if (!VD)
return SemaRef.ExprError();
- if (VD->getDeclContext()->isRecord()) {
+ if (VD->getDeclContext()->isRecord() &&
+ (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
// If the value is a class member, we might have a pointer-to-member.
// Determine whether the non-type template template parameter is of
// pointer-to-member type. If so, we need to build an appropriate
move(RefExpr));
}
}
- if (NTTP->getType()->isPointerType() &&
- !VD->getType()->isPointerType()) {
- // If the template argument is expected to be a pointer and value
- // isn't inherently of pointer type, then it is specified with '&...'
- // to indicate its address should be used. Build an expression to
- // take the address of the argument.
+ if (NTTP->getType()->isPointerType()) {
+ // If the template argument is expected to be a pointer
+ // type, we may have to decay array/pointer references, take
+ // the address of the argument, or perform cv-qualification
+ // adjustments to get the type of the rvalue right. Do so.
OwningExprResult RefExpr
= SemaRef.BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
E->getLocation());
if (RefExpr.isInvalid())
return SemaRef.ExprError();
- return SemaRef.CreateBuiltinUnaryOp(E->getLocation(),
- UnaryOperator::AddrOf,
- move(RefExpr));
+ // Decay functions and arrays.
+ Expr *RefE = (Expr *)RefExpr.get();
+ SemaRef.DefaultFunctionArrayConversion(RefE);
+ if (RefE != RefExpr.get()) {
+ RefExpr.release();
+ RefExpr = SemaRef.Owned(RefE);
+ }
+
+ // If the unqualified types are different and a a
+ // qualification conversion won't fix them types, we need to
+ // take the address. FIXME: Should we encode these steps in
+ // the template argument, then replay them here, like a
+ // miniature InitializationSequence?
+ if (!SemaRef.Context.hasSameUnqualifiedType(RefE->getType(),
+ NTTP->getType()) &&
+ !SemaRef.IsQualificationConversion(RefE->getType(),
+ NTTP->getType())) {
+ RefExpr = SemaRef.CreateBuiltinUnaryOp(E->getLocation(),
+ UnaryOperator::AddrOf,
+ move(RefExpr));
+ if (RefExpr.isInvalid())
+ return SemaRef.ExprError();
+
+ RefE = (Expr *)RefExpr.get();
+ assert(SemaRef.IsQualificationConversion(RefE->getType(),
+ NTTP->getType()));
+ }
+
+ // Strip top-level cv-qualifiers off the type.
+ RefExpr.release();
+ SemaRef.ImpCastExprToType(RefE,
+ NTTP->getType().getUnqualifiedType(),
+ CastExpr::CK_NoOp);
+ return SemaRef.Owned(RefE);
}
return SemaRef.BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
// qualification conversions (4.4) and the array-to-pointer conversion
// (4.2) are applied; if the template-argument is of type
// std::nullptr_t, the null pointer conversion (4.10) is applied.
+namespace pointer_to_object_parameters {
+ // PR6226
+ struct Str {
+ Str(const char *);
+ };
+
+ template<const char *s>
+ struct A {
+ Str get() { return s; }
+ };
+
+ char hello[6] = "Hello";
+ extern const char world[6];
+ const char world[6] = "world";
+ void test() {
+ (void)A<hello>().get();
+ (void)A<world>().get();
+ }
+
+ class X {
+ public:
+ X();
+ X(int, int);
+ operator int() const;
+ };
+
+ template<X const *Ptr> struct A2;
+
+ X *X_ptr;
+ X an_X;
+ X array_of_Xs[10];
+ A2<X_ptr> *a12;
+ A2<array_of_Xs> *a13;
+ A2<&an_X> *a13_2;
+ A2<(&an_X)> *a13_3; // expected-error{{non-type template argument cannot be surrounded by parentheses}}
+}
+
// -- For a non-type template-parameter of type reference to object, no
// conversions apply. The type referred to by the reference may be more
// cv-qualified than the (otherwise identical) type of the