return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
+// Negated variants.
+def NEGLH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+def NEGLF32 : SDNodeXForm<imm, [{
+ uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;
+// Negated immediates that fit LF32 or LH16.
+def imm64lh16n : Immediate<i64, [{
+ return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
+}], NEGLH16, "U16Imm">;
+
+def imm64lf32n : Immediate<i64, [{
+ return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
+}], NEGLF32, "U32Imm">;
+
// Short immediates.
def imm64sx8 : Immediate<i64, [{
return isInt<8>(N->getSExtValue());
ret i1 %obit
}
-; Check the next value down, which must use register addition instead.
+; Check the next value down, which can use register subtraction instead.
define zeroext i1 @f10(i64 %dummy, i64 %a, i64 *%res) {
; CHECK-LABEL: f10:
+; CHECK: llilf [[REG1:%r[0-9]+]], 2147483649
+; CHECK: sgr %r3, [[REG1]]
+; CHECK-DAG: stg %r3, 0(%r4)
+; CHECK-DAG: ipm [[REG:%r[0-5]]]
+; CHECK-DAG: afi [[REG]], 1342177280
+; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
+; CHECK: br %r14
+ %t = call {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 -2147483649)
+ %val = extractvalue {i64, i1} %t, 0
+ %obit = extractvalue {i64, i1} %t, 1
+ store i64 %val, i64 *%res
+ ret i1 %obit
+}
+
+; We may be able to use LLILH instead of LLILF.
+define zeroext i1 @f11(i64 %dummy, i64 %a, i64 *%res) {
+; CHECK-LABEL: f11:
+; CHECK: llilh [[REG1:%r[0-9]+]], 32769
+; CHECK: sgr %r3, [[REG1]]
+; CHECK-DAG: stg %r3, 0(%r4)
+; CHECK-DAG: ipm [[REG:%r[0-5]]]
+; CHECK-DAG: afi [[REG]], 1342177280
+; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
+; CHECK: br %r14
+ %t = call {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 -2147549184)
+ %val = extractvalue {i64, i1} %t, 0
+ %obit = extractvalue {i64, i1} %t, 1
+ store i64 %val, i64 *%res
+ ret i1 %obit
+}
+
+; Check low end of the LLILF/SGR range.
+define zeroext i1 @f12(i64 %dummy, i64 %a, i64 *%res) {
+; CHECK-LABEL: f12:
+; CHECK: llilf [[REG1:%r[0-9]+]], 4294967295
+; CHECK: sgr %r3, [[REG1]]
+; CHECK-DAG: stg %r3, 0(%r4)
+; CHECK-DAG: ipm [[REG:%r[0-5]]]
+; CHECK-DAG: afi [[REG]], 1342177280
+; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
+; CHECK: br %r14
+ %t = call {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 -4294967295)
+ %val = extractvalue {i64, i1} %t, 0
+ %obit = extractvalue {i64, i1} %t, 1
+ store i64 %val, i64 *%res
+ ret i1 %obit
+}
+
+; Check the next value down, which must use register addition instead.
+define zeroext i1 @f13(i64 %dummy, i64 %a, i64 *%res) {
+; CHECK-LABEL: f13:
; CHECK: llihf [[REG1:%r[0-9]+]], 4294967295
; CHECK: agr [[REG1]], %r3
; CHECK-DAG: stg [[REG1]], 0(%r4)
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
- %t = call {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 -2147483649)
+ %t = call {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 -4294967296)
%val = extractvalue {i64, i1} %t, 0
%obit = extractvalue {i64, i1} %t, 1
store i64 %val, i64 *%res
}
; Check using the overflow result for a branch.
-define void @f11(i64 %dummy, i64 %a, i64 *%res) {
-; CHECK-LABEL: f11:
+define void @f14(i64 %dummy, i64 %a, i64 *%res) {
+; CHECK-LABEL: f14:
; CHECK: aghi %r3, 1
; CHECK: stg %r3, 0(%r4)
; CHECK: {{jgo foo@PLT|bnor %r14}}
}
; ... and the same with the inverted direction.
-define void @f12(i64 %dummy, i64 %a, i64 *%res) {
-; CHECK-LABEL: f12:
+define void @f15(i64 %dummy, i64 %a, i64 *%res) {
+; CHECK-LABEL: f15:
; CHECK: aghi %r3, 1
; CHECK: stg %r3, 0(%r4)
; CHECK: {{jgno foo@PLT|bor %r14}}