:func:`median_grouped` Median, or 50th percentile, of grouped data.
:func:`mode` Single mode (most common value) of discrete or nominal data.
:func:`multimode` List of modes (most common values) of discrete or nomimal data.
+:func:`quantiles` Divide data into intervals with equal probability.
======================= ===============================================================
Measures of spread
:func:`pvariance` function as the *mu* parameter to get the variance of a
sample.
+.. function:: quantiles(dist, *, n=4, method='exclusive')
+
+ Divide *dist* into *n* continuous intervals with equal probability.
+ Returns a list of ``n - 1`` cut points separating the intervals.
+
+ Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set
+ *n* to 100 for percentiles which gives the 99 cuts points that separate
+ *dist* in to 100 equal sized groups. Raises :exc:`StatisticsError` if *n*
+ is not least 1.
+
+ The *dist* can be any iterable containing sample data or it can be an
+ instance of a class that defines an :meth:`~inv_cdf` method.
+ Raises :exc:`StatisticsError` if there are not at least two data points.
+
+ For sample data, the cut points are linearly interpolated from the
+ two nearest data points. For example, if a cut point falls one-third
+ of the distance between two sample values, ``100`` and ``112``, the
+ cut-point will evaluate to ``104``. Other selection methods may be
+ offered in the future (for example choose ``100`` as the nearest
+ value or compute ``106`` as the midpoint). This might matter if
+ there are too few samples for a given number of cut points.
+
+ If *method* is set to *inclusive*, *dist* is treated as population data.
+ The minimum value is treated as the 0th percentile and the maximum
+ value is treated as the 100th percentile. If *dist* is an instance of
+ a class that defines an :meth:`~inv_cdf` method, setting *method*
+ has no effect.
+
+ .. doctest::
+
+ # Decile cut points for empirically sampled data
+ >>> data = [105, 129, 87, 86, 111, 111, 89, 81, 108, 92, 110,
+ ... 100, 75, 105, 103, 109, 76, 119, 99, 91, 103, 129,
+ ... 106, 101, 84, 111, 74, 87, 86, 103, 103, 106, 86,
+ ... 111, 75, 87, 102, 121, 111, 88, 89, 101, 106, 95,
+ ... 103, 107, 101, 81, 109, 104]
+ >>> [round(q, 1) for q in quantiles(data, n=10)]
+ [81.0, 86.2, 89.0, 99.4, 102.5, 103.6, 106.0, 109.8, 111.0]
+
+ >>> # Quartile cut points for the standard normal distibution
+ >>> Z = NormalDist()
+ >>> [round(q, 4) for q in quantiles(Z, n=4)]
+ [-0.6745, 0.0, 0.6745]
+
+ .. versionadded:: 3.8
+
+
Exceptions
----------
<http://www.iceaaonline.com/ready/wp-content/uploads/2014/06/MM-9-Presentation-Meet-the-Overlapping-Coefficient-A-Measure-for-Elevator-Speeches.pdf>`_
between two normal distributions, giving a measure of agreement.
Returns a value between 0.0 and 1.0 giving `the overlapping area for
- two probability density functions
+ the two probability density functions
<https://www.rasch.org/rmt/rmt101r.htm>`_.
Instances of :class:`NormalDist` support addition, subtraction,
For example, given `historical data for SAT exams
<https://blog.prepscholar.com/sat-standard-deviation>`_ showing that scores
are normally distributed with a mean of 1060 and a standard deviation of 192,
-determine the percentage of students with scores between 1100 and 1200, after
-rounding to the nearest whole number:
+determine the percentage of students with test scores between 1100 and
+1200, after rounding to the nearest whole number:
.. doctest::
Calculating averages
--------------------
-================== =============================================
+================== ==================================================
Function Description
-================== =============================================
+================== ==================================================
mean Arithmetic mean (average) of data.
geometric_mean Geometric mean of data.
harmonic_mean Harmonic mean of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
multimode List of modes (most common values of data).
-================== =============================================
+quantiles Divide data into intervals with equal probability.
+================== ==================================================
Calculate the arithmetic mean ("the average") of data:
"""
-__all__ = [ 'StatisticsError', 'NormalDist',
+__all__ = [ 'StatisticsError', 'NormalDist', 'quantiles',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
'mean', 'mode', 'multimode', 'harmonic_mean', 'fmean',
maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
return list(map(itemgetter(0), mode_items))
+def quantiles(dist, *, n=4, method='exclusive'):
+ '''Divide *dist* into *n* continuous intervals with equal probability.
+
+ Returns a list of (n - 1) cut points separating the intervals.
+
+ Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
+ Set *n* to 100 for percentiles which gives the 99 cuts points that
+ separate *dist* in to 100 equal sized groups.
+
+ The *dist* can be any iterable containing sample data or it can be
+ an instance of a class that defines an inv_cdf() method. For sample
+ data, the cut points are linearly interpolated between data points.
+
+ If *method* is set to *inclusive*, *dist* is treated as population
+ data. The minimum value is treated as the 0th percentile and the
+ maximum value is treated as the 100th percentile.
+ '''
+ # Possible future API extensions:
+ # quantiles(data, already_sorted=True)
+ # quantiles(data, cut_points=[0.02, 0.25, 0.50, 0.75, 0.98])
+ if n < 1:
+ raise StatisticsError('n must be at least 1')
+ if hasattr(dist, 'inv_cdf'):
+ return [dist.inv_cdf(i / n) for i in range(1, n)]
+ data = sorted(dist)
+ ld = len(data)
+ if ld < 2:
+ raise StatisticsError('must have at least two data points')
+ if method == 'inclusive':
+ m = ld - 1
+ result = []
+ for i in range(1, n):
+ j = i * m // n
+ delta = i*m - j*n
+ interpolated = (data[j] * (n - delta) + data[j+1] * delta) / n
+ result.append(interpolated)
+ return result
+ if method == 'exclusive':
+ m = ld + 1
+ result = []
+ for i in range(1, n):
+ j = i * m // n # rescale i to m/n
+ j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
+ delta = i*m - j*n # exact integer math
+ interpolated = (data[j-1] * (n - delta) + data[j] * delta) / n
+ result.append(interpolated)
+ return result
+ raise ValueError(f'Unknown method: {method!r}')
# === Measures of spread ===
"""
+import bisect
import collections
import collections.abc
import copy
expected = math.sqrt(statistics.variance(data))
self.assertEqual(self.func(data), expected)
+
class TestGeometricMean(unittest.TestCase):
def test_basics(self):
with self.assertRaises(ValueError):
geometric_mean([Inf, -Inf])
+
+class TestQuantiles(unittest.TestCase):
+
+ def test_specific_cases(self):
+ # Match results computed by hand and cross-checked
+ # against the PERCENTILE.EXC function in MS Excel.
+ quantiles = statistics.quantiles
+ data = [120, 200, 250, 320, 350]
+ random.shuffle(data)
+ for n, expected in [
+ (1, []),
+ (2, [250.0]),
+ (3, [200.0, 320.0]),
+ (4, [160.0, 250.0, 335.0]),
+ (5, [136.0, 220.0, 292.0, 344.0]),
+ (6, [120.0, 200.0, 250.0, 320.0, 350.0]),
+ (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]),
+ (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]),
+ (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0,
+ 350.0, 365.0]),
+ (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0,
+ 320.0, 332.0, 344.0, 356.0, 368.0]),
+ ]:
+ self.assertEqual(expected, quantiles(data, n=n))
+ self.assertEqual(len(quantiles(data, n=n)), n - 1)
+ self.assertEqual(list(map(float, expected)),
+ quantiles(map(Decimal, data), n=n))
+ self.assertEqual(list(map(Decimal, expected)),
+ quantiles(map(Decimal, data), n=n))
+ self.assertEqual(list(map(Fraction, expected)),
+ quantiles(map(Fraction, data), n=n))
+ # Invariant under tranlation and scaling
+ def f(x):
+ return 3.5 * x - 1234.675
+ exp = list(map(f, expected))
+ act = quantiles(map(f, data), n=n)
+ self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
+ # Quartiles of a standard normal distribution
+ for n, expected in [
+ (1, []),
+ (2, [0.0]),
+ (3, [-0.4307, 0.4307]),
+ (4 ,[-0.6745, 0.0, 0.6745]),
+ ]:
+ actual = quantiles(statistics.NormalDist(), n=n)
+ self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
+ for e, a in zip(expected, actual)))
+
+ def test_specific_cases_inclusive(self):
+ # Match results computed by hand and cross-checked
+ # against the PERCENTILE.INC function in MS Excel
+ # and against the quaatile() function in SciPy.
+ quantiles = statistics.quantiles
+ data = [100, 200, 400, 800]
+ random.shuffle(data)
+ for n, expected in [
+ (1, []),
+ (2, [300.0]),
+ (3, [200.0, 400.0]),
+ (4, [175.0, 300.0, 500.0]),
+ (5, [160.0, 240.0, 360.0, 560.0]),
+ (6, [150.0, 200.0, 300.0, 400.0, 600.0]),
+ (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]),
+ (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]),
+ (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0,
+ 500.0, 600.0, 700.0]),
+ (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0,
+ 400.0, 480.0, 560.0, 640.0, 720.0]),
+ ]:
+ self.assertEqual(expected, quantiles(data, n=n, method="inclusive"))
+ self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1)
+ self.assertEqual(list(map(float, expected)),
+ quantiles(map(Decimal, data), n=n, method="inclusive"))
+ self.assertEqual(list(map(Decimal, expected)),
+ quantiles(map(Decimal, data), n=n, method="inclusive"))
+ self.assertEqual(list(map(Fraction, expected)),
+ quantiles(map(Fraction, data), n=n, method="inclusive"))
+ # Invariant under tranlation and scaling
+ def f(x):
+ return 3.5 * x - 1234.675
+ exp = list(map(f, expected))
+ act = quantiles(map(f, data), n=n, method="inclusive")
+ self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
+ # Quartiles of a standard normal distribution
+ for n, expected in [
+ (1, []),
+ (2, [0.0]),
+ (3, [-0.4307, 0.4307]),
+ (4 ,[-0.6745, 0.0, 0.6745]),
+ ]:
+ actual = quantiles(statistics.NormalDist(), n=n, method="inclusive")
+ self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
+ for e, a in zip(expected, actual)))
+
+ def test_equal_sized_groups(self):
+ quantiles = statistics.quantiles
+ total = 10_000
+ data = [random.expovariate(0.2) for i in range(total)]
+ while len(set(data)) != total:
+ data.append(random.expovariate(0.2))
+ data.sort()
+
+ # Cases where the group size exactly divides the total
+ for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000):
+ group_size = total // n
+ self.assertEqual(
+ [bisect.bisect(data, q) for q in quantiles(data, n=n)],
+ list(range(group_size, total, group_size)))
+
+ # When the group sizes can't be exactly equal, they should
+ # differ by no more than one
+ for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769):
+ group_sizes = {total // n, total // n + 1}
+ pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)]
+ sizes = {q - p for p, q in zip(pos, pos[1:])}
+ self.assertTrue(sizes <= group_sizes)
+
+ def test_error_cases(self):
+ quantiles = statistics.quantiles
+ StatisticsError = statistics.StatisticsError
+ with self.assertRaises(TypeError):
+ quantiles() # Missing arguments
+ with self.assertRaises(TypeError):
+ quantiles([10, 20, 30], 13, n=4) # Too many arguments
+ with self.assertRaises(TypeError):
+ quantiles([10, 20, 30], 4) # n is a positional argument
+ with self.assertRaises(StatisticsError):
+ quantiles([10, 20, 30], n=0) # n is zero
+ with self.assertRaises(StatisticsError):
+ quantiles([10, 20, 30], n=-1) # n is negative
+ with self.assertRaises(TypeError):
+ quantiles([10, 20, 30], n=1.5) # n is not an integer
+ with self.assertRaises(ValueError):
+ quantiles([10, 20, 30], method='X') # method is unknown
+ with self.assertRaises(StatisticsError):
+ quantiles([10], n=4) # not enough data points
+ with self.assertRaises(TypeError):
+ quantiles([10, None, 30], n=4) # data is non-numeric
+
+
class TestNormalDist(unittest.TestCase):
# General note on precision: The pdf(), cdf(), and overlap() methods