Edit: `math.pow` changes removed on Mark's request.
https://bugs.python.org/issue38237
Automerge-Triggered-By: @rhettinger
it are positional-only. Positional-only parameters are the ones without an
externally-usable name. Upon calling a function that accepts positional-only
parameters, arguments are mapped to parameters based solely on their position.
-For example, :func:`pow` is a function that accepts positional-only parameters.
-Its documentation looks like this::
+For example, :func:`divmod` is a function that accepts positional-only
+parameters. Its documentation looks like this::
- >>> help(pow)
- Help on built-in function pow in module builtins:
+ >>> help(divmod)
+ Help on built-in function divmod in module builtins:
- pow(x, y, z=None, /)
- Equivalent to x**y (with two arguments) or x**y % z (with three arguments)
+ divmod(x, y, /)
+ Return the tuple (x//y, x%y). Invariant: div*y + mod == x.
- Some types, such as ints, are able to use a more efficient algorithm when
- invoked using the three argument form.
+The slash at the end of the parameter list means that both parameters are
+positional-only. Thus, calling :func:`divmod` with keyword arguments would lead
+to an error::
-The slash at the end of the parameter list means that all three parameters are
-positional-only. Thus, calling :func:`pow` with keyword arguments would lead to
-an error::
-
- >>> pow(x=3, y=4)
+ >>> divmod(x=3, y=4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
- TypeError: pow() takes no keyword arguments
+ TypeError: divmod() takes no keyword arguments
Numbers and strings
returns ``8364``. This is the inverse of :func:`chr`.
-.. function:: pow(x, y[, z])
+.. function:: pow(base, exp[, mod])
- Return *x* to the power *y*; if *z* is present, return *x* to the power *y*,
- modulo *z* (computed more efficiently than ``pow(x, y) % z``). The two-argument
- form ``pow(x, y)`` is equivalent to using the power operator: ``x**y``.
+ Return *base* to the power *exp*; if *mod* is present, return *base* to the
+ power *exp*, modulo *mod* (computed more efficiently than
+ ``pow(base, exp) % mod``). The two-argument form ``pow(base, exp)`` is
+ equivalent to using the power operator: ``base**exp``.
The arguments must have numeric types. With mixed operand types, the
coercion rules for binary arithmetic operators apply. For :class:`int`
converted to float and a float result is delivered. For example, ``10**2``
returns ``100``, but ``10**-2`` returns ``0.01``.
- For :class:`int` operands *x* and *y*, if *z* is present, *z* must also be
- of integer type and *z* must be nonzero. If *z* is present and *y* is
- negative, *x* must be relatively prime to *z*. In that case, ``pow(inv_x,
- -y, z)`` is returned, where *inv_x* is an inverse to *x* modulo *z*.
+ For :class:`int` operands *base* and *exp*, if *mod* is present, *mod* must
+ also be of integer type and *mod* must be nonzero. If *mod* is present and
+ *exp* is negative, *base* must be relatively prime to *mod*. In that case,
+ ``pow(inv_base, -exp, mod)`` is returned, where *inv_base* is an inverse to
+ *base* modulo *mod*.
Here's an example of computing an inverse for ``38`` modulo ``97``::
- >>> pow(38, -1, 97)
+ >>> pow(38, -1, mod=97)
23
>>> 23 * 38 % 97 == 1
True
the second argument to be negative, permitting computation of modular
inverses.
+ .. versionchanged:: 3.9
+ Allow keyword arguments. Formerly, only positional arguments were
+ supported.
+
.. function:: print(*objects, sep=' ', end='\\n', file=sys.stdout, flush=False)
import unittest
import warnings
from contextlib import ExitStack
+from functools import partial
from inspect import CO_COROUTINE
from itertools import product
from textwrap import dedent
self.assertRaises(TypeError, pow)
+ # Test passing in arguments as keywords.
+ self.assertEqual(pow(0, exp=0), 1)
+ self.assertEqual(pow(base=2, exp=4), 16)
+ self.assertEqual(pow(base=5, exp=2, mod=14), 11)
+ twopow = partial(pow, base=2)
+ self.assertEqual(twopow(exp=5), 32)
+ fifth_power = partial(pow, exp=5)
+ self.assertEqual(fifth_power(2), 32)
+ mod10 = partial(pow, mod=10)
+ self.assertEqual(mod10(2, 6), 4)
+ self.assertEqual(mod10(exp=6, base=2), 4)
+
def test_input(self):
self.write_testfile()
fp = open(TESTFN, 'r')
--- /dev/null
+The arguments for the builtin pow function are more descriptive. They can now
+also be passed in as keywords.
/*[clinic input]
pow as builtin_pow
- x: object
- y: object
- z: object = None
- /
+ base: object
+ exp: object
+ mod: object = None
-Equivalent to x**y (with two arguments) or x**y % z (with three arguments)
+Equivalent to base**exp (with two arguments) or base**exp % mod (with three arguments)
Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.
[clinic start generated code]*/
static PyObject *
-builtin_pow_impl(PyObject *module, PyObject *x, PyObject *y, PyObject *z)
-/*[clinic end generated code: output=50a14d5d130d404b input=653d57d38d41fc07]*/
+builtin_pow_impl(PyObject *module, PyObject *base, PyObject *exp,
+ PyObject *mod)
+/*[clinic end generated code: output=3ca1538221bbf15f input=bd72d0a0ec8e5eb5]*/
{
- return PyNumber_Power(x, y, z);
+ return PyNumber_Power(base, exp, mod);
}
{"ord", (PyCFunction)builtin_ord, METH_O, builtin_ord__doc__},
PyDoc_STRVAR(builtin_pow__doc__,
-"pow($module, x, y, z=None, /)\n"
+"pow($module, /, base, exp, mod=None)\n"
"--\n"
"\n"
-"Equivalent to x**y (with two arguments) or x**y % z (with three arguments)\n"
+"Equivalent to base**exp (with two arguments) or base**exp % mod (with three arguments)\n"
"\n"
"Some types, such as ints, are able to use a more efficient algorithm when\n"
"invoked using the three argument form.");
#define BUILTIN_POW_METHODDEF \
- {"pow", (PyCFunction)(void(*)(void))builtin_pow, METH_FASTCALL, builtin_pow__doc__},
+ {"pow", (PyCFunction)(void(*)(void))builtin_pow, METH_FASTCALL|METH_KEYWORDS, builtin_pow__doc__},
static PyObject *
-builtin_pow_impl(PyObject *module, PyObject *x, PyObject *y, PyObject *z);
+builtin_pow_impl(PyObject *module, PyObject *base, PyObject *exp,
+ PyObject *mod);
static PyObject *
-builtin_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
+builtin_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
- PyObject *x;
- PyObject *y;
- PyObject *z = Py_None;
-
- if (!_PyArg_CheckPositional("pow", nargs, 2, 3)) {
+ static const char * const _keywords[] = {"base", "exp", "mod", NULL};
+ static _PyArg_Parser _parser = {NULL, _keywords, "pow", 0};
+ PyObject *argsbuf[3];
+ Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
+ PyObject *base;
+ PyObject *exp;
+ PyObject *mod = Py_None;
+
+ args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 3, 0, argsbuf);
+ if (!args) {
goto exit;
}
- x = args[0];
- y = args[1];
- if (nargs < 3) {
- goto skip_optional;
+ base = args[0];
+ exp = args[1];
+ if (!noptargs) {
+ goto skip_optional_pos;
}
- z = args[2];
-skip_optional:
- return_value = builtin_pow_impl(module, x, y, z);
+ mod = args[2];
+skip_optional_pos:
+ return_value = builtin_pow_impl(module, base, exp, mod);
exit:
return return_value;
exit:
return return_value;
}
-/*[clinic end generated code: output=4e118c2cd2cd98f3 input=a9049054013a1b77]*/
+/*[clinic end generated code: output=1e2a6185e05ecd11 input=a9049054013a1b77]*/