]> granicus.if.org Git - clang/commitdiff
Preliminary support for function overloading
authorDouglas Gregor <dgregor@apple.com>
Tue, 21 Oct 2008 16:13:35 +0000 (16:13 +0000)
committerDouglas Gregor <dgregor@apple.com>
Tue, 21 Oct 2008 16:13:35 +0000 (16:13 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@57909 91177308-0d34-0410-b5e6-96231b3b80d8

28 files changed:
Driver/RewriteObjC.cpp
include/clang/AST/ASTContext.h
include/clang/AST/DeclBase.h
include/clang/AST/DeclCXX.h
include/clang/AST/Expr.h
include/clang/AST/Type.h
include/clang/Analysis/Support/ExprDeclBitVector.h
include/clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h
include/clang/Basic/DiagnosticKinds.def
lib/AST/ASTContext.cpp
lib/AST/DeclBase.cpp
lib/AST/DeclCXX.cpp
lib/AST/DeclSerialization.cpp
lib/AST/StmtSerialization.cpp
lib/AST/Type.cpp
lib/Analysis/BasicStore.cpp
lib/Analysis/GRExprEngine.cpp
lib/Analysis/RegionStore.cpp
lib/CodeGen/CGExprConstant.cpp
lib/Sema/IdentifierResolver.cpp
lib/Sema/Sema.h
lib/Sema/SemaDecl.cpp
lib/Sema/SemaDeclCXX.cpp
lib/Sema/SemaExpr.cpp
lib/Sema/SemaOverload.cpp [new file with mode: 0644]
lib/Sema/SemaOverload.h [new file with mode: 0644]
test/SemaCXX/overload-call.cpp [new file with mode: 0644]
test/SemaCXX/overload-decl.cpp [new file with mode: 0644]

index 14f6ade5916ff0ab8ec566f95eaf60b79b1e5854..821bf2d9c3e9088a776f7adbcce3901f36063048 100644 (file)
@@ -1178,7 +1178,8 @@ Stmt *RewriteObjC::RewriteObjCForCollectionStmt(ObjCForCollectionStmt *S,
   else {
     DeclRefExpr *DR = cast<DeclRefExpr>(S->getElement());
     elementName = DR->getDecl()->getName();
-    elementTypeAsString = DR->getDecl()->getType().getAsString();
+    elementTypeAsString 
+      = cast<ValueDecl>(DR->getDecl())->getType().getAsString();
   }
   
   // struct __objcFastEnumerationState enumState = { 0 };
index 779f318b5ee0940219fdfe47518d8f9c873d81aa..6ca92df0e5908c1323e9a0e99fbafbe1d180b387 100644 (file)
@@ -137,7 +137,8 @@ public:
   QualType FloatTy, DoubleTy, LongDoubleTy;
   QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
   QualType VoidPtrTy;
-  
+  QualType OverloadTy;
+
   ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
              IdentifierTable &idents, SelectorTable &sels,
              unsigned size_reserve=0);
index a1239deea4a857bde43151141d9790ea26b28eba..fd5ce41495f7d1f87c4e50ad91f14924f5a951f6 100644 (file)
@@ -48,6 +48,7 @@ public:
              CXXField,
              ObjCIvar,
              ObjCAtDefsField,
+           OverloadedFunction,
            ObjCCategory,
            ObjCCategoryImpl,
            ObjCImplementation,
@@ -178,6 +179,7 @@ public:
     case EnumConstant:
     case ObjCInterface:
     case ObjCCompatibleAlias:
+    case OverloadedFunction:
     case CXXField:
     case CXXMethod:
     case CXXClassVar:
index 2ce4956a1d476968dfdba91eb9ab27d20378df26..ae16d99c8b72828a1f936e4a8a4d77e4eb95aa65 100644 (file)
@@ -1,4 +1,4 @@
-//===-- DeclCXX.h - Classes for representing C++ declarations *- C++ -*-======//
+//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -15,6 +15,7 @@
 #define LLVM_CLANG_AST_DECLCXX_H
 
 #include "clang/AST/Decl.h"
+#include "llvm/ADT/SmallVector.h"
 
 namespace clang {
 class CXXRecordDecl;
@@ -191,6 +192,85 @@ public:
   }
 };
 
+/// OverloadedFunctionDecl - An instance of this class represents a
+/// set of overloaded functions. All of the functions have the same
+/// name and occur within the same scope.
+///
+/// An OverloadedFunctionDecl has no ownership over the FunctionDecl
+/// nodes it contains. Rather, the FunctionDecls are owned by the
+/// enclosing scope (which also owns the OverloadedFunctionDecl
+/// node). OverloadedFunctionDecl is used primarily to store a set of
+/// overloaded functions for name lookup.
+class OverloadedFunctionDecl : public NamedDecl {
+protected:
+  OverloadedFunctionDecl(DeclContext *DC, IdentifierInfo *Id)
+    : NamedDecl(OverloadedFunction, SourceLocation(), Id) { }
+
+  /// Functions - the set of overloaded functions contained in this
+  /// overload set.
+  llvm::SmallVector<FunctionDecl *, 4> Functions;
+  
+public:
+  typedef llvm::SmallVector<FunctionDecl *, 4>::iterator function_iterator;
+  typedef llvm::SmallVector<FunctionDecl *, 4>::const_iterator
+    function_const_iterator;
+
+  static OverloadedFunctionDecl *Create(ASTContext &C, DeclContext *DC,
+                                        IdentifierInfo *Id);
+
+  /// addOverload - Add an overloaded function FD to this set of
+  /// overloaded functions.
+  void addOverload(FunctionDecl *FD) {
+    assert((!getNumFunctions() || (FD->getDeclContext() == getDeclContext())) &&
+           "Overloaded functions must all be in the same context");
+    assert(FD->getIdentifier() == getIdentifier() &&
+           "Overloaded functions must have the same name.");
+    Functions.push_back(FD);
+  }
+
+  function_iterator function_begin() { return Functions.begin(); }
+  function_iterator function_end() { return Functions.end(); }
+  function_const_iterator function_begin() const { return Functions.begin(); }
+  function_const_iterator function_end() const { return Functions.end(); }
+
+  /// getNumFunctions - the number of overloaded functions stored in
+  /// this set.
+  unsigned getNumFunctions() const { return Functions.size(); }
+
+  /// getFunction - retrieve the ith function in the overload set.
+  const FunctionDecl *getFunction(unsigned i) const {
+    assert(i < getNumFunctions() && "Illegal function #");
+    return Functions[i];
+  }
+  FunctionDecl *getFunction(unsigned i) {
+    assert(i < getNumFunctions() && "Illegal function #");
+    return Functions[i];
+  }
+
+  // getDeclContext - Get the context of these overloaded functions.
+  DeclContext *getDeclContext() {
+    assert(getNumFunctions() > 0 && "Context of an empty overload set");
+    return getFunction(0)->getDeclContext();
+  }
+
+  // Implement isa/cast/dyncast/etc.
+  static bool classof(const Decl *D) { 
+    return D->getKind() == OverloadedFunction; 
+  }
+  static bool classof(const OverloadedFunctionDecl *D) { return true; }
+
+protected:
+  /// EmitImpl - Serialize this FunctionDecl.  Called by Decl::Emit.
+  virtual void EmitImpl(llvm::Serializer& S) const;
+  
+  /// CreateImpl - Deserialize an OverloadedFunctionDecl.  Called by
+  /// Decl::Create.
+  static OverloadedFunctionDecl* CreateImpl(llvm::Deserializer& D, 
+                                            ASTContext& C);
+  
+  friend Decl* Decl::Create(llvm::Deserializer& D, ASTContext& C);
+};
+
 } // end namespace clang
 
 #endif
index d11c1aa2876440266c426b284209900949d6fab7..de4f4f75bb1fa72b2c5d05d50a76890e12688fdb 100644 (file)
@@ -27,6 +27,7 @@ namespace clang {
   class Decl;
   class IdentifierInfo;
   class ParmVarDecl;
+  class NamedDecl;
   class ValueDecl;
   class BlockDecl;
     
@@ -214,19 +215,19 @@ public:
 /// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
 /// enum, etc.
 class DeclRefExpr : public Expr {
-  ValueDecl *D; 
+  NamedDecl *D; 
   SourceLocation Loc;
 
 protected:
-  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
+  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
     Expr(SC, t), D(d), Loc(l) {}
 
 public:
-  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) : 
+  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) : 
     Expr(DeclRefExprClass, t), D(d), Loc(l) {}
   
-  ValueDecl *getDecl() { return D; }
-  const ValueDecl *getDecl() const { return D; }
+  NamedDecl *getDecl() { return D; }
+  const NamedDecl *getDecl() const { return D; }
   SourceLocation getLocation() const { return Loc; }
   virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
   
index a863e400ae7ebf3af163a4b1b923c2e33cea8b43..e2ba317d05da10b479bc541bf25f791c8a64cb9c 100644 (file)
@@ -494,7 +494,9 @@ public:
     Long,
     LongLong,
     
-    Float, Double, LongDouble
+    Float, Double, LongDouble,
+
+    Overload  // This represents the type of an overloaded function declaration.
   };
 private:
   Kind TypeKind;
index 7b44fd7c6ba1fdaf289957d7ec5ddcc7e3471026..362ce161ab2ee78d65c9cc1a8cce6ba8db7b77a8 100644 (file)
 #define LLVM_CLANG_EXPRDECLBVDVAL_H
 
 #include "clang/AST/CFG.h"
+#include "clang/AST/Decl.h" // for ScopedDecl* -> NamedDecl* conversion
 #include "llvm/ADT/BitVector.h"
 #include "llvm/ADT/DenseMap.h"
 
 namespace clang {
   
   class Expr;
-  class ScopedDecl;
-  
+
 struct DeclBitVector_Types {
   
   class Idx {
@@ -49,7 +49,7 @@ struct DeclBitVector_Types {
   
   class AnalysisDataTy {
   public:
-    typedef llvm::DenseMap<const ScopedDecl*, unsigned > DMapTy;
+    typedef llvm::DenseMap<const NamedDecl*, unsigned > DMapTy;
     typedef DMapTy::const_iterator decl_iterator;
     
   protected:
@@ -61,16 +61,16 @@ struct DeclBitVector_Types {
     AnalysisDataTy() : NDecls(0) {}
     virtual ~AnalysisDataTy() {}
     
-    bool isTracked(const ScopedDecl* SD) { return DMap.find(SD) != DMap.end(); }
+    bool isTracked(const NamedDecl* SD) { return DMap.find(SD) != DMap.end(); }
     
-    Idx getIdx(const ScopedDecl* SD) const {
+    Idx getIdx(const NamedDecl* SD) const {
       DMapTy::const_iterator I = DMap.find(SD);
       return I == DMap.end() ? Idx() : Idx(I->second);
     }
 
     unsigned getNumDecls() const { return NDecls; }
     
-    void Register(const ScopedDecl* SD) {
+    void Register(const NamedDecl* SD) {
       if (!isTracked(SD)) DMap[SD] = NDecls++;
     }
 
index e24359d4ac3476047591fb40660f173806552659..322070b380a48f6badd47d72c169fff874792a72 100644 (file)
@@ -37,7 +37,8 @@ class CFGRecStmtDeclVisitor : public CFGRecStmtVisitor<ImplClass> {
 public:  
 
   void VisitDeclRefExpr(DeclRefExpr* DR) {
-    for (ScopedDecl* D = DR->getDecl(); D != NULL; D = D->getNextDeclarator())
+    for (ScopedDecl* D = dyn_cast<ScopedDecl>(DR->getDecl()); D != NULL; 
+         D = D->getNextDeclarator())
       static_cast<ImplClass*>(this)->VisitScopedDecl(D); 
   }
   
index 474beeb31cce68f9800f7afe84ef6afb4796a3aa..352cc91de45c276f594675d43d56ca3ef43b9d66 100644 (file)
@@ -800,6 +800,20 @@ DIAG(err_previous_use, ERROR,
 DIAG(err_first_label, ERROR,
     "first label is here")
 
+// C++ Overloading Semantic Analysis.
+DIAG(err_ovl_diff_return_type, ERROR,
+     "functions that differ only in their return type cannot be overloaded")
+DIAG(err_ovl_static_nonstatic_member, ERROR,
+     "static and non-static member functions with the same parameter types cannot be overloaded")
+DIAG(err_ovl_no_viable_function_in_call, ERROR,
+     "no matching function for call to '%0'.")
+DIAG(err_ovl_no_viable_function_in_call_with_cands, ERROR,
+     "no matching function for call to '%0'; candidates are:")
+DIAG(err_ovl_ambiguous_call, ERROR,
+     "call to '%0' is ambiguous; candidates are:")
+DIAG(err_ovl_candidate, NOTE,
+     "candidate function")
+
 DIAG(err_unexpected_typedef, ERROR,
      "unexpected type name '%0': expected expression")
 DIAG(err_unexpected_namespace, ERROR,
index f4266fb90d1d512fa6f7a3f03de901a5057af7a2..cbbfe317d5e1108cc8d408cba09b86195712ede6 100644 (file)
@@ -182,11 +182,14 @@ void ASTContext::InitBuiltinTypes() {
   // C++ 3.9.1p5
   InitBuiltinType(WCharTy,             BuiltinType::WChar);
 
+  // Placeholder type for functions.
+  InitBuiltinType(OverloadTy,         BuiltinType::Overload);
+
   // C99 6.2.5p11.
   FloatComplexTy      = getComplexType(FloatTy);
   DoubleComplexTy     = getComplexType(DoubleTy);
   LongDoubleComplexTy = getComplexType(LongDoubleTy);
-  
+
   BuiltinVaListType = QualType();
   ObjCIdType = QualType();
   IdStructType = 0;
index 75d6bc6ce9a7b27fe45b162a08d7dcc29cc98cb3..686aba2460c2ecc98ae1fddd714ea466c2231955 100644 (file)
@@ -31,6 +31,7 @@ static unsigned nCXXSUC = 0;
 static unsigned nEnumConst = 0;
 static unsigned nEnumDecls = 0;
 static unsigned nNamespaces = 0;
+static unsigned nOverFuncs = 0;
 static unsigned nTypedef = 0;
 static unsigned nFieldDecls = 0;
 static unsigned nCXXFieldDecls = 0;
@@ -63,6 +64,7 @@ const char *Decl::getDeclKindName() const {
   switch (DeclKind) {
   default: assert(0 && "Unknown decl kind!");
   case Namespace:           return "Namespace";
+  case OverloadedFunction:  return "OverloadedFunction";
   case Typedef:             return "Typedef";
   case Function:            return "Function";
   case Var:                 return "Var";
@@ -93,10 +95,13 @@ void Decl::PrintStats() {
           int(nFuncs+nVars+nParmVars+nFieldDecls+nSUC+nCXXFieldDecls+nCXXSUC+
               nEnumDecls+nEnumConst+nTypedef+nInterfaceDecls+nClassDecls+
               nMethodDecls+nProtocolDecls+nCategoryDecls+nIvarDecls+
-              nAtDefsFieldDecls+nNamespaces));
+              nAtDefsFieldDecls+nNamespaces+nOverFuncs));
   fprintf(stderr, "    %d namespace decls, %d each (%d bytes)\n", 
           nNamespaces, (int)sizeof(NamespaceDecl), 
           int(nNamespaces*sizeof(NamespaceDecl)));
+  fprintf(stderr, "    %d overloaded function decls, %d each (%d bytes)\n", 
+          nOverFuncs, (int)sizeof(OverloadedFunctionDecl), 
+          int(nOverFuncs*sizeof(OverloadedFunctionDecl)));
   fprintf(stderr, "    %d function decls, %d each (%d bytes)\n", 
           nFuncs, (int)sizeof(FunctionDecl), int(nFuncs*sizeof(FunctionDecl)));
   fprintf(stderr, "    %d variable decls, %d each (%d bytes)\n", 
@@ -192,13 +197,15 @@ void Decl::PrintStats() {
               nObjCPropertyImplDecl*sizeof(ObjCPropertyImplDecl)+
               nLinkageSpecDecl*sizeof(LinkageSpecDecl)+
               nFileScopeAsmDecl*sizeof(FileScopeAsmDecl)+
-              nNamespaces*sizeof(NamespaceDecl)));
+              nNamespaces*sizeof(NamespaceDecl)+
+              nOverFuncs*sizeof(OverloadedFunctionDecl)));
     
 }
 
 void Decl::addDeclKind(Kind k) {
   switch (k) {
   case Namespace:           nNamespaces++; break;
+  case OverloadedFunction:  nOverFuncs++; break;
   case Typedef:             nTypedef++; break;
   case Function:            nFuncs++; break;
   case Var:                 nVars++; break;
index af89da44cc39f97d1162753d5f341c1615eef634..9fd7ff974e91f41c773b886ebf9817888e0d9b48 100644 (file)
@@ -59,3 +59,10 @@ CXXClassVarDecl *CXXClassVarDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   void *Mem = C.getAllocator().Allocate<CXXClassVarDecl>();
   return new (Mem) CXXClassVarDecl(RD, L, Id, T, PrevDecl);
 }
+
+OverloadedFunctionDecl *
+OverloadedFunctionDecl::Create(ASTContext &C, DeclContext *DC,
+                               IdentifierInfo *Id) {
+  void *Mem = C.getAllocator().Allocate<OverloadedFunctionDecl>();
+  return new (Mem) OverloadedFunctionDecl(DC, Id);
+}
index a0befbdbb0852fc756b61f8c815ae5e753760bdc..f2aa3f30276c72f3975226e63f96748606e92b4c 100644 (file)
@@ -13,6 +13,7 @@
 
 #include "clang/AST/ASTContext.h"
 #include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
 #include "clang/AST/Expr.h"
 #include "llvm/Bitcode/Serialize.h"
 #include "llvm/Bitcode/Deserialize.h"
@@ -74,7 +75,11 @@ Decl* Decl::Create(Deserializer& D, ASTContext& C) {
     case Function:
       Dcl = FunctionDecl::CreateImpl(D, C);
       break;
-    
+
+    case OverloadedFunction:
+      Dcl = OverloadedFunctionDecl::CreateImpl(D, C);
+      break;
+
     case Record:
       Dcl = RecordDecl::CreateImpl(D, C);
       break;
@@ -454,6 +459,34 @@ BlockDecl* BlockDecl::CreateImpl(Deserializer& D, ASTContext& C) {
   return 0;
 }
 
+//===----------------------------------------------------------------------===//
+//      OverloadedFunctionDecl Serialization.
+//===----------------------------------------------------------------------===//
+
+void OverloadedFunctionDecl::EmitImpl(Serializer& S) const {
+  NamedDecl::EmitInRec(S);
+
+  S.EmitInt(getNumFunctions());
+  for (unsigned func = 0; func < getNumFunctions(); ++func)
+    S.EmitPtr(Functions[func]);
+}
+
+OverloadedFunctionDecl * 
+OverloadedFunctionDecl::CreateImpl(Deserializer& D, ASTContext& C) {
+  void *Mem = C.getAllocator().Allocate<OverloadedFunctionDecl>();
+  OverloadedFunctionDecl* decl = new (Mem)
+    OverloadedFunctionDecl(0, NULL);
+  
+  decl->NamedDecl::ReadInRec(D, C);
+
+  unsigned numFunctions = D.ReadInt();
+  decl->Functions.reserve(numFunctions);
+  for (unsigned func = 0; func < numFunctions; ++func)
+    D.ReadPtr(decl->Functions[func]);
+  
+  return decl;
+}
+
 //===----------------------------------------------------------------------===//
 //      RecordDecl Serialization.
 //===----------------------------------------------------------------------===//
index baee03014494c9a89ff95d612b8def702bedebc1..decd9a76c9b2b462f2cb3bc74a845dc5d8df4482 100644 (file)
@@ -522,12 +522,12 @@ DeclRefExpr* DeclRefExpr::CreateImpl(Deserializer& D, ASTContext& C) {
   SourceLocation Loc = SourceLocation::ReadVal(D);
   QualType T = QualType::ReadVal(D);  
   bool OwnsDecl = D.ReadBool();
-  ValueDecl* decl;
+  NamedDecl* decl;
   
   if (!OwnsDecl)
     D.ReadPtr(decl,false); // No backpatching.
   else
-    decl = cast<ValueDecl>(D.ReadOwnedPtr<Decl>(C));
+    decl = cast<NamedDecl>(D.ReadOwnedPtr<Decl>(C));
   
   return new DeclRefExpr(decl,T,Loc);
 }
index 74e52fef88fd4da22fd0c2a8950956e757a70df4..5de44762c39a9e09acc37f37761839a0d0b10dd7 100644 (file)
@@ -450,6 +450,7 @@ bool Type::isIntegerType() const {
            BT->getKind() <= BuiltinType::LongLong;
   if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
     // Incomplete enum types are not treated as integer types.
+    // FIXME: In C++, enum types are never integer types.
     if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
       return true;
   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
@@ -466,6 +467,7 @@ bool Type::isIntegralType() const {
   if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
     if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
       return true;  // Complete enum types are integral.
+                    // FIXME: In C++, enum types are never integral.
   if (const ASQualType *ASQT = dyn_cast<ASQualType>(CanonicalType))
     return ASQT->getBaseType()->isIntegralType();
   return false;
@@ -697,6 +699,7 @@ const char *BuiltinType::getName() const {
   case Double:            return "double";
   case LongDouble:        return "long double";
   case WChar:             return "wchar_t";
+  case Overload:          return "<overloaded function type>";
   }
 }
 
index b42f210dd83df52f42fa2fed69ec8b7af644144f..2a003335b6ba98bbcb0c80f607ce7187c946d7fd 100644 (file)
@@ -299,9 +299,9 @@ Store BasicStoreManager::getInitialStore() {
   Store St = VBFactory.GetEmptyMap().getRoot();
 
   for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) {
-    ScopedDecl* SD = const_cast<ScopedDecl*>(I->first);
+    NamedDecl* ND = const_cast<NamedDecl*>(I->first);
 
-    if (VarDecl* VD = dyn_cast<VarDecl>(SD)) {
+    if (VarDecl* VD = dyn_cast<VarDecl>(ND)) {
       // Punt on static variables for now.
       if (VD->getStorageClass() == VarDecl::Static)
         continue;
index 68f10b0d038ea762926ed35e999f10c28bc7dabf..e6780161d7a08e9f0c26dbba4dc833737afe0eb6 100644 (file)
@@ -823,7 +823,7 @@ void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst,
   
   const GRState* St = GetState(Pred);
 
-  const ValueDecl* D = Ex->getDecl();
+  const NamedDecl* D = Ex->getDecl();
 
   if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
 
index f936fff1b9c2d720ab7616fb8320e1c6a7f5a533..9efcc48c518ca920f96cdd3b8c4e38198c24748d 100644 (file)
@@ -118,9 +118,9 @@ Store RegionStoreManager::getInitialStore() {
   Store St = RBFactory.GetEmptyMap().getRoot();
 
   for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) {
-    ScopedDecl* SD = const_cast<ScopedDecl*>(I->first);
+    NamedDecl* ND = const_cast<NamedDecl*>(I->first);
 
-    if (VarDecl* VD = dyn_cast<VarDecl>(SD)) {
+    if (VarDecl* VD = dyn_cast<VarDecl>(ND)) {
       // Punt on static variables for now.
       if (VD->getStorageClass() == VarDecl::Static)
         continue;
index 783bb1c67ad7f10c2c4bdc2d9c7794234a03bfb5..5fc513d125c1f0d54407c0929e8749351b5c1c68 100644 (file)
@@ -371,7 +371,7 @@ public:
   }
 
   llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) {
-    const ValueDecl *Decl = E->getDecl();
+    const NamedDecl *Decl = E->getDecl();
     if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(Decl))
       return llvm::ConstantInt::get(EC->getInitVal());
     assert(0 && "Unsupported decl ref type!");
@@ -769,7 +769,7 @@ public:
       return C;
     }
     case Expr::DeclRefExprClass: {
-      ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
+      NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
         return CGM.GetAddrOfFunction(FD);
       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
index e97de7381785bc17ace3092df6ae8ac0fe79defa..8375720e55cd8718c5194bee7be80b3703589530 100644 (file)
@@ -57,7 +57,9 @@ DeclContext *IdentifierResolver::LookupContext::getContext(Decl *D) {
   if (EnumConstantDecl *EnumD = dyn_cast<EnumConstantDecl>(D)) {
     Ctx = EnumD->getDeclContext()->getParent();
   } else if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
-    Ctx = SD->getDeclContext();
+    Ctx = SD->getDeclContext(); 
+  else if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
+    Ctx = Ovl->getDeclContext();
   else
     return TUCtx();
 
index 796ba4ed0416ec7a45d664fb1928a03cdb0d432f..039571f9fe234629cbdc0c247f692dd44dc09fa6 100644 (file)
@@ -17,6 +17,7 @@
 
 #include "IdentifierResolver.h"
 #include "CXXFieldCollector.h"
+#include "SemaOverload.h"
 #include "clang/Parse/Action.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/DenseSet.h"
@@ -361,7 +362,46 @@ private:
   VarDecl *MergeVarDecl(VarDecl *New, Decl *Old);
   FunctionDecl *MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old);
   void CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD);
-  
+
+  /// C++ Overloading.
+  bool IsOverload(FunctionDecl *New, Decl* OldD, 
+                  OverloadedFunctionDecl::function_iterator &MatchedDecl);
+  ImplicitConversionSequence TryCopyInitialization(Expr* From, QualType ToType);
+  bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
+  bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
+  bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+                           QualType& ConvertedType);
+
+  ImplicitConversionSequence::CompareKind 
+  CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
+                                     const ImplicitConversionSequence& ICS2);
+
+  ImplicitConversionSequence::CompareKind 
+  CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
+                                     const StandardConversionSequence& SCS2);
+
+  /// OverloadingResult - Capture the result of performing overload
+  /// resolution.
+  enum OverloadingResult {
+    OR_Success,             ///< Overload resolution succeeded.
+    OR_No_Viable_Function,  ///< No viable function found.
+    OR_Ambiguous            ///< Ambiguous candidates found.
+  };
+
+  void AddOverloadCandidate(FunctionDecl *Function, 
+                            Expr **Args, unsigned NumArgs,
+                            OverloadCandidateSet& CandidateSet);
+  void AddOverloadCandidates(OverloadedFunctionDecl *Ovl, 
+                             Expr **Args, unsigned NumArgs,
+                             OverloadCandidateSet& CandidateSet);
+  bool isBetterOverloadCandidate(const OverloadCandidate& Cand1,
+                                 const OverloadCandidate& Cand2);
+  OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet,
+                                       OverloadCandidateSet::iterator& Best);
+  void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
+                               bool OnlyViable);
+                               
+
   /// Helpers for dealing with function parameters
   bool CheckParmsForFunctionDef(FunctionDecl *FD);
   void CheckCXXDefaultArguments(FunctionDecl *FD);
index e32da244de9a28d16d63a8e72bbafca8e015c84b..1befc2e2e9a05125a35011c8a71af735d0bb3b63 100644 (file)
@@ -93,9 +93,43 @@ void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
       // so swap the order on the shadowed declaration chain.
 
       IdResolver.AddShadowedDecl(TD, *I);
+      return;
+    }
+  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+    // We are pushing the name of a function, which might be an
+    // overloaded name.
+    IdentifierResolver::iterator
+        I = IdResolver.begin(FD->getIdentifier(),
+                             FD->getDeclContext(), false/*LookInParentCtx*/);
+    if (I != IdResolver.end() &&
+        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
+        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
+      // There is already a declaration with the same name in the same
+      // scope. It must be a function or an overloaded function.
+      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
+      if (!Ovl) {
+        // We haven't yet overloaded this function. Take the existing
+        // FunctionDecl and put it into an OverloadedFunctionDecl.
+        Ovl = OverloadedFunctionDecl::Create(Context, 
+                                             FD->getDeclContext(),
+                                             FD->getIdentifier());
+        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
+        
+        // Remove the name binding to the existing FunctionDecl...
+        IdResolver.RemoveDecl(*I);
+
+        // ... and put the OverloadedFunctionDecl in its place.
+        IdResolver.AddDecl(Ovl);
+      }
+
+      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
+      // to its list of overloads.
+      Ovl->addOverload(FD);
+
       return;
     }
   }
+
   IdResolver.AddDecl(D);
 }
 
@@ -320,9 +354,17 @@ static void MergeAttributes(Decl *New, Decl *Old) {
 /// declarator D which has the same name and scope as a previous
 /// declaration 'Old'.  Figure out how to resolve this situation,
 /// merging decls or emitting diagnostics as appropriate.
-/// Redeclaration will be set true if thisNew is a redeclaration OldD.
+/// Redeclaration will be set true if this New is a redeclaration OldD.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
 FunctionDecl *
 Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
+  assert(!isa<OverloadedFunctionDecl>(OldD) && 
+         "Cannot merge with an overloaded function declaration");
+
   Redeclaration = false;
   // Verify the old decl was also a function.
   FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
@@ -332,17 +374,59 @@ Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
     Diag(OldD->getLocation(), diag::err_previous_definition);
     return New;
   }
+
+  // Determine whether the previous declaration was a definition,
+  // implicit declaration, or a declaration.
+  diag::kind PrevDiag;
+  if (Old->isThisDeclarationADefinition())
+    PrevDiag = diag::err_previous_definition;
+  else if (Old->isImplicit())
+    PrevDiag = diag::err_previous_implicit_declaration;
+  else 
+    PrevDiag = diag::err_previous_declaration;
   
   QualType OldQType = Context.getCanonicalType(Old->getType());
   QualType NewQType = Context.getCanonicalType(New->getType());
   
-  // C++ [dcl.fct]p3:
-  //   All declarations for a function shall agree exactly in both the
-  //   return type and the parameter-type-list.
-  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
-    MergeAttributes(New, Old);
-    Redeclaration = true;
-    return MergeCXXFunctionDecl(New, Old);
+  if (getLangOptions().CPlusPlus) {
+    // (C++98 13.1p2):
+    //   Certain function declarations cannot be overloaded:
+    //     -- Function declarations that differ only in the return type 
+    //        cannot be overloaded.
+    QualType OldReturnType 
+      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
+    QualType NewReturnType 
+      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
+    if (OldReturnType != NewReturnType) {
+      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
+      Diag(Old->getLocation(), PrevDiag);
+      return New;
+    }
+
+    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+    if (OldMethod && NewMethod) {
+      //    -- Member function declarations with the same name and the 
+      //       same parameter types cannot be overloaded if any of them 
+      //       is a static member function declaration.
+      if (OldMethod->isStatic() || NewMethod->isStatic()) {
+        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+        Diag(Old->getLocation(), PrevDiag);
+        return New;
+      }
+    }
+
+    // (C++98 8.3.5p3):
+    //   All declarations for a function shall agree exactly in both the
+    //   return type and the parameter-type-list.
+    if (OldQType == NewQType) {
+      // We have a redeclaration.
+      MergeAttributes(New, Old);
+      Redeclaration = true;
+      return MergeCXXFunctionDecl(New, Old);
+    } 
+
+    // Fall through for conflicting redeclarations and redefinitions.
   }
 
   // C: Function types need to be compatible, not identical. This handles
@@ -356,13 +440,6 @@ Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
 
   // A function that has already been declared has been redeclared or defined
   // with a different type- show appropriate diagnostic
-  diag::kind PrevDiag;
-  if (Old->isThisDeclarationADefinition())
-    PrevDiag = diag::err_previous_definition;
-  else if (Old->isImplicit())
-    PrevDiag = diag::err_previous_implicit_declaration;
-  else 
-    PrevDiag = diag::err_previous_declaration;
 
   // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
   // TODO: This is totally simplistic.  It should handle merging functions
@@ -717,10 +794,49 @@ Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
     if (PrevDecl &&
         (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
       bool Redeclaration = false;
-      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
-      if (NewFD == 0) return 0;
-      if (Redeclaration) {
-        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
+
+      // If C++, determine whether NewFD is an overload of PrevDecl or
+      // a declaration that requires merging. If it's an overload,
+      // there's no more work to do here; we'll just add the new
+      // function to the scope.
+      OverloadedFunctionDecl::function_iterator MatchedDecl;
+      if (!getLangOptions().CPlusPlus ||
+          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
+        Decl *OldDecl = PrevDecl;
+
+        // If PrevDecl was an overloaded function, extract the
+        // FunctionDecl that matched.
+        if (isa<OverloadedFunctionDecl>(PrevDecl))
+          OldDecl = *MatchedDecl;
+
+        // NewFD and PrevDecl represent declarations that need to be
+        // merged. 
+        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
+
+        if (NewFD == 0) return 0;
+        if (Redeclaration) {
+          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+
+          if (OldDecl == PrevDecl) {
+            // Remove the name binding for the previous
+            // declaration. We'll add the binding back later, but then
+            // it will refer to the new declaration (which will
+            // contain more information).
+            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
+          } else {
+            // We need to update the OverloadedFunctionDecl with the
+            // latest declaration of this function, so that name
+            // lookup will always refer to the latest declaration of
+            // this function.
+            *MatchedDecl = NewFD;
+           
+            // Add the redeclaration to the current scope, since we'll
+            // be skipping PushOnScopeChains.
+            S->AddDecl(NewFD);
+
+            return NewFD;
+          }
+        }
       }
     }
     New = NewFD;
index e06761f1ba83399ec5dd709fa1c5090769cf0c50..fef205cb11a393d484fd49973d025751a92c95c3 100644 (file)
@@ -19,6 +19,7 @@
 #include "clang/Basic/Diagnostic.h"
 #include "clang/Parse/DeclSpec.h"
 #include "llvm/Support/Compiler.h"
+#include <algorithm> // for std::equal
 
 using namespace clang;
 
@@ -58,7 +59,7 @@ namespace {
   /// determine whether this declaration can be used in the default
   /// argument expression.
   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
-    ValueDecl *Decl = DRE->getDecl();
+    NamedDecl *Decl = DRE->getDecl();
     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
       // C++ [dcl.fct.default]p9
       //   Default arguments are evaluated each time the function is
index 5ff8b0e59fbf17382db4c99362a16e653a2ea017..8c63060b615008dc8017248aa2a76a1ea2049821 100644 (file)
@@ -418,6 +418,9 @@ Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
     return Diag(Loc, diag::err_unexpected_namespace, II.getName());
 
   // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
+  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
+    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
+
   ValueDecl *VD = cast<ValueDecl>(D);
   
   // check if referencing an identifier with __attribute__((deprecated)).
@@ -1036,16 +1039,67 @@ ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
   Expr **Args = reinterpret_cast<Expr**>(args);
   assert(Fn && "no function call expression");
   FunctionDecl *FDecl = NULL;
+  OverloadedFunctionDecl *Ovl = NULL;
+
+  // If we're directly calling a function or a set of overloaded
+  // functions, get the appropriate declaration.
+  {
+    DeclRefExpr *DRExpr = NULL;
+    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
+      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
+    else 
+      DRExpr = dyn_cast<DeclRefExpr>(Fn);
+
+    if (DRExpr) {
+      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
+      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
+    }
+  }
+
+  // If we have a set of overloaded functions, perform overload
+  // resolution to pick the function.
+  if (Ovl) {
+    OverloadCandidateSet CandidateSet;
+    OverloadCandidateSet::iterator Best;
+    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
+    switch (BestViableFunction(CandidateSet, Best)) {
+    case OR_Success: 
+      {
+        // Success! Let the remainder of this function build a call to
+        // the function selected by overload resolution.
+        FDecl = Best->Function;
+        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(), 
+                                      Fn->getSourceRange().getBegin());
+        delete Fn;
+        Fn = NewFn;
+      }
+      break;
+
+    case OR_No_Viable_Function:
+      if (CandidateSet.empty())
+        Diag(Fn->getSourceRange().getBegin(), 
+             diag::err_ovl_no_viable_function_in_call, Ovl->getName(),
+             Fn->getSourceRange());
+      else {
+        Diag(Fn->getSourceRange().getBegin(), 
+             diag::err_ovl_no_viable_function_in_call_with_cands, 
+             Ovl->getName(), Fn->getSourceRange());
+        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+      }
+      return true;
+
+    case OR_Ambiguous:
+      Diag(Fn->getSourceRange().getBegin(), 
+           diag::err_ovl_ambiguous_call, Ovl->getName(), 
+           Fn->getSourceRange());
+      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+      return true;
+    }
+  }
 
   // Promote the function operand.
   UsualUnaryConversions(Fn);
 
-  // If we're directly calling a function, get the declaration for
-  // that function.
-  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
-    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
-      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
-
   // Make the call expr early, before semantic checks.  This guarantees cleanup
   // of arguments and function on error.
   llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
@@ -2338,7 +2392,7 @@ QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
 ///  - *(x + 1) -> x, if x is an array
 ///  - &"123"[2] -> 0
 ///  - & __real__ x -> x
-static ValueDecl *getPrimaryDecl(Expr *E) {
+static NamedDecl *getPrimaryDecl(Expr *E) {
   switch (E->getStmtClass()) {
   case Stmt::DeclRefExprClass:
     return cast<DeclRefExpr>(E)->getDecl();
@@ -2351,7 +2405,8 @@ static ValueDecl *getPrimaryDecl(Expr *E) {
   case Stmt::ArraySubscriptExprClass: {
     // &X[4] and &4[X] refers to X if X is not a pointer.
   
-    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
+    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
+    ValueDecl *VD = dyn_cast<ValueDecl>(D);
     if (!VD || VD->getType()->isPointerType())
       return 0;
     else
@@ -2363,10 +2418,13 @@ static ValueDecl *getPrimaryDecl(Expr *E) {
     switch(UO->getOpcode()) {
     case UnaryOperator::Deref: {
       // *(X + 1) refers to X if X is not a pointer.
-      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
-      if (!VD || VD->getType()->isPointerType())
-        return 0;
-      return VD;
+      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
+        ValueDecl *VD = dyn_cast<ValueDecl>(D);
+        if (!VD || VD->getType()->isPointerType())
+          return 0;
+        return VD;
+      }
+      return 0;
     }
     case UnaryOperator::Real:
     case UnaryOperator::Imag:
@@ -2420,7 +2478,7 @@ QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
     // Technically, there should be a check for array subscript
     // expressions here, but the result of one is always an lvalue anyway.
   }
-  ValueDecl *dcl = getPrimaryDecl(op);
+  NamedDecl *dcl = getPrimaryDecl(op);
   Expr::isLvalueResult lval = op->isLvalue(Context);
   
   if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
diff --git a/lib/Sema/SemaOverload.cpp b/lib/Sema/SemaOverload.cpp
new file mode 100644 (file)
index 0000000..88c209b
--- /dev/null
@@ -0,0 +1,903 @@
+//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ overloading.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+
+namespace clang {
+
+/// GetConversionCategory - Retrieve the implicit conversion
+/// category corresponding to the given implicit conversion kind.
+ImplicitConversionCategory 
+GetConversionCategory(ImplicitConversionKind Kind) {
+  static const ImplicitConversionCategory
+    Category[(int)ICK_Num_Conversion_Kinds] = {
+    ICC_Identity,
+    ICC_Lvalue_Transformation,
+    ICC_Lvalue_Transformation,
+    ICC_Lvalue_Transformation,
+    ICC_Qualification_Adjustment,
+    ICC_Promotion,
+    ICC_Promotion,
+    ICC_Conversion,
+    ICC_Conversion,
+    ICC_Conversion,
+    ICC_Conversion,
+    ICC_Conversion,
+    ICC_Conversion
+  };
+  return Category[(int)Kind];
+}
+
+/// GetConversionRank - Retrieve the implicit conversion rank
+/// corresponding to the given implicit conversion kind.
+ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
+  static const ImplicitConversionRank
+    Rank[(int)ICK_Num_Conversion_Kinds] = {
+    ICR_Exact_Match,
+    ICR_Exact_Match,
+    ICR_Exact_Match,
+    ICR_Exact_Match,
+    ICR_Exact_Match,
+    ICR_Promotion,
+    ICR_Promotion,
+    ICR_Conversion,
+    ICR_Conversion,
+    ICR_Conversion,
+    ICR_Conversion,
+    ICR_Conversion,
+    ICR_Conversion
+  };
+  return Rank[(int)Kind];
+}
+
+/// GetImplicitConversionName - Return the name of this kind of
+/// implicit conversion.
+const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
+  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
+    "No conversion",
+    "Lvalue-to-rvalue",
+    "Array-to-pointer",
+    "Function-to-pointer",
+    "Qualification",
+    "Integral promotion",
+    "Floating point promotion",
+    "Integral conversion",
+    "Floating conversion",
+    "Floating-integral conversion",
+    "Pointer conversion",
+    "Pointer-to-member conversion",
+    "Boolean conversion"
+  };
+  return Name[Kind];
+}
+
+/// getRank - Retrieve the rank of this standard conversion sequence
+/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
+/// implicit conversions.
+ImplicitConversionRank StandardConversionSequence::getRank() const {
+  ImplicitConversionRank Rank = ICR_Exact_Match;
+  if  (GetConversionRank(First) > Rank)
+    Rank = GetConversionRank(First);
+  if  (GetConversionRank(Second) > Rank)
+    Rank = GetConversionRank(Second);
+  if  (GetConversionRank(Third) > Rank)
+    Rank = GetConversionRank(Third);
+  return Rank;
+}
+
+/// isPointerConversionToBool - Determines whether this conversion is
+/// a conversion of a pointer or pointer-to-member to bool. This is
+/// used as part of the ranking of standard conversion sequences 
+/// (C++ 13.3.3.2p4).
+bool StandardConversionSequence::isPointerConversionToBool() const
+{
+  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
+  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
+
+  // Note that FromType has not necessarily been transformed by the
+  // array-to-pointer or function-to-pointer implicit conversions, so
+  // check for their presence as well as checking whether FromType is
+  // a pointer.
+  if (ToType->isBooleanType() &&
+      (FromType->isPointerType() ||
+       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
+    return true;
+
+  return false;
+}
+
+/// DebugPrint - Print this standard conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void StandardConversionSequence::DebugPrint() const {
+  bool PrintedSomething = false;
+  if (First != ICK_Identity) {
+    fprintf(stderr, "%s", GetImplicitConversionName(First));
+    PrintedSomething = true;
+  }
+
+  if (Second != ICK_Identity) {
+    if (PrintedSomething) {
+      fprintf(stderr, " -> ");
+    }
+    fprintf(stderr, "%s", GetImplicitConversionName(Second));
+    PrintedSomething = true;
+  }
+
+  if (Third != ICK_Identity) {
+    if (PrintedSomething) {
+      fprintf(stderr, " -> ");
+    }
+    fprintf(stderr, "%s", GetImplicitConversionName(Third));
+    PrintedSomething = true;
+  }
+
+  if (!PrintedSomething) {
+    fprintf(stderr, "No conversions required");
+  }
+}
+
+/// DebugPrint - Print this user-defined conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void UserDefinedConversionSequence::DebugPrint() const {
+  if (Before.First || Before.Second || Before.Third) {
+    Before.DebugPrint();
+    fprintf(stderr, " -> ");
+  }
+  fprintf(stderr, "'%s'", ConversionFunction->getName());
+  if (After.First || After.Second || After.Third) {
+    fprintf(stderr, " -> ");
+    After.DebugPrint();
+  }
+}
+
+/// DebugPrint - Print this implicit conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void ImplicitConversionSequence::DebugPrint() const {
+  switch (ConversionKind) {
+  case StandardConversion:
+    fprintf(stderr, "Standard conversion: ");
+    Standard.DebugPrint();
+    break;
+  case UserDefinedConversion:
+    fprintf(stderr, "User-defined conversion: ");
+    UserDefined.DebugPrint();
+    break;
+  case EllipsisConversion:
+    fprintf(stderr, "Ellipsis conversion");
+    break;
+  case BadConversion:
+    fprintf(stderr, "Bad conversion");
+    break;
+  }
+
+  fprintf(stderr, "\n");
+}
+
+// IsOverload - Determine whether the given New declaration is an
+// overload of the Old declaration. This routine returns false if New
+// and Old cannot be overloaded, e.g., if they are functions with the
+// same signature (C++ 1.3.10) or if the Old declaration isn't a
+// function (or overload set). When it does return false and Old is an
+// OverloadedFunctionDecl, MatchedDecl will be set to point to the
+// FunctionDecl that New cannot be overloaded with. 
+//
+// Example: Given the following input:
+//
+//   void f(int, float); // #1
+//   void f(int, int); // #2
+//   int f(int, int); // #3
+//
+// When we process #1, there is no previous declaration of "f",
+// so IsOverload will not be used. 
+//
+// When we process #2, Old is a FunctionDecl for #1.  By comparing the
+// parameter types, we see that #1 and #2 are overloaded (since they
+// have different signatures), so this routine returns false;
+// MatchedDecl is unchanged.
+//
+// When we process #3, Old is an OverloadedFunctionDecl containing #1
+// and #2. We compare the signatures of #3 to #1 (they're overloaded,
+// so we do nothing) and then #3 to #2. Since the signatures of #3 and
+// #2 are identical (return types of functions are not part of the
+// signature), IsOverload returns false and MatchedDecl will be set to
+// point to the FunctionDecl for #2.
+bool
+Sema::IsOverload(FunctionDecl *New, Decl* OldD, 
+                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
+{
+  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
+    // Is this new function an overload of every function in the
+    // overload set?
+    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
+                                           FuncEnd = Ovl->function_end();
+    for (; Func != FuncEnd; ++Func) {
+      if (!IsOverload(New, *Func, MatchedDecl)) {
+        MatchedDecl = Func;
+        return false;
+      }
+    }
+
+    // This function overloads every function in the overload set.
+    return true;
+  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
+    // Is the function New an overload of the function Old?
+    QualType OldQType = Context.getCanonicalType(Old->getType());
+    QualType NewQType = Context.getCanonicalType(New->getType());
+
+    // Compare the signatures (C++ 1.3.10) of the two functions to
+    // determine whether they are overloads. If we find any mismatch
+    // in the signature, they are overloads.
+
+    // If either of these functions is a K&R-style function (no
+    // prototype), then we consider them to have matching signatures.
+    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
+        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
+      return false;
+
+    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
+    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
+
+    // The signature of a function includes the types of its
+    // parameters (C++ 1.3.10), which includes the presence or absence
+    // of the ellipsis; see C++ DR 357).
+    if (OldQType != NewQType &&
+        (OldType->getNumArgs() != NewType->getNumArgs() ||
+         OldType->isVariadic() != NewType->isVariadic() ||
+         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
+                     NewType->arg_type_begin())))
+      return true;
+
+    // If the function is a class member, its signature includes the
+    // cv-qualifiers (if any) on the function itself.
+    //
+    // As part of this, also check whether one of the member functions
+    // is static, in which case they are not overloads (C++
+    // 13.1p2). While not part of the definition of the signature,
+    // this check is important to determine whether these functions
+    // can be overloaded.
+    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+    if (OldMethod && NewMethod && 
+        !OldMethod->isStatic() && !NewMethod->isStatic() &&
+        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
+      return true;
+
+    // The signatures match; this is not an overload.
+    return false;
+  } else {
+    // (C++ 13p1):
+    //   Only function declarations can be overloaded; object and type
+    //   declarations cannot be overloaded.
+    return false;
+  }
+}
+
+/// TryCopyInitialization - Attempt to copy-initialize a value of the
+/// given type (ToType) from the given expression (Expr), as one would
+/// do when copy-initializing a function parameter. This function
+/// returns an implicit conversion sequence that can be used to
+/// perform the initialization. Given
+///
+///   void f(float f);
+///   void g(int i) { f(i); }
+///
+/// this routine would produce an implicit conversion sequence to
+/// describe the initialization of f from i, which will be a standard
+/// conversion sequence containing an lvalue-to-rvalue conversion (C++
+/// 4.1) followed by a floating-integral conversion (C++ 4.9).
+//
+/// Note that this routine only determines how the conversion can be
+/// performed; it does not actually perform the conversion. As such,
+/// it will not produce any diagnostics if no conversion is available,
+/// but will instead return an implicit conversion sequence of kind
+/// "BadConversion".
+ImplicitConversionSequence
+Sema::TryCopyInitialization(Expr* From, QualType ToType)
+{
+  ImplicitConversionSequence ICS;
+
+  QualType FromType = From->getType();
+
+  // Standard conversions (C++ 4)
+  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
+  ICS.Standard.Deprecated = false;
+  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
+
+  // The first conversion can be an lvalue-to-rvalue conversion,
+  // array-to-pointer conversion, or function-to-pointer conversion
+  // (C++ 4p1).
+
+  // Lvalue-to-rvalue conversion (C++ 4.1): 
+  //   An lvalue (3.10) of a non-function, non-array type T can be
+  //   converted to an rvalue.
+  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
+  if (argIsLvalue == Expr::LV_Valid && 
+      !FromType->isFunctionType() && !FromType->isArrayType()) {
+    ICS.Standard.First = ICK_Lvalue_To_Rvalue;
+
+    // If T is a non-class type, the type of the rvalue is the
+    // cv-unqualified version of T. Otherwise, the type of the rvalue
+    // is T (C++ 4.1p1).
+    if (!FromType->isRecordType())
+      FromType = FromType.getUnqualifiedType();
+  }
+  // Array-to-pointer conversion (C++ 4.2)
+  else if (FromType->isArrayType()) {
+    ICS.Standard.First = ICK_Array_To_Pointer;
+
+    // An lvalue or rvalue of type "array of N T" or "array of unknown
+    // bound of T" can be converted to an rvalue of type "pointer to
+    // T" (C++ 4.2p1).
+    FromType = Context.getArrayDecayedType(FromType);
+
+    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
+      // This conversion is deprecated. (C++ D.4).
+      ICS.Standard.Deprecated = true;
+
+      // For the purpose of ranking in overload resolution
+      // (13.3.3.1.1), this conversion is considered an
+      // array-to-pointer conversion followed by a qualification
+      // conversion (4.4). (C++ 4.2p2)
+      ICS.Standard.Second = ICK_Identity;
+      ICS.Standard.Third = ICK_Qualification;
+      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
+      return ICS;
+    }
+  }
+  // Function-to-pointer conversion (C++ 4.3).
+  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
+    ICS.Standard.First = ICK_Function_To_Pointer;
+
+    // An lvalue of function type T can be converted to an rvalue of
+    // type "pointer to T." The result is a pointer to the
+    // function. (C++ 4.3p1).
+    FromType = Context.getPointerType(FromType);
+
+    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
+  } 
+  // We don't require any conversions for the first step.
+  else {
+    ICS.Standard.First = ICK_Identity;
+  }
+
+  // The second conversion can be an integral promotion, floating
+  // point promotion, integral conversion, floating point conversion,
+  // floating-integral conversion, pointer conversion,
+  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
+  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
+      Context.getCanonicalType(ToType).getUnqualifiedType()) {
+    // The unqualified versions of the types are the same: there's no
+    // conversion to do.
+    ICS.Standard.Second = ICK_Identity;
+  }
+  // Integral promotion (C++ 4.5).  
+  else if (IsIntegralPromotion(From, FromType, ToType)) {
+    ICS.Standard.Second = ICK_Integral_Promotion;
+    FromType = ToType.getUnqualifiedType();
+  } 
+  // Floating point promotion (C++ 4.6).
+  else if (IsFloatingPointPromotion(FromType, ToType)) {
+    ICS.Standard.Second = ICK_Floating_Promotion;
+    FromType = ToType.getUnqualifiedType();
+  } 
+  // Integral conversions (C++ 4.7).
+  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
+           (ToType->isIntegralType() || ToType->isEnumeralType())) {
+    ICS.Standard.Second = ICK_Integral_Conversion;
+    FromType = ToType.getUnqualifiedType();
+  }
+  // Floating point conversions (C++ 4.8).
+  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
+    ICS.Standard.Second = ICK_Floating_Conversion;
+    FromType = ToType.getUnqualifiedType();
+  }
+  // Floating-integral conversions (C++ 4.9).
+  else if ((FromType->isFloatingType() &&
+            ToType->isIntegralType() && !ToType->isBooleanType()) ||
+           ((FromType->isIntegralType() || FromType->isEnumeralType()) && 
+            ToType->isFloatingType())) {
+    ICS.Standard.Second = ICK_Floating_Integral;
+    FromType = ToType.getUnqualifiedType();
+  }
+  // Pointer conversions (C++ 4.10).
+  else if (IsPointerConversion(From, FromType, ToType, FromType))
+    ICS.Standard.Second = ICK_Pointer_Conversion;
+  // FIXME: Pointer to member conversions (4.11).
+  // Boolean conversions (C++ 4.12).
+  // FIXME: pointer-to-member type
+  else if (ToType->isBooleanType() &&
+           (FromType->isArithmeticType() ||
+            FromType->isEnumeralType() ||
+            FromType->isPointerType())) {
+    ICS.Standard.Second = ICK_Boolean_Conversion;
+    FromType = Context.BoolTy;
+  } else {
+    // No second conversion required.
+    ICS.Standard.Second = ICK_Identity;
+  }
+
+  // The third conversion can be a qualification conversion (C++ 4p1).
+  // FIXME: CheckPointerTypesForAssignment isn't the right way to
+  // determine whether we have a qualification conversion.
+  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType)
+      && CheckPointerTypesForAssignment(ToType, FromType) == Compatible) {
+    ICS.Standard.Third = ICK_Qualification;
+    FromType = ToType;
+  } else {
+    // No conversion required
+    ICS.Standard.Third = ICK_Identity;
+  }
+
+  // If we have not converted the argument type to the parameter type,
+  // this is a bad conversion sequence.
+  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType))
+    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+
+  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
+  return ICS;
+}
+
+/// IsIntegralPromotion - Determines whether the conversion from the
+/// expression From (whose potentially-adjusted type is FromType) to
+/// ToType is an integral promotion (C++ 4.5). If so, returns true and
+/// sets PromotedType to the promoted type.
+bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
+{
+  const BuiltinType *To = ToType->getAsBuiltinType();
+
+  // An rvalue of type char, signed char, unsigned char, short int, or
+  // unsigned short int can be converted to an rvalue of type int if
+  // int can represent all the values of the source type; otherwise,
+  // the source rvalue can be converted to an rvalue of type unsigned
+  // int (C++ 4.5p1).
+  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
+    if (// We can promote any signed, promotable integer type to an int
+        (FromType->isSignedIntegerType() ||
+         // We can promote any unsigned integer type whose size is
+         // less than int to an int.
+         (!FromType->isSignedIntegerType() && 
+          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
+      return To->getKind() == BuiltinType::Int;
+        
+    return To->getKind() == BuiltinType::UInt;
+  }
+
+  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
+  // can be converted to an rvalue of the first of the following types
+  // that can represent all the values of its underlying type: int,
+  // unsigned int, long, or unsigned long (C++ 4.5p2).
+  if ((FromType->isEnumeralType() || FromType->isWideCharType())
+      && ToType->isIntegerType()) {
+    // Determine whether the type we're converting from is signed or
+    // unsigned.
+    bool FromIsSigned;
+    uint64_t FromSize = Context.getTypeSize(FromType);
+    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
+      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
+      FromIsSigned = UnderlyingType->isSignedIntegerType();
+    } else {
+      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
+      FromIsSigned = true;
+    }
+
+    // The types we'll try to promote to, in the appropriate
+    // order. Try each of these types.
+    QualType PromoteTypes[4] = { 
+      Context.IntTy, Context.UnsignedIntTy, 
+      Context.LongTy, Context.UnsignedLongTy 
+    };
+    for (int Idx = 0; Idx < 0; ++Idx) {
+      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
+      if (FromSize < ToSize ||
+          (FromSize == ToSize && 
+           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
+        // We found the type that we can promote to. If this is the
+        // type we wanted, we have a promotion. Otherwise, no
+        // promotion.
+        return Context.getCanonicalType(FromType).getUnqualifiedType()
+          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
+      }
+    }
+  }
+
+  // An rvalue for an integral bit-field (9.6) can be converted to an
+  // rvalue of type int if int can represent all the values of the
+  // bit-field; otherwise, it can be converted to unsigned int if
+  // unsigned int can represent all the values of the bit-field. If
+  // the bit-field is larger yet, no integral promotion applies to
+  // it. If the bit-field has an enumerated type, it is treated as any
+  // other value of that type for promotion purposes (C++ 4.5p3).
+  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
+    using llvm::APSInt;
+    FieldDecl *MemberDecl = MemRef->getMemberDecl();
+    APSInt BitWidth;
+    if (MemberDecl->isBitField() &&
+        FromType->isIntegralType() && !FromType->isEnumeralType() &&
+        From->isIntegerConstantExpr(BitWidth, Context)) {
+      APSInt ToSize(Context.getTypeSize(ToType));
+
+      // Are we promoting to an int from a bitfield that fits in an int?
+      if (BitWidth < ToSize ||
+          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
+        return To->getKind() == BuiltinType::Int;
+        
+      // Are we promoting to an unsigned int from an unsigned bitfield
+      // that fits into an unsigned int?
+      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
+        return To->getKind() == BuiltinType::UInt;
+
+      return false;
+    }
+  }
+
+  // An rvalue of type bool can be converted to an rvalue of type int,
+  // with false becoming zero and true becoming one (C++ 4.5p4).
+  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
+    return true;
+
+  return false;
+}
+
+/// IsFloatingPointPromotion - Determines whether the conversion from
+/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
+/// returns true and sets PromotedType to the promoted type.
+bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
+{
+  /// An rvalue of type float can be converted to an rvalue of type
+  /// double. (C++ 4.6p1).
+  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
+    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
+      if (FromBuiltin->getKind() == BuiltinType::Float &&
+          ToBuiltin->getKind() == BuiltinType::Double)
+        return true;
+
+  return false;
+}
+
+/// IsPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType,
+/// can be converted to the type ToType via a pointer conversion (C++
+/// 4.10). If so, returns true and places the converted type (that
+/// might differ from ToType in its cv-qualifiers at some level) into
+/// ConvertedType.
+bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+                               QualType& ConvertedType)
+{
+  const PointerType* ToTypePtr = ToType->getAsPointerType();
+  if (!ToTypePtr)
+    return false;
+
+  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
+  if (From->isNullPointerConstant(Context)) {
+    ConvertedType = ToType;
+    return true;
+  }
+  
+  // An rvalue of type "pointer to cv T," where T is an object type,
+  // can be converted to an rvalue of type "pointer to cv void" (C++
+  // 4.10p2).
+  if (FromType->isPointerType() &&
+      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
+      ToTypePtr->getPointeeType()->isVoidType()) {
+    // We need to produce a pointer to cv void, where cv is the same
+    // set of cv-qualifiers as we had on the incoming pointee type.
+    QualType toPointee = ToTypePtr->getPointeeType();
+    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
+                   ->getPointeeType().getCVRQualifiers();
+
+    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
+         == Quals) {
+      // ToType is exactly the type we want. Use it.
+      ConvertedType = ToType;
+    } else {
+      // Build a new type with the right qualifiers.
+      ConvertedType 
+       = Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
+    }
+    return true;
+  }
+
+  // FIXME: An rvalue of type "pointer to cv D," where D is a class
+  // type, can be converted to an rvalue of type "pointer to cv B,"
+  // where B is a base class (clause 10) of D (C++ 4.10p3).
+  return false;
+}
+
+/// CompareImplicitConversionSequences - Compare two implicit
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2).
+ImplicitConversionSequence::CompareKind 
+Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
+                                         const ImplicitConversionSequence& ICS2)
+{
+  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
+  // conversion sequences (as defined in 13.3.3.1)
+  //   -- a standard conversion sequence (13.3.3.1.1) is a better
+  //      conversion sequence than a user-defined conversion sequence or
+  //      an ellipsis conversion sequence, and
+  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
+  //      conversion sequence than an ellipsis conversion sequence
+  //      (13.3.3.1.3).
+  // 
+  if (ICS1.ConversionKind < ICS2.ConversionKind)
+    return ImplicitConversionSequence::Better;
+  else if (ICS2.ConversionKind < ICS1.ConversionKind)
+    return ImplicitConversionSequence::Worse;
+
+  // Two implicit conversion sequences of the same form are
+  // indistinguishable conversion sequences unless one of the
+  // following rules apply: (C++ 13.3.3.2p3):
+  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
+    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
+  else if (ICS1.ConversionKind == 
+             ImplicitConversionSequence::UserDefinedConversion) {
+    // User-defined conversion sequence U1 is a better conversion
+    // sequence than another user-defined conversion sequence U2 if
+    // they contain the same user-defined conversion function or
+    // constructor and if the second standard conversion sequence of
+    // U1 is better than the second standard conversion sequence of
+    // U2 (C++ 13.3.3.2p3).
+    if (ICS1.UserDefined.ConversionFunction == 
+          ICS2.UserDefined.ConversionFunction)
+      return CompareStandardConversionSequences(ICS1.UserDefined.After,
+                                                ICS2.UserDefined.After);
+  }
+
+  return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareStandardConversionSequences - Compare two standard
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2p3).
+ImplicitConversionSequence::CompareKind 
+Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
+                                         const StandardConversionSequence& SCS2)
+{
+  // Standard conversion sequence S1 is a better conversion sequence
+  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
+
+  //  -- S1 is a proper subsequence of S2 (comparing the conversion
+  //     sequences in the canonical form defined by 13.3.3.1.1,
+  //     excluding any Lvalue Transformation; the identity conversion
+  //     sequence is considered to be a subsequence of any
+  //     non-identity conversion sequence) or, if not that,
+  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
+    // Neither is a proper subsequence of the other. Do nothing.
+    ;
+  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
+           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
+           (SCS1.Second == ICK_Identity && 
+            SCS1.Third == ICK_Identity))
+    // SCS1 is a proper subsequence of SCS2.
+    return ImplicitConversionSequence::Better;
+  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
+           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
+           (SCS2.Second == ICK_Identity && 
+            SCS2.Third == ICK_Identity))
+    // SCS2 is a proper subsequence of SCS1.
+    return ImplicitConversionSequence::Worse;
+
+  //  -- the rank of S1 is better than the rank of S2 (by the rules
+  //     defined below), or, if not that,
+  ImplicitConversionRank Rank1 = SCS1.getRank();
+  ImplicitConversionRank Rank2 = SCS2.getRank();
+  if (Rank1 < Rank2)
+    return ImplicitConversionSequence::Better;
+  else if (Rank2 < Rank1)
+    return ImplicitConversionSequence::Worse;
+  else {
+    // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
+    // are indistinguishable unless one of the following rules
+    // applies:
+    
+    //   A conversion that is not a conversion of a pointer, or
+    //   pointer to member, to bool is better than another conversion
+    //   that is such a conversion.
+    if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
+      return SCS2.isPointerConversionToBool()
+               ? ImplicitConversionSequence::Better
+               : ImplicitConversionSequence::Worse;
+
+    // FIXME: The other bullets in (C++ 13.3.3.2p4) require support
+    // for derived classes.
+  }
+
+  // FIXME: Handle comparison by qualifications.
+  // FIXME: Handle comparison of reference bindings.
+  return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// AddOverloadCandidate - Adds the given function to the set of
+/// candidate functions, using the given function call arguments.
+void 
+Sema::AddOverloadCandidate(FunctionDecl *Function, 
+                           Expr **Args, unsigned NumArgs,
+                           OverloadCandidateSet& CandidateSet)
+{
+  const FunctionTypeProto* Proto 
+    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
+  assert(Proto && "Functions without a prototype cannot be overloaded");
+
+  // Add this candidate
+  CandidateSet.push_back(OverloadCandidate());
+  OverloadCandidate& Candidate = CandidateSet.back();
+  Candidate.Function = Function;
+
+  unsigned NumArgsInProto = Proto->getNumArgs();
+
+  // (C++ 13.3.2p2): A candidate function having fewer than m
+  // parameters is viable only if it has an ellipsis in its parameter
+  // list (8.3.5).
+  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+    Candidate.Viable = false;
+    return;
+  }
+
+  // (C++ 13.3.2p2): A candidate function having more than m parameters
+  // is viable only if the (m+1)st parameter has a default argument
+  // (8.3.6). For the purposes of overload resolution, the
+  // parameter list is truncated on the right, so that there are
+  // exactly m parameters.
+  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
+  if (NumArgs < MinRequiredArgs) {
+    // Not enough arguments.
+    Candidate.Viable = false;
+    return;
+  }
+
+  // Determine the implicit conversion sequences for each of the
+  // arguments.
+  Candidate.Viable = true;
+  Candidate.Conversions.resize(NumArgs);
+  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+    if (ArgIdx < NumArgsInProto) {
+      // (C++ 13.3.2p3): for F to be a viable function, there shall
+      // exist for each argument an implicit conversion sequence
+      // (13.3.3.1) that converts that argument to the corresponding
+      // parameter of F.
+      QualType ParamType = Proto->getArgType(ArgIdx);
+      Candidate.Conversions[ArgIdx] 
+        = TryCopyInitialization(Args[ArgIdx], ParamType);
+      if (Candidate.Conversions[ArgIdx].ConversionKind 
+            == ImplicitConversionSequence::BadConversion)
+        Candidate.Viable = false;
+    } else {
+      // (C++ 13.3.2p2): For the purposes of overload resolution, any
+      // argument for which there is no corresponding parameter is
+      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+      Candidate.Conversions[ArgIdx].ConversionKind 
+        = ImplicitConversionSequence::EllipsisConversion;
+    }
+  }
+}
+
+/// AddOverloadCandidates - Add all of the function overloads in Ovl
+/// to the candidate set.
+void 
+Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl, 
+                            Expr **Args, unsigned NumArgs,
+                            OverloadCandidateSet& CandidateSet)
+{
+  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
+       Func != Ovl->function_end(); ++Func)
+    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
+}
+
+/// isBetterOverloadCandidate - Determines whether the first overload
+/// candidate is a better candidate than the second (C++ 13.3.3p1).
+bool 
+Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
+                                const OverloadCandidate& Cand2)
+{
+  // Define viable functions to be better candidates than non-viable
+  // functions.
+  if (!Cand2.Viable)
+    return Cand1.Viable;
+  else if (!Cand1.Viable)
+    return false;
+
+  // FIXME: Deal with the implicit object parameter for static member
+  // functions. (C++ 13.3.3p1).
+
+  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
+  // function than another viable function F2 if for all arguments i,
+  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
+  // then...
+  unsigned NumArgs = Cand1.Conversions.size();
+  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
+  bool HasBetterConversion = false;
+  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
+                                               Cand2.Conversions[ArgIdx])) {
+    case ImplicitConversionSequence::Better:
+      // Cand1 has a better conversion sequence.
+      HasBetterConversion = true;
+      break;
+
+    case ImplicitConversionSequence::Worse:
+      // Cand1 can't be better than Cand2.
+      return false;
+
+    case ImplicitConversionSequence::Indistinguishable:
+      // Do nothing.
+      break;
+    }
+  }
+
+  if (HasBetterConversion)
+    return true;
+
+  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
+
+  return false;
+}
+
+/// BestViableFunction - Computes the best viable function (C++ 13.3.3) 
+/// within an overload candidate set. If overloading is successful,
+/// the result will be OR_Success and Best will be set to point to the
+/// best viable function within the candidate set. Otherwise, one of
+/// several kinds of errors will be returned; see
+/// Sema::OverloadingResult.
+Sema::OverloadingResult 
+Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
+                         OverloadCandidateSet::iterator& Best)
+{
+  // Find the best viable function.
+  Best = CandidateSet.end();
+  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+       Cand != CandidateSet.end(); ++Cand) {
+    if (Cand->Viable) {
+      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
+        Best = Cand;
+    }
+  }
+
+  // If we didn't find any viable functions, abort.
+  if (Best == CandidateSet.end())
+    return OR_No_Viable_Function;
+
+  // Make sure that this function is better than every other viable
+  // function. If not, we have an ambiguity.
+  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+       Cand != CandidateSet.end(); ++Cand) {
+    if (Cand->Viable && 
+        Cand != Best &&
+        !isBetterOverloadCandidate(*Best, *Cand))
+      return OR_Ambiguous;
+  }
+  
+  // Best is the best viable function.
+  return OR_Success;
+}
+
+/// PrintOverloadCandidates - When overload resolution fails, prints
+/// diagnostic messages containing the candidates in the candidate
+/// set. If OnlyViable is true, only viable candidates will be printed.
+void 
+Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
+                              bool OnlyViable)
+{
+  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+                             LastCand = CandidateSet.end();
+  for (; Cand != LastCand; ++Cand) {
+    if (Cand->Viable ||!OnlyViable)
+      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
+  }
+}
+
+} // end namespace clang
diff --git a/lib/Sema/SemaOverload.h b/lib/Sema/SemaOverload.h
new file mode 100644 (file)
index 0000000..8d7ccd2
--- /dev/null
@@ -0,0 +1,199 @@
+//===--- Overload.h - C++ Overloading ---------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the data structures and types used in C++
+// overload resolution.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_SEMA_OVERLOAD_H
+#define LLVM_CLANG_SEMA_OVERLOAD_H
+
+#include "llvm/ADT/SmallVector.h"
+
+namespace clang {
+  class FunctionDecl;
+
+  /// ImplicitConversionKind - The kind of implicit conversion used to
+  /// convert an argument to a parameter's type. The enumerator values
+  /// match with Table 9 of (C++ 13.3.3.1.1) and are listed such that
+  /// better conversion kinds have smaller values.
+  enum ImplicitConversionKind {
+    ICK_Identity = 0,        ///< Identity conversion (no conversion)
+    ICK_Lvalue_To_Rvalue,    ///< Lvalue-to-rvalue conversion (C++ 4.1)
+    ICK_Array_To_Pointer,    ///< Array-to-pointer conversion (C++ 4.2)
+    ICK_Function_To_Pointer, ///< Function-to-pointer (C++ 4.3)
+    ICK_Qualification,       ///< Qualification conversions (C++ 4.4)
+    ICK_Integral_Promotion,  ///< Integral promotions (C++ 4.5)
+    ICK_Floating_Promotion,  ///< Floating point promotions (C++ 4.6)
+    ICK_Integral_Conversion, ///< Integral conversions (C++ 4.7)
+    ICK_Floating_Conversion, ///< Floating point conversions (C++ 4.8)
+    ICK_Floating_Integral,   ///< Floating-integral conversions (C++ 4.9)
+    ICK_Pointer_Conversion,  ///< Pointer conversions (C++ 4.10)
+    ICK_Pointer_Member,      ///< Pointer-to-member conversions (C++ 4.11)
+    ICK_Boolean_Conversion,  ///< Boolean conversions (C++ 4.12)
+    ICK_Num_Conversion_Kinds ///< The number of conversion kinds
+  };
+
+  /// ImplicitConversionCategory - The category of an implicit
+  /// conversion kind. The enumerator values match with Table 9 of
+  /// (C++ 13.3.3.1.1) and are listed such that better conversion
+  /// categories have smaller values.
+  enum ImplicitConversionCategory {
+    ICC_Identity = 0,              ///< Identity
+    ICC_Lvalue_Transformation,     ///< Lvalue transformation
+    ICC_Qualification_Adjustment,  ///< Qualification adjustment
+    ICC_Promotion,                 ///< Promotion
+    ICC_Conversion                 ///< Conversion
+  };
+
+  ImplicitConversionCategory 
+  GetConversionCategory(ImplicitConversionKind Kind);
+
+  /// ImplicitConversionRank - The rank of an implicit conversion
+  /// kind. The enumerator values match with Table 9 of (C++
+  /// 13.3.3.1.1) and are listed such that better conversion ranks
+  /// have smaller values.
+  enum ImplicitConversionRank {
+    ICR_Exact_Match = 0, ///< Exact Match
+    ICR_Promotion,       ///< Promotion
+    ICR_Conversion       ///< Conversion
+  };
+
+  ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
+
+  /// StandardConversionSequence - represents a standard conversion
+  /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
+  /// contains between zero and three conversions. If a particular
+  /// conversion is not needed, it will be set to the identity conversion
+  /// (ICK_Identity). Note that the three conversions are
+  /// specified as separate members (rather than in an array) so that
+  /// we can keep the size of a standard conversion sequence to a
+  /// single word.
+  struct StandardConversionSequence {
+    /// First -- The first conversion can be an lvalue-to-rvalue
+    /// conversion, array-to-pointer conversion, or
+    /// function-to-pointer conversion.
+    ImplicitConversionKind First : 8;
+
+    /// Second - The second conversion can be an integral promotion,
+    /// floating point promotion, integral conversion, floating point
+    /// conversion, floating-integral conversion, pointer conversion,
+    /// pointer-to-member conversion, or boolean conversion.
+    ImplicitConversionKind Second : 8;
+
+    /// Third - The third conversion can be a qualification conversion.
+    ImplicitConversionKind Third : 8;
+
+    /// Deprecated - Whether this is a deprecated conversion, such as
+    /// converting a string literal to a pointer to non-const
+    /// character data (C++ 4.2p2).
+    bool Deprecated : 1;
+
+    /// FromType - The type that this conversion is converting
+    /// from. This is an opaque pointer for that can be translated
+    /// into a QualType.
+    void *FromTypePtr;
+
+    /// ToType - The type that this conversion is converting to. This
+    /// is an opaque pointer for that can be translated into a
+    /// QualType.
+    void *ToTypePtr;
+
+    ImplicitConversionRank getRank() const;
+    bool isPointerConversionToBool() const;
+    void DebugPrint() const;
+  };
+
+  /// UserDefinedConversionSequence - Represents a user-defined
+  /// conversion sequence (C++ 13.3.3.1.2).
+  struct UserDefinedConversionSequence {
+    /// Before - Represents the standard conversion that occurs before
+    /// the actual user-defined conversion. (C++ 13.3.3.1.2p1):
+    ///
+    ///   If the user-defined conversion is specified by a constructor
+    ///   (12.3.1), the initial standard conversion sequence converts
+    ///   the source type to the type required by the argument of the
+    ///   constructor. If the user-defined conversion is specified by
+    ///   a conversion function (12.3.2), the initial standard
+    ///   conversion sequence converts the source type to the implicit
+    ///   object parameter of the conversion function.
+    StandardConversionSequence Before;
+
+    /// After - Represents the standard conversion that occurs after
+    /// the actual user-defined conversion.
+    StandardConversionSequence After;
+    
+    /// ConversionFunction - The function that will perform the
+    /// user-defined conversion.
+    FunctionDecl* ConversionFunction;
+
+    void DebugPrint() const;
+  };
+
+  /// ImplicitConversionSequence - Represents an implicit conversion
+  /// sequence, which may be a standard conversion sequence 
+  // (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
+  /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
+  struct ImplicitConversionSequence {
+    /// Kind - The kind of implicit conversion sequence. BadConversion
+    /// specifies that there is no conversion from the source type to
+    /// the target type. The enumerator values are ordered such that
+    /// better implicit conversions have smaller values.
+    enum Kind {
+      StandardConversion = 0,
+      UserDefinedConversion,
+      EllipsisConversion,
+      BadConversion
+    };
+
+    /// ConversionKind - The kind of implicit conversion sequence.
+    Kind ConversionKind;
+
+    union {
+      /// When ConversionKind == StandardConversion, provides the
+      /// details of the standard conversion sequence.
+      StandardConversionSequence Standard;
+
+      /// When ConversionKind == UserDefinedConversion, provides the
+      /// details of the user-defined conversion sequence.
+      UserDefinedConversionSequence UserDefined;
+    };
+
+    // The result of a comparison between implicit conversion
+    // sequences. Use Sema::CompareImplicitConversionSequences to
+    // actually perform the comparison.
+    enum CompareKind {
+      Better,
+      Indistinguishable,
+      Worse
+    };
+
+    void DebugPrint() const;
+  };
+
+  /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
+  struct OverloadCandidate {
+    /// Function - The actual function that this candidate represents.
+    FunctionDecl *Function;
+
+    /// Conversions - The conversion sequences used to convert the
+    /// function arguments to the function parameters.
+    llvm::SmallVector<ImplicitConversionSequence, 4> Conversions;
+
+    /// Viable - True to indicate that this overload candidate is viable.
+    bool Viable;
+  };
+
+  /// OverloadCandidateSet - A set of overload candidates, used in C++
+  /// overload resolution (C++ 13.3).
+  typedef llvm::SmallVector<OverloadCandidate, 4> OverloadCandidateSet;
+} // end namespace clang
+
+#endif // LLVM_CLANG_SEMA_OVERLOAD_H
diff --git a/test/SemaCXX/overload-call.cpp b/test/SemaCXX/overload-call.cpp
new file mode 100644 (file)
index 0000000..311e3d0
--- /dev/null
@@ -0,0 +1,137 @@
+// RUN: clang -fsyntax-only -pedantic -verify %s 
+int* f(int);
+float* f(float);
+void f();
+
+void test_f(int iv, float fv) {
+  float* fp = f(fv);
+  int* ip = f(iv);
+}
+
+int* g(int, float, int); // expected-note {{ candidate function }}
+float* g(int, int, int); // expected-note {{ candidate function }}
+double* g(int, float, float); // expected-note {{ candidate function }}
+char* g(int, float, ...); // expected-note {{ candidate function }}
+void g();
+
+void test_g(int iv, float fv) {
+  int* ip1 = g(iv, fv, 0);
+  float* fp1 = g(iv, iv, 0);
+  double* dp1 = g(iv, fv, fv);
+  char* cp1 = g(0, 0);
+  char* cp2 = g(0, 0, 0, iv, fv);
+
+  double* dp2 = g(0, fv, 1.5); // expected-error {{ call to 'g' is ambiguous; candidates are: }}
+}
+
+double* h(double f);
+int* h(int);
+
+void test_h(float fv, unsigned char cv) {
+  double* dp = h(fv);
+  int* ip = h(cv);
+}
+
+int* i(int);
+double* i(long);
+
+void test_i(short sv, int iv, long lv, unsigned char ucv) {
+  int* ip1 = i(sv);
+  int* ip2 = i(iv);
+  int* ip3 = i(ucv);
+  double* dp1 = i(lv);
+}
+
+int* j(void*);
+double* j(bool);
+
+void test_j(int* ip) {
+  int* ip1 = j(ip);
+}
+
+int* k(char*);
+double* k(bool);
+
+void test_k() {
+  int* ip1 = k("foo");
+  double* dp1 = k(L"foo");
+}
+
+int* l(wchar_t*);
+double* l(bool);
+
+void test_l() {
+  int* ip1 = l(L"foo");
+  double* dp1 = l("foo");
+}
+
+int* m(const char*);
+double* m(char*);
+
+void test_m() {
+  int* ip = m("foo");
+}
+
+int* n(char*);
+double* n(void*);
+
+void test_n() {
+  char ca[7];
+  int* ip1 = n(ca);
+  int* ip2 = n("foo");
+
+  float fa[7];
+  double* dp1 = n(fa);
+}
+
+enum PromotesToInt {
+  PromotesToIntValue = 1
+};
+
+enum PromotesToUnsignedInt {
+  PromotesToUnsignedIntValue = (unsigned int)-1
+};
+
+int* o(int);
+double* o(unsigned int);
+float* o(long);
+
+void test_o() {
+  int* ip1 = o(PromotesToIntValue);
+  double* dp1 = o(PromotesToUnsignedIntValue);
+}
+
+int* p(int);
+double* p(double);
+
+void test_p() {
+  int* ip = p((short)1);
+  double* dp = p(1.0f);
+}
+
+struct Bits {
+  signed short int_bitfield : 5;
+  unsigned int uint_bitfield : 8;
+};
+
+int* bitfields(int, int);
+float* bitfields(unsigned int, int);
+
+void test_bitfield(Bits bits, int x) {
+  int* ip = bitfields(bits.int_bitfield, 0);
+  float* fp = bitfields(bits.uint_bitfield, 0u);
+}
+
+int* multiparm(long, int, long); // expected-note {{ candidate function }}
+float* multiparm(int, int, int); // expected-note {{ candidate function }}
+double* multiparm(int, int, short); // expected-note {{ candidate function }}
+
+void test_multiparm(long lv, short sv, int iv) {
+  int* ip1 = multiparm(lv, iv, lv);
+  int* ip2 = multiparm(lv, sv, lv);
+  float* fp1 = multiparm(iv, iv, iv);
+  float* fp2 = multiparm(sv, iv, iv);
+  double* dp1 = multiparm(sv, sv, sv);
+  double* dp2 = multiparm(iv, sv, sv);
+  multiparm(sv, sv, lv); // expected-error {{ call to 'multiparm' is ambiguous; candidates are: }}
+}
diff --git a/test/SemaCXX/overload-decl.cpp b/test/SemaCXX/overload-decl.cpp
new file mode 100644 (file)
index 0000000..872a180
--- /dev/null
@@ -0,0 +1,29 @@
+// RUN: clang -fsyntax-only -verify %s 
+void f();
+void f(int);
+void f(int, float); 
+void f(int, int);
+void f(int, ...);
+
+typedef float Float;
+void f(int, Float); // expected-error {{error: previous declaration is here}}
+
+int f(int, Float); // expected-error {{error: functions that differ only in their return type cannot be overloaded}}
+
+void g(void); // expected-error {{error: previous declaration is here}}
+int g(); // expected-error {{error: functions that differ only in their return type cannot be overloaded}}
+
+class X {
+  void f();
+  void f(int);
+
+  // FIXME: can't test this until we can handle const methods.
+  //   void f() const;
+
+  void g(int); // expected-error {{error: previous declaration is here}}
+  void g(int, float); // expected-error {{error: previous declaration is here}}
+  int g(int, Float); // expected-error {{error: functions that differ only in their return type cannot be overloaded}}
+
+  static void g(float);
+  static void g(int); // expected-error {{error: static and non-static member functions with the same parameter types cannot be overloaded}}
+};