bool isDependentType() const { return Dependent; }
bool isOverloadType() const; // C++ overloaded function
+ /// hasPointerRepresentation - Whether this type is represented
+ /// natively as a pointer; this includes pointers, references, block
+ /// pointers, and Objective-C interface, qualified id, and qualified
+ /// interface types.
+ bool hasPointerRepresentation() const;
+
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
return isSpecificBuiltinType(BuiltinType::Overload);
}
+inline bool Type::hasPointerRepresentation() const {
+ return (isPointerType() || isReferenceType() || isBlockPointerType() ||
+ isObjCInterfaceType() || isObjCQualifiedIdType() ||
+ isObjCQualifiedInterfaceType());
+}
+
/// Insertion operator for diagnostics. This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
};
} // end anonymous namespace
-static bool HasPointerEvalType(const Expr* E) {
- return E->getType()->isPointerType()
- || E->getType()->isBlockPointerType()
- || E->getType()->isObjCQualifiedIdType();
-}
-
static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
- if (!HasPointerEvalType(E))
+ if (!E->getType()->hasPointerRepresentation())
return false;
Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
return Result.isLValue();
} else if (getType()->isIntegerType()) {
if (!IntExprEvaluator(Info, Result.Val).Visit(const_cast<Expr*>(this)))
return false;
- } else if (HasPointerEvalType(this)) {
+ } else if (getType()->hasPointerRepresentation()) {
if (!EvaluatePointer(this, Result.Val, Info))
return false;
} else if (getType()->isRealFloatingType()) {
} else if (const EnumType *ET = Ty->getAsEnumType()) {
// Classify the underlying integer type.
classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
- } else if (Ty->isPointerType() || Ty->isReferenceType() ||
- Ty->isBlockPointerType() || Ty->isObjCQualifiedIdType() ||
- Ty->isObjCQualifiedInterfaceType()) {
+ } else if (Ty->hasPointerRepresentation()) {
Current = Integer;
} else if (const VectorType *VT = Ty->getAsVectorType()) {
uint64_t Size = Context.getTypeSize(VT);
return CGM.getTypes().ConvertType(T);
}
-bool CodeGenFunction::isObjCPointerType(QualType T) {
- // All Objective-C types are pointers.
- return T->isObjCInterfaceType() ||
- T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType();
-}
-
bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
// FIXME: Use positive checks instead of negative ones to be more
// robust in the face of extension.
- return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerType() &&
- !T->isReferenceType() && !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() &&
+ return !T->hasPointerRepresentation() &&!T->isRealType() &&
+ !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() &&
!T->isBlockPointerType();
}
/// TypeOfSelfObject - Return type of object that this self represents.
QualType TypeOfSelfObject();
- /// isObjCPointerType - Return true if the specificed AST type will map onto
- /// some Objective-C pointer type.
- static bool isObjCPointerType(QualType T);
-
/// hasAggregateLLVMType - Return true if the specified AST type will map into
/// an aggregate LLVM type or is void.
static bool hasAggregateLLVMType(QualType T);