKAGE_FIND_VERSION}")
- set(PACKAGE_VERSION_EXACT TRUE)
- endif()
-endif()
CHECK_EQ("35844466", buffer.start());
CHECK_EQ(299, point);
+ BignumDtoa(1e-23, BIGNUM_DTOA_SHORTEST, 0,
+ buffer, &length, &point);
+ CHECK_EQ("1", buffer.start());
+ CHECK_EQ(-22, point);
+
uint64_t smallest_normal64 = UINT64_2PART_C(0x00100000, 00000000);
double v = Double(smallest_normal64).value();
BignumDtoa(v, BIGNUM_DTOA_SHORTEST, 0, buffer, &length, &point);
CHECK(dc.ToShortest(1e21, &builder));
CHECK_EQ("1e+21", builder.Finalize());
+ builder.Reset();
+ CHECK(dc.ToShortest(1e-23, &builder));
+ CHECK_EQ("1e-23", builder.Finalize());
+
builder.Reset();
CHECK(dc.ToShortest(1e20, &builder));
CHECK_EQ("100000000000000000000", builder.Finalize());
static double StrToD16(const uc16* str16, int length, int flags,
double empty_string_value,
- int* processed_characters_count, bool* processed_all) {
+ int* processed_characters_count, bool* processed_all,
+ uc16 separator = StringToDoubleConverter::kNoSeparator) {
StringToDoubleConverter converter(flags, empty_string_value, Double::NaN(),
- NULL, NULL);
+ NULL, NULL, separator);
double result =
converter.StringToDouble(str16, length, processed_characters_count);
*processed_all = (length == *processed_characters_count);
static double StrToD(const char* str, int flags, double empty_string_value,
- int* processed_characters_count, bool* processed_all) {
+ int* processed_characters_count, bool* processed_all,
+ uc16 separator = StringToDoubleConverter::kNoSeparator) {
StringToDoubleConverter converter(flags, empty_string_value, Double::NaN(),
- NULL, NULL);
+ NULL, NULL, separator);
double result = converter.StringToDouble(str, strlen(str),
processed_characters_count);
*processed_all =
int processed_characters_count16;
bool processed_all16;
double result16 = StrToD16(buffer16, len, flags, empty_string_value,
- &processed_characters_count16, &processed_all16);
+ &processed_characters_count16, &processed_all16,
+ separator);
CHECK_EQ(result, result16);
CHECK_EQ(*processed_characters_count, processed_characters_count16);
return result;
CHECK_EQ(0, processed);
+ flags = StringToDoubleConverter::ALLOW_TRAILING_JUNK;
+
+ CHECK_EQ(123.0, StrToD("123e", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(processed, 3);
+
+ CHECK_EQ(123.0, StrToD("123e-", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(processed, 3);
+
+ CHECK_EQ(123.0, StrToD("123e-a", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(processed, 3);
+
+
flags = StringToDoubleConverter::ALLOW_LEADING_SPACES |
StringToDoubleConverter::ALLOW_SPACES_AFTER_SIGN |
StringToDoubleConverter::ALLOW_TRAILING_SPACES |
CHECK_EQ(Double::NaN(), StrToD("x3", flags, 0.0,
&processed, &all_used));
CHECK_EQ(0, processed);
+
+ CHECK_EQ(-5.634002666912405e+27, StrToD("-0x123456789012345678901234",
+ flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(72057594037927940.0, StrToD("0x100000000000001", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(72057594037927940.0, StrToD("0x100000000000000", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000000001", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000000000", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352900000.0, StrToD("0x100000000000008001", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000008000", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352960000.0, StrToD("0x100000000000018001", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352960000.0, StrToD("0x100000000000018000", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ flags = StringToDoubleConverter::ALLOW_HEX_FLOATS;
+
+ CHECK_EQ(3.0, StrToD("0x3p0", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(0.0, StrToD("0x.0p0", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(3.0, StrToD("0x3.0p0", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(3.0, StrToD("0x3.p0", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(-5.634002666912405e+27, StrToD("-0x123456789012345678901234p0",
+ flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(72057594037927940.0, StrToD("0x100000000000001p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(72057594037927940.0, StrToD("0x100000000000000p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000000001p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000000000p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352900000.0, StrToD("0x100000000000008001p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352830000.0, StrToD("0x100000000000008000p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352960000.0, StrToD("0x100000000000018001p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(295147905179352960000.0, StrToD("0x100000000000018000p0", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(4.722366482869645e+21, StrToD("0x100000000000000001p4", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(4.722366482869645e+21, StrToD("0x100000000000000000p+4", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(4.722366482869646e+21, StrToD("0x100000000000008001p04", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(18446744073709552000.0, StrToD("0x100000000000008000p-4", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(18446744073709560000.0, StrToD("0x100000000000018001p-04", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(4.722366482869647e+21, StrToD("0x100000000000018000p4", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::Infinity(), StrToD("0x1p2000", flags, 0.0,
+ &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(0.0, StrToD("0x1p-2000", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
+
+ CHECK_EQ(-0.0, StrToD("-0x1p-2000", flags, 0.0, &processed, &all_used));
+ CHECK(all_used);
}
}
+TEST(StringToDoubleSeparator) {
+ int flags;
+ int processed;
+ bool all_used;
+ char separator;
+
+ separator = '\'';
+ flags = StringToDoubleConverter::NO_FLAGS;
+
+ CHECK_EQ(1.0, StrToD("000'001.0'0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD("0'0'0'0'0'1.0'0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(), StrToD("'1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1'.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.'0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("0''1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e1'0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e1'", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e'1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0'e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("+'1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("-'1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e+'1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e-'1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e'+1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e'-1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ separator = ' ';
+ flags = StringToDoubleConverter::NO_FLAGS;
+
+ CHECK_EQ(1.0, StrToD("000 001.0 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD("0 0 0 0 0 1.0 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(), StrToD(" 1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1 .0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1. 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("0 1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e1 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e1 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0 e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("+ 1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("- 1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e+ 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e- 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e +1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e -1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ separator = ' ';
+ flags = StringToDoubleConverter::ALLOW_LEADING_SPACES |
+ StringToDoubleConverter::ALLOW_TRAILING_SPACES;
+
+ CHECK_EQ(1.0, StrToD("000 001.0 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD("0 0 0 0 0 1.0 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD(" 000 001.0 0 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD(" 0 0 0 0 0 1.0 0 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0, StrToD(" 1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(), StrToD("1 .0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1. 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("0 1.0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e1 0", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(10.0, StrToD("1.0e1 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0 e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("+ 1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("- 1.0e1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e+ 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e- 1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e +1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("1.0e -1", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ separator = ' ';
+ flags = StringToDoubleConverter::ALLOW_HEX |
+ StringToDoubleConverter::ALLOW_HEX_FLOATS |
+ StringToDoubleConverter::ALLOW_LEADING_SPACES |
+ StringToDoubleConverter::ALLOW_TRAILING_SPACES;
+
+ CHECK_EQ(18.0, StrToD("0x1 2", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(0.0, StrToD("0x0 0", flags, 1.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(static_cast<double>(0x123456789),
+ StrToD("0x1 2 3 4 5 6 7 8 9", flags, Double::NaN(),
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(18.0, StrToD(" 0x1 2 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(0.0, StrToD(" 0x0 ", flags, 1.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(static_cast<double>(0x123456789),
+ StrToD(" 0x1 2 3 4 5 6 7 8 9 ", flags, Double::NaN(),
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(static_cast<double>(0xabcdef),
+ StrToD("0xa b c d e f", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(), StrToD("0x 1 2", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD("0 x0", flags, 1.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x1 2 3 4 5 6 7 8 9", flags, Double::NaN(),
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(), StrToD(" 0 x1 2 ", flags, 0.0,
+ &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(3.0,
+ StrToD("0x0 3p0", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(0.0,
+ StrToD("0x.0 0p0", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(3.0,
+ StrToD("0x3.0 0p0", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(3.0,
+ StrToD("0x0 3.p0", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x 3p0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x.0 p0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x3.0p0 0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x0 3.p 0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x3p+ 0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x.0p- 0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x3.0p +0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("0x0 3.p -0", flags, 0.0, &processed, &all_used));
+ CHECK_EQ(0, processed);
+}
+
TEST(StringToDoubleSpecialValues) {
int processed;
int flags = StringToDoubleConverter::NO_FLAGS;
CHECK(all_used);
CHECK_EQ(123.0, StrToD("123e", flags, 0.0, &processed, &all_used));
- CHECK(all_used);
+ CHECK_EQ(processed, 3);
CHECK_EQ(123.0, StrToD("123e-", flags, 0.0, &processed, &all_used));
- CHECK(all_used);
+ CHECK_EQ(processed, 3);
{
StringToDoubleConverter converter(flags, 0.0, 1.0, "infinity", "NaN");
CHECK_EQ(Double::NaN(), StrToD("NaN", flags, 0.0, &processed, &all_used));
CHECK_EQ(0, processed);
+
+ flags = StringToDoubleConverter::NO_FLAGS;
+ char separator = ' ';
+ CHECK_EQ(1234.0,
+ StrToD("1 2 3 4", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("1 2", flags, 0.0, &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(1000000.0,
+ StrToD("1 000 000.0", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(1.0,
+ StrToD("1.000 000", flags, 0.0, &processed, &all_used, separator));
+ CHECK(all_used);
+
+ CHECK_EQ(Double::NaN(),
+ StrToD("1.0e1 000", flags, 0.0, &processed, &all_used, separator));
+ CHECK_EQ(0, processed);
}
CHECK_EQ(5.0f, StrToF(" + 0x5 ", flags, 0.0f, &processed, &all_used));
CHECK(all_used);
- CHECK_EQ(Single::NaN(), StrToF("- -0x5", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(Single::NaN(), StrToF("- -0x5", flags, 0.0f,
+ &processed, &all_used));
CHECK_EQ(0, processed);
- CHECK_EQ(Single::NaN(), StrToF("- +0x5", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(Single::NaN(), StrToF("- +0x5", flags, 0.0f,
+ &processed, &all_used));
CHECK_EQ(0, processed);
- CHECK_EQ(Single::NaN(), StrToF("+ +0x5", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(Single::NaN(), StrToF("+ +0x5", flags, 0.0f,
+ &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x3p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x.0p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x3.0p0", flags, 0.0f,
+ &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x3.p0", flags, 0.0f,
+ &processed, &all_used));
CHECK_EQ(0, processed);
flags = StringToDoubleConverter::ALLOW_HEX;
CHECK_EQ(Single::NaN(), StrToF("+ +0x5", flags, 0.0f, &processed, &all_used));
CHECK_EQ(0, processed);
+ CHECK_EQ(Single::NaN(), StrToF("0x3p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x.0p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x3.0p0", flags, 0.0f,
+ &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x3.p0", flags, 0.0f,
+ &processed, &all_used));
+ CHECK_EQ(0, processed);
+
flags = StringToDoubleConverter::ALLOW_TRAILING_JUNK |
StringToDoubleConverter::ALLOW_HEX;
CHECK_EQ(Single::NaN(), StrToF("+ +0x5", flags, 0.0f, &processed, &all_used));
CHECK_EQ(0, processed);
+ CHECK_EQ(3.0f, StrToF("0x3p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(3, processed);
+
+ CHECK_EQ(Single::NaN(), StrToF("0x.0p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(3.0f, StrToF("0x3.0p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(3, processed);
+
+ CHECK_EQ(3.0f, StrToF("0x3.p0", flags, 0.0f, &processed, &all_used));
+ CHECK_EQ(3, processed);
+
+
flags = StringToDoubleConverter::ALLOW_TRAILING_JUNK |
StringToDoubleConverter::ALLOW_LEADING_SPACES |
StringToDoubleConverter::ALLOW_TRAILING_SPACES |
&processed, &all_used));
CHECK(all_used);
}
+
+
+TEST(StringToDoubleCaseInsensitiveSpecialValues) {
+ int processed = 0;
+
+ int flags = StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY |
+ StringToDoubleConverter::ALLOW_LEADING_SPACES |
+ StringToDoubleConverter::ALLOW_TRAILING_JUNK |
+ StringToDoubleConverter::ALLOW_TRAILING_SPACES;
+
+ // Use 1.0 as junk_string_value.
+ StringToDoubleConverter converter(flags, 0.0, 1.0, "infinity", "nan");
+
+ CHECK_EQ(Double::NaN(), converter.StringToDouble("+nan", 4, &processed));
+ CHECK_EQ(4, processed);
+
+ CHECK_EQ(Double::NaN(), converter.StringToDouble("-nAN", 4, &processed));
+ CHECK_EQ(4, processed);
+
+ CHECK_EQ(Double::NaN(), converter.StringToDouble("nAN", 3, &processed));
+ CHECK_EQ(3, processed);
+
+ CHECK_EQ(Double::NaN(), converter.StringToDouble("nANabc", 6, &processed));
+ CHECK_EQ(3, processed);
+
+ CHECK_EQ(+Double::Infinity(),
+ converter.StringToDouble("+Infinity", 9, &processed));
+ CHECK_EQ(9, processed);
+
+ CHECK_EQ(-Double::Infinity(),
+ converter.StringToDouble("-INFinity", 9, &processed));
+ CHECK_EQ(9, processed);
+
+ CHECK_EQ(Double::Infinity(),
+ converter.StringToDouble("infINITY", 8, &processed));
+ CHECK_EQ(8, processed);
+
+ CHECK_EQ(1.0, converter.StringToDouble("INF", 3, &processed));
+ CHECK_EQ(0, processed);
+
+ CHECK_EQ(1.0, converter.StringToDouble("+inf", 4, &processed));
+ CHECK_EQ(0, processed);
+}