]> granicus.if.org Git - esp-idf/commitdiff
bugfix(uart): patten detect function
authorWangjialin <wangjialin@espressif.com>
Fri, 25 Aug 2017 13:04:13 +0000 (21:04 +0800)
committerWangjialin <wangjialin@espressif.com>
Mon, 22 Jan 2018 05:33:51 +0000 (13:33 +0800)
requirement from github(https://github.com/espressif/esp-idf/issues/805): to provide the position in the buffer of the pattern detected.

requirement from AT application: in AT app, when no hardware flow control is enabled, in some situation the rx buffer might be full, and the terminator “+++” might be lost, we can use pattern detect interrupt to avoid missing the terminator. When pattern detect interrupt happens, it will not send a data event at the same time.

1. Add API to get position of detected pattern in rx buffer
2. Modify UART event example
3. Add comments for uart_flush, add alias API uart_flush_input to clear the rx buffer
4. Modify the way rx_buffered_len is calculated

components/driver/include/driver/uart.h
components/driver/uart.c
examples/peripherals/uart_events/main/uart_events_example_main.c

index 49e058740b36149a3565ed535ba7123632d94cbf..273b7869f457d327c1f299c0b0dba265362bc7f9 100644 (file)
@@ -618,8 +618,10 @@ int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t si
 int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait);
 
 /**
- * @brief UART ring buffer flush. This will discard all data in the UART RX buffer.
- *
+ * @brief Alias of uart_flush_input.
+ *        UART ring buffer flush. This will discard all data in the UART RX buffer.
+ * @note  Instead of waiting the data sent out, this function will clear UART rx buffer.
+ *        In order to send all the data in tx FIFO, we can use uart_wait_tx_done function.
  * @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
  *
  * @return
@@ -629,8 +631,18 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
 esp_err_t uart_flush(uart_port_t uart_num);
 
 /**
- * @brief UART get RX ring buffer cached data length
+ * @brief Clear input buffer, discard all the data is in the ring-buffer.
+ * @note  In order to send all the data in tx FIFO, we can use uart_wait_tx_done function.
+ * @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
  *
+ * @return
+ *     - ESP_OK Success
+ *     - ESP_FAIL Parameter error
+ */
+esp_err_t uart_flush_input(uart_port_t uart_num);
+
+/**
+ * @brief UART get RX ring buffer cached data length
  * @param uart_num UART port number.
  * @param size Pointer of size_t to accept cached data length
  *
@@ -671,6 +683,39 @@ esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num);
  */
 esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle);
 
+/**
+ * @brief Return the nearest detected pattern position in buffer.
+ *        The positions of the detected pattern are saved in a queue,
+ *        this function will dequeue the first pattern position and move the pointer to next pattern position.
+ * @note  If the RX buffer is full and flow control is not enabled,
+ *        the detected pattern may not be found in the rx buffer due to overflow.
+ *
+ *        The following APIs will modify the pattern position info:
+ *        uart_flush_input, uart_read_bytes, uart_driver_delete, uart_pop_pattern_pos
+ *        It is the application's responsibility to ensure atomic access to the pattern queue and the rx data buffer
+ *        when using pattern detect feature.
+ *
+ * @param uart_num UART port number
+ * @return
+ *     - (-1) No pattern found for current index or parameter error
+ *     - others the pattern position in rx buffer.
+ */
+int uart_pattern_pop_pos(uart_port_t uart_num);
+
+/**
+ * @brief Allocate a new memory with the given length to save record the detected pattern position in rx buffer.
+ * @param uart_num UART port number
+ * @param queue_length Max queue length for the detected pattern.
+ *        If the queue length is not large enough, some pattern positions might be lost.
+ *        Set this value to the maximum number of patterns that could be saved in data buffer at the same time.
+ * @return
+ *     - ESP_ERR_NO_MEM No enough memory
+ *     - ESP_ERR_INVALID_STATE Driver not installed
+ *     - ESP_FAIL Parameter error
+ *     - ESP_OK Success
+ */
+esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length);
+
 #ifdef __cplusplus
 }
 #endif
index 2a2fa65534e4eddf24b0c528cc66f32a757c0ea8..0b5638a90f6b764eb24da6d7ec7cfed8dac9d131 100644 (file)
@@ -44,6 +44,8 @@ static const char* UART_TAG = "uart";
 #define UART_FULL_THRESH_DEFAULT  (120)
 #define UART_TOUT_THRESH_DEFAULT   (10)
 #define UART_TX_IDLE_NUM_DEFAULT   (0)
+#define UART_PATTERN_DET_QLEN_DEFAULT (10)
+
 #define UART_ENTER_CRITICAL_ISR(mux)    portENTER_CRITICAL_ISR(mux)
 #define UART_EXIT_CRITICAL_ISR(mux)     portEXIT_CRITICAL_ISR(mux)
 #define UART_ENTER_CRITICAL(mux)    portENTER_CRITICAL(mux)
@@ -58,6 +60,13 @@ typedef struct {
     } tx_data;
 } uart_tx_data_t;
 
+typedef struct {
+    int wr;
+    int rd;
+    int len;
+    int* data;
+} uart_pat_rb_t;
+
 typedef struct {
     uart_port_t uart_num;               /*!< UART port number*/
     int queue_size;                     /*!< UART event queue size*/
@@ -74,6 +83,8 @@ typedef struct {
     uint8_t* rx_head_ptr;               /*!< pointer to the head of RX item*/
     uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
     uint8_t rx_stash_len;               /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
+    uart_pat_rb_t rx_pattern_pos;
+
     //tx parameters
     SemaphoreHandle_t tx_fifo_sem;      /*!< UART TX FIFO semaphore*/
     SemaphoreHandle_t tx_mux;           /*!< UART TX mutex*/
@@ -91,8 +102,6 @@ typedef struct {
     uint8_t tx_waiting_brk;             /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
 } uart_obj_t;
 
-
-
 static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
 /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
 static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
@@ -308,6 +317,120 @@ esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
     return ESP_OK;
 }
 
+static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
+{
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
+    if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
+        int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
+        UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+        p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
+        p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
+        p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
+        UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+        free(pdata);
+    }
+    return ESP_OK;
+}
+
+static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
+{
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
+    esp_err_t ret = ESP_OK;
+    UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+    uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    int next = p_pos->wr + 1;
+    if (next >= p_pos->len) {
+        next = 0;
+    }
+    if (next == p_pos->rd) {
+        ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
+        ret = ESP_FAIL;
+    } else {
+        p_pos->data[p_pos->wr] = pos;
+        p_pos->wr = next;
+        ret = ESP_OK;
+    }
+    UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+    return ret;
+}
+
+static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
+{
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
+    if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
+        return ESP_ERR_INVALID_STATE;
+    } else {
+        esp_err_t ret = ESP_OK;
+        UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+        uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+        if (p_pos->rd == p_pos->wr) {
+            ret = ESP_FAIL;
+        } else {
+            p_pos->rd++;
+        }
+        if (p_pos->rd >= p_pos->len) {
+            p_pos->rd = 0;
+        }
+        UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+        return ret;
+    }
+}
+
+static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
+{
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
+    UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+    uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    int rd = p_pos->rd;
+    while(rd != p_pos->wr) {
+        p_pos->data[rd] -= diff_len;
+        int rd_rec = rd;
+        rd ++;
+        if (rd >= p_pos->len) {
+            rd = 0;
+        }
+        if (p_pos->data[rd_rec] < 0) {
+            p_pos->rd = rd;
+        }
+    }
+    UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+    return ESP_OK;
+}
+
+int uart_pattern_pop_pos(uart_port_t uart_num)
+{
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
+    UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+    uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    int pos = -1;
+    if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
+        pos = pat_pos->data[pat_pos->rd];
+        uart_pattern_dequeue(uart_num);
+    }
+    UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+    return pos;
+}
+
+esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
+{
+    UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
+    UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
+
+    int* pdata = (int*) malloc(queue_length * sizeof(int));
+    if(pdata == NULL) {
+        return ESP_ERR_NO_MEM;
+    }
+    UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+    int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
+    p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
+    p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
+    p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
+    p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
+    UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
+    free(ptmp);
+    return ESP_OK;
+}
+
 esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
@@ -534,25 +657,42 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
     return ESP_OK;
 }
 
+static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
+{
+    int cnt = 0;
+    int len = length;
+    while (len >= 0) {
+        if (buf[len] == pat_chr) {
+            cnt++;
+        } else {
+            cnt = 0;
+        }
+        if (cnt >= pat_num) {
+            break;
+        }
+        len --;
+    }
+    return len;
+}
+
 //internal isr handler for default driver code.
 static void uart_rx_intr_handler_default(void *param)
 {
     uart_obj_t *p_uart = (uart_obj_t*) param;
     uint8_t uart_num = p_uart->uart_num;
     uart_dev_t* uart_reg = UART[uart_num];
+    int rx_fifo_len = uart_reg->status.rxfifo_cnt;
     uint8_t buf_idx = 0;
     uint32_t uart_intr_status = UART[uart_num]->int_st.val;
-    int rx_fifo_len = 0;
     uart_event_t uart_event;
     portBASE_TYPE HPTaskAwoken = 0;
+    static uint8_t pat_flg = 0;
     while(uart_intr_status != 0x0) {
         buf_idx = 0;
         uart_event.type = UART_EVENT_MAX;
         if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
-            UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-            uart_reg->int_ena.txfifo_empty = 0;
-            uart_reg->int_clr.txfifo_empty = 1;
-            UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
+            uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
+            uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
             if(p_uart->tx_waiting_brk) {
                 continue;
             }
@@ -563,8 +703,7 @@ static void uart_rx_intr_handler_default(void *param)
                 if(HPTaskAwoken == pdTRUE) {
                     portYIELD_FROM_ISR() ;
                 }
-            }
-            else {
+            } else {
                 //We don't use TX ring buffer, because the size is zero.
                 if(p_uart->tx_buf_size == 0) {
                     continue;
@@ -606,7 +745,7 @@ static void uart_rx_intr_handler_default(void *param)
                             break;
                         }
                     }
-                    if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
+                    if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
                         //To fill the TX FIFO.
                         int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
                         for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
@@ -615,7 +754,7 @@ static void uart_rx_intr_handler_default(void *param)
                         p_uart->tx_len_tot -= send_len;
                         p_uart->tx_len_cur -= send_len;
                         tx_fifo_rem -= send_len;
-                        if(p_uart->tx_len_cur == 0) {
+                        if (p_uart->tx_len_cur == 0) {
                             //Return item to ring buffer.
                             vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
                             if(HPTaskAwoken == pdTRUE) {
@@ -644,58 +783,94 @@ static void uart_rx_intr_handler_default(void *param)
                         }
                     }
                 }
-                if(en_tx_flg) {
-                    UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                    uart_reg->int_clr.txfifo_empty = 1;
-                    uart_reg->int_ena.txfifo_empty = 1;
-                    UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
+                if (en_tx_flg) {
+                    uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
+                    uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
                 }
             }
         }
-        else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
-            if(p_uart->rx_buffer_full_flg == false) {
-                //Get the buffer from the FIFO
-                rx_fifo_len = uart_reg->status.rxfifo_cnt;
-                p_uart->rx_stash_len = rx_fifo_len;
+        else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
+                || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
+                || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
+                ) {
+            rx_fifo_len = uart_reg->status.rxfifo_cnt;
+            if(pat_flg == 1) {
+                uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
+                pat_flg = 0;
+            }
+            if (p_uart->rx_buffer_full_flg == false) {
                 //We have to read out all data in RX FIFO to clear the interrupt signal
-                while(buf_idx < rx_fifo_len) {
+                while (buf_idx < rx_fifo_len) {
                     p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
                 }
-                //After Copying the Data From FIFO ,Clear intr_status
-                UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                uart_reg->int_clr.rxfifo_tout = 1;
-                uart_reg->int_clr.rxfifo_full = 1;
-                UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                uart_event.size = rx_fifo_len;
+                uint8_t pat_chr = uart_reg->at_cmd_char.data;
+                int pat_num = uart_reg->at_cmd_char.char_num;
+                int pat_idx = -1;
+
+                //Get the buffer from the FIFO
+                if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
+                    uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
+                    uart_event.type = UART_PATTERN_DET;
+                    uart_event.size = rx_fifo_len;
+                    pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
+                } else {
+                    //After Copying the Data From FIFO ,Clear intr_status
+                    uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
+                    uart_event.type = UART_DATA;
+                    uart_event.size = rx_fifo_len;
+                }
+                p_uart->rx_stash_len = rx_fifo_len;
                 //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
                 //Mainly for applications that uses flow control or small ring buffer.
                 if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
-                    UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                    uart_reg->int_ena.rxfifo_full = 0;
-                    uart_reg->int_ena.rxfifo_tout = 0;
-                    UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                    p_uart->rx_buffer_full_flg = true;
+                    uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
+                    if (uart_event.type == UART_PATTERN_DET) {
+                        if (rx_fifo_len < pat_num) {
+                            //some of the characters are read out in last interrupt
+                            uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
+                        } else {
+                            uart_pattern_enqueue(uart_num,
+                                    pat_idx <= -1 ?
+                                            //can not find the pattern in buffer,
+                                            p_uart->rx_buffered_len + p_uart->rx_stash_len :
+                                            // find the pattern in buffer
+                                            p_uart->rx_buffered_len + pat_idx);
+                        }
+                        if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
+                            ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
+                        }
+                    }
                     uart_event.type = UART_BUFFER_FULL;
+                    p_uart->rx_buffer_full_flg = true;
                 } else {
                     UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
+                    if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
+                        if (rx_fifo_len < pat_num) {
+                            //some of the characters are read out in last interrupt
+                            uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
+                        } else if(pat_idx >= 0) {
+                            // find pattern in statsh buffer.
+                            uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
+                        }
+                    }
                     p_uart->rx_buffered_len += p_uart->rx_stash_len;
                     UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                    uart_event.type = UART_DATA;
                 }
                 if(HPTaskAwoken == pdTRUE) {
                     portYIELD_FROM_ISR() ;
                 }
             } else {
-                UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                uart_reg->int_ena.rxfifo_full = 0;
-                uart_reg->int_ena.rxfifo_tout = 0;
-                uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
-                UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
-                uart_event.type = UART_BUFFER_FULL;
-            }   
-        }
-        // When fifo overflows, we reset the fifo.
-        else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
+                uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
+                uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
+                if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
+                    uart_reg->int_clr.at_cmd_char_det = 1;
+                    uart_event.type = UART_PATTERN_DET;
+                    uart_event.size = rx_fifo_len;
+                    pat_flg = 1;
+                }
+            }
+        } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
+            // When fifo overflows, we reset the fifo.
             UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
             uart_reset_rx_fifo(uart_num);
             uart_reg->int_clr.rxfifo_ovf = 1;
@@ -729,18 +904,14 @@ static void uart_rx_intr_handler_default(void *param)
                 }
             }
         } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
-            UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-            uart_reg->int_ena.tx_brk_idle_done = 0;
-            uart_reg->int_clr.tx_brk_idle_done = 1;
-            UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
+            uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
+            uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
         } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
             uart_reg->int_clr.at_cmd_char_det = 1;
             uart_event.type = UART_PATTERN_DET;
         } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
-            UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
-            uart_reg->int_ena.tx_done = 0;
-            uart_reg->int_clr.tx_done = 1;
-            UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
+            uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
+            uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
             xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
             if(HPTaskAwoken == pdTRUE) {
                 portYIELD_FROM_ISR() ;
@@ -751,7 +922,9 @@ static void uart_rx_intr_handler_default(void *param)
         }
 
         if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
-            xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
+            if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
+                ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
+            }
             if(HPTaskAwoken == pdTRUE) {
                 portYIELD_FROM_ISR() ;
             }
@@ -920,9 +1093,6 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
                 p_uart_obj[uart_num]->rx_cur_remain = size;
             } else {
                 xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
-                UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
-                p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
-                UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
                 return copy_len;
             }
         }
@@ -932,7 +1102,11 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
             len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
         }
         memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
+        UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
+        p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
+        uart_pattern_queue_update(uart_num, len_tmp);
         p_uart_obj[uart_num]->rx_ptr += len_tmp;
+        UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
         p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
         copy_len += len_tmp;
         length -= len_tmp;
@@ -952,10 +1126,8 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
             }
         }
     }
+
     xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
-    UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
-    p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
-    UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
     return copy_len;
 }
 
@@ -967,7 +1139,9 @@ esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
     return ESP_OK;
 }
 
-esp_err_t uart_flush(uart_port_t uart_num)
+esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
+
+esp_err_t uart_flush_input(uart_port_t uart_num)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
@@ -983,6 +1157,7 @@ esp_err_t uart_flush(uart_port_t uart_num)
             vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
             UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
             p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
+            uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
             UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
             p_uart->rx_ptr = NULL;
             p_uart->rx_cur_remain = 0;
@@ -994,6 +1169,7 @@ esp_err_t uart_flush(uart_port_t uart_num)
         }
         UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
         p_uart_obj[uart_num]->rx_buffered_len -= size;
+        uart_pattern_queue_update(uart_num, size);
         UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
         vRingbufferReturnItem(p_uart->rx_ring_buf, data);
         if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
@@ -1024,7 +1200,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
     UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
 
     if(p_uart_obj[uart_num] == NULL) {
-        p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
+        p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
         if(p_uart_obj[uart_num] == NULL) {
             ESP_LOGE(UART_TAG, "UART driver malloc error");
             return ESP_FAIL;
@@ -1044,6 +1220,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
         p_uart_obj[uart_num]->tx_brk_len = 0;
         p_uart_obj[uart_num]->tx_waiting_brk = 0;
         p_uart_obj[uart_num]->rx_buffered_len = 0;
+        uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
 
         if(uart_queue) {
             p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
@@ -1103,6 +1280,7 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
     esp_intr_free(p_uart_obj[uart_num]->intr_handle);
     uart_disable_rx_intr(uart_num);
     uart_disable_tx_intr(uart_num);
+    uart_pattern_link_free(uart_num);
 
     if(p_uart_obj[uart_num]->tx_fifo_sem) {
         vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
index ac8ac3c915f4e22685e4b20ccbaa1206ca1d1867..8c9f545cb1502058f4524a7d4eaf97a96528ca12 100644 (file)
@@ -7,6 +7,7 @@
    CONDITIONS OF ANY KIND, either express or implied.
 */
 #include <stdio.h>
+#include <string.h>
 #include "freertos/FreeRTOS.h"
 #include "freertos/task.h"
 #include "freertos/queue.h"
@@ -29,58 +30,85 @@ static const char *TAG = "uart_events";
  */
 
 #define EX_UART_NUM UART_NUM_0
+#define PATTERN_CHR_NUM    (3)         /*!< Set the number of consecutive and identical characters received by receiver which defines a UART pattern*/
 
 #define BUF_SIZE (1024)
+#define RD_BUF_SIZE (BUF_SIZE)
 static QueueHandle_t uart0_queue;
 
 static void uart_event_task(void *pvParameters)
 {
     uart_event_t event;
     size_t buffered_size;
-    uint8_t *dtmp = (uint8_t *) malloc(BUF_SIZE);
-    while (1) {
-        /Waiting for UART event.
-           If it happens then print out information what is it */
-        if (xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) {
+    uint8_t* dtmp = (uint8_t*) malloc(RD_BUF_SIZE);
+    for(;;) {
+        //Waiting for UART event.
+        if(xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) {
+            bzero(dtmp, RD_BUF_SIZE);
             ESP_LOGI(TAG, "uart[%d] event:", EX_UART_NUM);
-            switch (event.type) {
-            case UART_DATA:
-                /* Event of UART receiving data
-                 * We'd better handler data event fast, there would be much more data events
-                 * than other types of events.
-                 * If we take too much time on data event, the queue might be full.
-                 * In this example, we don't process data in event, but read data outside.
-                 */
-                uart_get_buffered_data_len(EX_UART_NUM, &buffered_size);
-                ESP_LOGI(TAG, "data, len: %d; buffered len: %d", event.size, buffered_size);
-                break;
-            case UART_FIFO_OVF:
-                ESP_LOGE(TAG, "hw fifo overflow");
-                // If fifo overflow happened, you should consider adding flow control for your application.
-                // We can read data out out the buffer, or directly flush the Rx buffer.
-                uart_flush(EX_UART_NUM);
-                break;
-            case UART_BUFFER_FULL:
-                ESP_LOGE(TAG, "ring buffer full");
-                // If buffer full happened, you should consider increasing your buffer size
-                // We can read data out out the buffer, or directly flush the Rx buffer.
-                uart_flush(EX_UART_NUM);
-                break;
-            case UART_BREAK:
-                ESP_LOGI(TAG, "uart rx break detected");
-                break;
-            case UART_PARITY_ERR:
-                ESP_LOGE(TAG, "uart parity error");
-                break;
-            case UART_FRAME_ERR:
-                ESP_LOGE(TAG, "uart frame error");
-                break;
-            case UART_PATTERN_DET:
-                ESP_LOGI(TAG, "uart pattern detected");
-                break;
-            default:
-                ESP_LOGE(TAG, "not serviced uart event type: %d\n", event.type);
-                break;
+            switch(event.type) {
+                //Event of UART receving data
+                /*We'd better handler data event fast, there would be much more data events than
+                other types of events. If we take too much time on data event, the queue might
+                be full.*/
+                case UART_DATA:
+                    ESP_LOGI(TAG, "[UART DATA]: %d", event.size);
+                    uart_read_bytes(EX_UART_NUM, dtmp, event.size, portMAX_DELAY);
+                    ESP_LOGI(TAG, "[DATA EVT]:");
+                    uart_write_bytes(EX_UART_NUM, (const char*) dtmp, event.size);
+                    break;
+                //Event of HW FIFO overflow detected
+                case UART_FIFO_OVF:
+                    ESP_LOGI(TAG, "hw fifo overflow");
+                    // If fifo overflow happened, you should consider adding flow control for your application.
+                    // The ISR has already reset the rx FIFO,
+                    // As an example, we directly flush the rx buffer here in order to read more data.
+                    uart_flush_input(EX_UART_NUM);
+                    xQueueReset(uart0_queue);
+                    break;
+                //Event of UART ring buffer full
+                case UART_BUFFER_FULL:
+                    ESP_LOGI(TAG, "ring buffer full");
+                    // If buffer full happened, you should consider encreasing your buffer size
+                    // As an example, we directly flush the rx buffer here in order to read more data.
+                    uart_flush_input(EX_UART_NUM);
+                    xQueueReset(uart0_queue);
+                    break;
+                //Event of UART RX break detected
+                case UART_BREAK:
+                    ESP_LOGI(TAG, "uart rx break");
+                    break;
+                //Event of UART parity check error
+                case UART_PARITY_ERR:
+                    ESP_LOGI(TAG, "uart parity error");
+                    break;
+                //Event of UART frame error
+                case UART_FRAME_ERR:
+                    ESP_LOGI(TAG, "uart frame error");
+                    break;
+                //UART_PATTERN_DET
+                case UART_PATTERN_DET:
+                    uart_get_buffered_data_len(EX_UART_NUM, &buffered_size);
+                    int pos = uart_pattern_pop_pos(EX_UART_NUM);
+                    ESP_LOGI(TAG, "[UART PATTERN DETECTED] pos: %d, buffered size: %d", pos, buffered_size);
+                    if (pos == -1) {
+                        // There used to be a UART_PATTERN_DET event, but the pattern position queue is full so that it can not
+                        // record the position. We should set a larger queue size.
+                        // As an example, we directly flush the rx buffer here.
+                        uart_flush_input(EX_UART_NUM);
+                    } else {
+                        uart_read_bytes(EX_UART_NUM, dtmp, pos, 100 / portTICK_PERIOD_MS);
+                        uint8_t pat[PATTERN_CHR_NUM + 1];
+                        memset(pat, 0, sizeof(pat));
+                        uart_read_bytes(EX_UART_NUM, pat, PATTERN_CHR_NUM, 100 / portTICK_PERIOD_MS);
+                        ESP_LOGI(TAG, "read data: %s", dtmp);
+                        ESP_LOGI(TAG, "read pat : %s", pat);
+                    }
+                    break;
+                //Others
+                default:
+                    ESP_LOGI(TAG, "uart event type: %d", event.type);
+                    break;
             }
         }
     }
@@ -103,23 +131,19 @@ void app_main()
         .flow_ctrl = UART_HW_FLOWCTRL_DISABLE
     };
     uart_param_config(EX_UART_NUM, &uart_config);
-    // Set UART pins using UART0 default pins i.e. no changes
+
+    //Set UART log level
+    esp_log_level_set(TAG, ESP_LOG_INFO);
+    //Set UART pins (using UART0 default pins ie no changes.)
     uart_set_pin(EX_UART_NUM, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
-    uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 10, &uart0_queue, 0);
+    //Install UART driver, and get the queue.
+    uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 20, &uart0_queue, 0);
 
-    // Set uart pattern detection function
-    uart_enable_pattern_det_intr(EX_UART_NUM, '+', 3, 10000, 10, 10);
+    //Set uart pattern detect function.
+    uart_enable_pattern_det_intr(EX_UART_NUM, '+', PATTERN_CHR_NUM, 10000, 10, 10);
+    //Reset the pattern queue length to record at most 20 pattern positions.
+    uart_pattern_queue_reset(EX_UART_NUM, 20);
 
-    // Create a task to handle uart event from ISR
+    //Create a task to handler UART event from ISR
     xTaskCreate(uart_event_task, "uart_event_task", 2048, NULL, 12, NULL);
-
-    // Reserve a buffer and process incoming data
-    uint8_t *data = (uint8_t *) malloc(BUF_SIZE);
-    while (1) {
-        int len = uart_read_bytes(EX_UART_NUM, data, BUF_SIZE, 100 / portTICK_RATE_MS);
-        if (len > 0) {
-            ESP_LOGI(TAG, "uart read : %d", len);
-            uart_write_bytes(EX_UART_NUM, (const char *)data, len);
-        }
-    }
 }