Need to make the bootloader modular so that users can redefine its functional part.
- refactoring and moving functions to the bootloader_support component
- Changed function to `void` bootloader_utility_load_image(...);
TW19596
// limitations under the License.
#include <string.h>
#include <stdint.h>
-#include <limits.h>
-#include <sys/param.h>
+#include <stdbool.h>
-#include "esp_attr.h"
#include "esp_log.h"
-
-#include "rom/cache.h"
-#include "rom/efuse.h"
-#include "rom/ets_sys.h"
-#include "rom/spi_flash.h"
-#include "rom/crc.h"
-#include "rom/rtc.h"
-#include "rom/uart.h"
#include "rom/gpio.h"
-#include "rom/secure_boot.h"
-
-#include "soc/soc.h"
-#include "soc/cpu.h"
-#include "soc/rtc.h"
-#include "soc/dport_reg.h"
-#include "soc/io_mux_reg.h"
-#include "soc/efuse_reg.h"
-#include "soc/rtc_cntl_reg.h"
-#include "soc/timer_group_reg.h"
-#include "soc/gpio_reg.h"
-#include "soc/gpio_sig_map.h"
-
+#include "bootloader_config.h"
+#include "bootloader_init.h"
+#include "bootloader_utility.h"
+#include "bootloader_common.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
-#include "esp_secure_boot.h"
-#include "esp_flash_encrypt.h"
-#include "esp_flash_partitions.h"
-#include "bootloader_flash.h"
-#include "bootloader_random.h"
-#include "bootloader_config.h"
-#include "bootloader_clock.h"
-
-#include "flash_qio_mode.h"
-
-extern int _bss_start;
-extern int _bss_end;
-extern int _data_start;
-extern int _data_end;
static const char* TAG = "boot";
-/* Reduce literal size for some generic string literals */
-#define MAP_MSG "Mapping segment %d as %s"
-#define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
-
-void bootloader_main();
-static void unpack_load_app(const esp_image_metadata_t *data);
-static void print_flash_info(const esp_image_header_t* pfhdr);
-static void set_cache_and_start_app(uint32_t drom_addr,
- uint32_t drom_load_addr,
- uint32_t drom_size,
- uint32_t irom_addr,
- uint32_t irom_load_addr,
- uint32_t irom_size,
- uint32_t entry_addr);
-static void update_flash_config(const esp_image_header_t* pfhdr);
-static void vddsdio_configure();
-static void flash_gpio_configure();
-static void uart_console_configure(void);
-static void wdt_reset_check(void);
-
+static esp_err_t select_image (esp_image_metadata_t *image_data);
+static int selected_boot_partition(const bootloader_state_t *bs);
/*
* We arrive here after the ROM bootloader finished loading this second stage bootloader from flash.
* The hardware is mostly uninitialized, flash cache is down and the app CPU is in reset.
*/
void call_start_cpu0()
{
- cpu_configure_region_protection();
-
- /* Sanity check that static RAM is after the stack */
-#ifndef NDEBUG
- {
- int *sp = get_sp();
- assert(&_bss_start <= &_bss_end);
- assert(&_data_start <= &_data_end);
- assert(sp < &_bss_start);
- assert(sp < &_data_start);
- }
-#endif
-
- //Clear bss
- memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
-
- /* completely reset MMU for both CPUs
- (in case serial bootloader was running) */
- Cache_Read_Disable(0);
- Cache_Read_Disable(1);
- Cache_Flush(0);
- Cache_Flush(1);
- mmu_init(0);
- DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
- mmu_init(1);
- DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
- /* (above steps probably unnecessary for most serial bootloader
- usage, all that's absolutely needed is that we unmask DROM0
- cache on the following two lines - normal ROM boot exits with
- DROM0 cache unmasked, but serial bootloader exits with it
- masked. However can't hurt to be thorough and reset
- everything.)
-
- The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
- necessary to work around a hardware bug.
- */
- DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
- DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
-
- bootloader_main();
-}
-
-
-/** @brief Load partition table
- *
- * Parse partition table, get useful data such as location of
- * OTA data partition, factory app partition, and test app partition.
- *
- * @param bs bootloader state structure used to save read data
- * @return return true if the partition table was succesfully loaded and MD5 checksum is valid.
- */
-bool load_partition_table(bootloader_state_t* bs)
-{
- const esp_partition_info_t *partitions;
- const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
- const char *partition_usage;
- esp_err_t err;
- int num_partitions;
-
-#ifdef CONFIG_SECURE_BOOT_ENABLED
- if(esp_secure_boot_enabled()) {
- ESP_LOGI(TAG, "Verifying partition table signature...");
- err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Failed to verify partition table signature.");
- return false;
- }
- ESP_LOGD(TAG, "Partition table signature verified");
- }
-#endif
-
- partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- if (!partitions) {
- ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- return false;
- }
- ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
-
- err = esp_partition_table_basic_verify(partitions, true, &num_partitions);
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Failed to verify partition table");
- return false;
- }
-
- ESP_LOGI(TAG, "Partition Table:");
- ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
-
- for(int i = 0; i < num_partitions; i++) {
- const esp_partition_info_t *partition = &partitions[i];
- ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
- ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
- partition_usage = "unknown";
-
- /* valid partition table */
- switch(partition->type) {
- case PART_TYPE_APP: /* app partition */
- switch(partition->subtype) {
- case PART_SUBTYPE_FACTORY: /* factory binary */
- bs->factory = partition->pos;
- partition_usage = "factory app";
- break;
- case PART_SUBTYPE_TEST: /* test binary */
- bs->test = partition->pos;
- partition_usage = "test app";
- break;
- default:
- /* OTA binary */
- if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
- bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
- ++bs->app_count;
- partition_usage = "OTA app";
- }
- else {
- partition_usage = "Unknown app";
- }
- break;
- }
- break; /* PART_TYPE_APP */
- case PART_TYPE_DATA: /* data partition */
- switch(partition->subtype) {
- case PART_SUBTYPE_DATA_OTA: /* ota data */
- bs->ota_info = partition->pos;
- partition_usage = "OTA data";
- break;
- case PART_SUBTYPE_DATA_RF:
- partition_usage = "RF data";
- break;
- case PART_SUBTYPE_DATA_WIFI:
- partition_usage = "WiFi data";
- break;
- default:
- partition_usage = "Unknown data";
- break;
- }
- break; /* PARTITION_USAGE_DATA */
- default: /* other partition type */
- break;
- }
-
- /* print partition type info */
- ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
- partition->type, partition->subtype,
- partition->pos.offset, partition->pos.size);
- }
-
- bootloader_munmap(partitions);
-
- ESP_LOGI(TAG,"End of partition table");
- return true;
-}
-
-static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
-{
- return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
-}
-
-static bool ota_select_valid(const esp_ota_select_entry_t *s)
-{
- return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
-}
-
-/* indexes used by index_to_partition are the OTA index
- number, or these special constants */
-#define FACTORY_INDEX (-1)
-#define TEST_APP_INDEX (-2)
-#define INVALID_INDEX (-99)
-
-/* Given a partition index, return the partition position data from the bootloader_state_t structure */
-static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
-{
- if (index == FACTORY_INDEX) {
- return bs->factory;
- }
-
- if (index == TEST_APP_INDEX) {
- return bs->test;
- }
-
- if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
- return bs->ota[index];
- }
-
- esp_partition_pos_t invalid = { 0 };
- return invalid;
-}
-
-static void log_invalid_app_partition(int index)
-{
- const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
- switch(index) {
- case FACTORY_INDEX:
- ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
- break;
- case TEST_APP_INDEX:
- ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
- break;
- default:
- ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
- break;
- }
-}
-
-
-/* Return the index of the selected boot partition.
-
- This is the preferred boot partition, as determined by the partition table &
- any OTA sequence number found in OTA data.
-
- This partition will only be booted if it contains a valid app image, otherwise load_boot_image() will search
- for a valid partition using this selection as the starting point.
-*/
-static int get_selected_boot_partition(const bootloader_state_t *bs)
-{
- esp_ota_select_entry_t sa,sb;
- const esp_ota_select_entry_t *ota_select_map;
-
- if (bs->ota_info.offset != 0) {
- // partition table has OTA data partition
- if (bs->ota_info.size < 2 * SPI_SEC_SIZE) {
- ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", bs->ota_info.size, sizeof(esp_ota_select_entry_t));
- return INVALID_INDEX; // can't proceed
- }
-
- ESP_LOGD(TAG, "OTA data offset 0x%x", bs->ota_info.offset);
- ota_select_map = bootloader_mmap(bs->ota_info.offset, bs->ota_info.size);
- if (!ota_select_map) {
- ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs->ota_info.offset, bs->ota_info.size);
- return INVALID_INDEX; // can't proceed
- }
- memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
- memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
- bootloader_munmap(ota_select_map);
-
- ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
- if(sa.ota_seq == UINT32_MAX && sb.ota_seq == UINT32_MAX) {
- ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF)");
- if (bs->factory.offset != 0) {
- ESP_LOGI(TAG, "Defaulting to factory image");
- return FACTORY_INDEX;
- } else {
- ESP_LOGI(TAG, "No factory image, trying OTA 0");
- return 0;
- }
- } else {
- bool ota_valid = false;
- const char *ota_msg;
- int ota_seq; // Raw OTA sequence number. May be more than # of OTA slots
- if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
- ota_valid = true;
- ota_msg = "Both OTA values";
- ota_seq = MAX(sa.ota_seq, sb.ota_seq) - 1;
- } else if(ota_select_valid(&sa)) {
- ota_valid = true;
- ota_msg = "Only OTA sequence A is";
- ota_seq = sa.ota_seq - 1;
- } else if(ota_select_valid(&sb)) {
- ota_valid = true;
- ota_msg = "Only OTA sequence B is";
- ota_seq = sb.ota_seq - 1;
- }
-
- if (ota_valid) {
- int ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
- ESP_LOGD(TAG, "%s valid. Mapping seq %d -> OTA slot %d", ota_msg, ota_seq, ota_slot);
- return ota_slot;
- } else if (bs->factory.offset != 0) {
- ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
- return FACTORY_INDEX;
- } else {
- ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
- return FACTORY_INDEX;
- }
- }
- }
-
- // otherwise, start from factory app partition and let the search logic
- // proceed from there
- return FACTORY_INDEX;
-}
-
-/* Return true if a partition has a valid app image that was successfully loaded */
-static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
-{
- if (partition->size == 0) {
- ESP_LOGD(TAG, "Can't boot from zero-length partition");
- return false;
- }
-
- if (esp_image_load(ESP_IMAGE_LOAD, partition, data) == ESP_OK) {
- ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
- partition->offset);
- return true;
- }
-
- return false;
-}
-
-#define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
-
-/* Load the app for booting. Start from partition 'start_index', if not bootable then work backwards to FACTORY_INDEX
- * (ie try any OTA slots in descending order and then the factory partition).
- *
- * If still nothing, start from 'start_index + 1' and work up to highest numbered OTA partition.
- *
- * If still nothing, try TEST_APP_INDEX
- *
- * Returns true on success, false if there's no bootable app in the partition table.
- */
-static bool load_boot_image(const bootloader_state_t *bs, int start_index, esp_image_metadata_t *result)
-{
- int index = start_index;
- esp_partition_pos_t part;
-
- /* work backwards from start_index, down to the factory app */
- for(index = start_index; index >= FACTORY_INDEX; index--) {
- part = index_to_partition(bs, index);
- if (part.size == 0) {
- continue;
- }
- ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
- if (try_load_partition(&part, result)) {
- return true;
- }
- log_invalid_app_partition(index);
- }
-
- /* failing that work forwards from start_index, try valid OTA slots */
- for(index = start_index + 1; index < bs->app_count; index++) {
- part = index_to_partition(bs, index);
- if (part.size == 0) {
- continue;
- }
- ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
- if (try_load_partition(&part, result)) {
- return true;
- }
- log_invalid_app_partition(index);
- }
-
- if (try_load_partition(&bs->test, result)) {
- ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
- return true;
- }
-
- ESP_LOGE(TAG, "No bootable app partitions in the partition table");
- bzero(result, sizeof(esp_image_metadata_t));
- return false;
-}
-
-
-/**
- * @function : bootloader_main
- * @description: entry function of 2nd bootloader
- *
- * @inputs: void
- */
-
-void bootloader_main()
-{
- vddsdio_configure();
- flash_gpio_configure();
-#if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ == 240)
- //Check if ESP32 is rated for a CPU frequency of 160MHz only
- if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_RATED) &&
- REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_LOW)) {
- ESP_LOGE(TAG, "Chip CPU frequency rated for 160MHz. Modify CPU frequency in menuconfig");
- return;
- }
-#endif
- bootloader_clock_configure();
- uart_console_configure();
- wdt_reset_check();
- ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
-#if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
- esp_err_t err;
-#endif
- esp_image_header_t fhdr;
- bootloader_state_t bs = { 0 };
-
- ESP_LOGI(TAG, "compile time " __TIME__ );
- ets_set_appcpu_boot_addr(0);
-
- /* disable watch dog here */
- REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
- REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
-
-#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
- const uint32_t spiconfig = ets_efuse_get_spiconfig();
- if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
- ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig");
- return;
- }
-#endif
-
- esp_rom_spiflash_unlock();
-
- ESP_LOGI(TAG, "Enabling RNG early entropy source...");
- bootloader_random_enable();
-
-#if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
- bootloader_enable_qio_mode();
-#endif
-
- if (bootloader_flash_read(ESP_BOOTLOADER_OFFSET, &fhdr,
- sizeof(esp_image_header_t), true) != ESP_OK) {
- ESP_LOGE(TAG, "failed to load bootloader header!");
- return;
- }
-
- print_flash_info(&fhdr);
-
- update_flash_config(&fhdr);
-
- if (!load_partition_table(&bs)) {
- ESP_LOGE(TAG, "load partition table error!");
+ // 1. Hardware initialization
+ if(bootloader_init() != ESP_OK){
return;
}
- int boot_index = get_selected_boot_partition(&bs);
- if (boot_index == INVALID_INDEX) {
- return; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
- }
- // Start from the default, look for the first bootable partition
+ // 2. Select image to boot
esp_image_metadata_t image_data;
- if (!load_boot_image(&bs, boot_index, &image_data)) {
- return;
- }
-
-#ifdef CONFIG_SECURE_BOOT_ENABLED
- /* Generate secure digest from this bootloader to protect future
- modifications */
- ESP_LOGI(TAG, "Checking secure boot...");
- err = esp_secure_boot_permanently_enable();
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
- /* Allow booting to continue, as the failure is probably
- due to user-configured EFUSEs for testing...
- */
- }
-#endif
-
-#ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
- /* encrypt flash */
- ESP_LOGI(TAG, "Checking flash encryption...");
- bool flash_encryption_enabled = esp_flash_encryption_enabled();
- err = esp_flash_encrypt_check_and_update();
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
+ if(select_image(&image_data) != ESP_OK){
return;
}
- if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
- /* Flash encryption was just enabled for the first time,
- so issue a system reset to ensure flash encryption
- cache resets properly */
- ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
- REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
- return;
- }
-#endif
-
- ESP_LOGI(TAG, "Disabling RNG early entropy source...");
- bootloader_random_disable();
-
- // copy loaded segments to RAM, set up caches for mapped segments, and start application
- unpack_load_app(&image_data);
-}
-
-static void unpack_load_app(const esp_image_metadata_t* data)
-{
- uint32_t drom_addr = 0;
- uint32_t drom_load_addr = 0;
- uint32_t drom_size = 0;
- uint32_t irom_addr = 0;
- uint32_t irom_load_addr = 0;
- uint32_t irom_size = 0;
-
- // Find DROM & IROM addresses, to configure cache mappings
- for (int i = 0; i < data->image.segment_count; i++) {
- const esp_image_segment_header_t *header = &data->segments[i];
- if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
- if (drom_addr != 0) {
- ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
- } else {
- ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
- }
- drom_addr = data->segment_data[i];
- drom_load_addr = header->load_addr;
- drom_size = header->data_len;
- }
- if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
- if (irom_addr != 0) {
- ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
- } else {
- ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
- }
- irom_addr = data->segment_data[i];
- irom_load_addr = header->load_addr;
- irom_size = header->data_len;
- }
- }
-
- ESP_LOGD(TAG, "calling set_cache_and_start_app");
- set_cache_and_start_app(drom_addr,
- drom_load_addr,
- drom_size,
- irom_addr,
- irom_load_addr,
- irom_size,
- data->image.entry_addr);
+ // 3. Loading the selected image
+ bootloader_utility_load_image(&image_data);
}
-static void set_cache_and_start_app(
- uint32_t drom_addr,
- uint32_t drom_load_addr,
- uint32_t drom_size,
- uint32_t irom_addr,
- uint32_t irom_load_addr,
- uint32_t irom_size,
- uint32_t entry_addr)
+// Selects image to boot
+static esp_err_t select_image (esp_image_metadata_t *image_data)
{
- ESP_LOGD(TAG, "configure drom and irom and start");
- Cache_Read_Disable( 0 );
- Cache_Flush( 0 );
-
- /* Clear the MMU entries that are already set up,
- so the new app only has the mappings it creates.
- */
- for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
- DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
- }
-
- uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
- ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
- int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
- ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
- rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
- DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
- Cache_Read_Enable( 0 );
-
- // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
-
- ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
- typedef void (*entry_t)(void);
- entry_t entry = ((entry_t) entry_addr);
-
- // TODO: we have used quite a bit of stack at this point.
- // use "movsp" instruction to reset stack back to where ROM stack starts.
- (*entry)();
-}
-
-static void update_flash_config(const esp_image_header_t* pfhdr)
-{
- uint32_t size;
- switch(pfhdr->spi_size) {
- case ESP_IMAGE_FLASH_SIZE_1MB:
- size = 1;
- break;
- case ESP_IMAGE_FLASH_SIZE_2MB:
- size = 2;
- break;
- case ESP_IMAGE_FLASH_SIZE_4MB:
- size = 4;
- break;
- case ESP_IMAGE_FLASH_SIZE_8MB:
- size = 8;
- break;
- case ESP_IMAGE_FLASH_SIZE_16MB:
- size = 16;
- break;
- default:
- size = 2;
- }
- Cache_Read_Disable( 0 );
- // Set flash chip size
- esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
- // TODO: set mode
- // TODO: set frequency
- Cache_Flush(0);
- Cache_Read_Enable( 0 );
-}
-
-static void print_flash_info(const esp_image_header_t* phdr)
-{
-#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
-
- ESP_LOGD(TAG, "magic %02x", phdr->magic );
- ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
- ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
- ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
- ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
-
- const char* str;
- switch ( phdr->spi_speed ) {
- case ESP_IMAGE_SPI_SPEED_40M:
- str = "40MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_26M:
- str = "26.7MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_20M:
- str = "20MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_80M:
- str = "80MHz";
- break;
- default:
- str = "20MHz";
- break;
- }
- ESP_LOGI(TAG, "SPI Speed : %s", str );
-
- /* SPI mode could have been set to QIO during boot already,
- so test the SPI registers not the flash header */
- uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
- if (spi_ctrl & SPI_FREAD_QIO) {
- str = "QIO";
- } else if (spi_ctrl & SPI_FREAD_QUAD) {
- str = "QOUT";
- } else if (spi_ctrl & SPI_FREAD_DIO) {
- str = "DIO";
- } else if (spi_ctrl & SPI_FREAD_DUAL) {
- str = "DOUT";
- } else if (spi_ctrl & SPI_FASTRD_MODE) {
- str = "FAST READ";
- } else {
- str = "SLOW READ";
- }
- ESP_LOGI(TAG, "SPI Mode : %s", str );
-
- switch ( phdr->spi_size ) {
- case ESP_IMAGE_FLASH_SIZE_1MB:
- str = "1MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_2MB:
- str = "2MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_4MB:
- str = "4MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_8MB:
- str = "8MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_16MB:
- str = "16MB";
- break;
- default:
- str = "2MB";
- break;
+ // 1. Load partition table
+ bootloader_state_t bs = { 0 };
+ if (!bootloader_utility_load_partition_table(&bs)) {
+ ESP_LOGE(TAG, "load partition table error!");
+ return ESP_FAIL;
}
- ESP_LOGI(TAG, "SPI Flash Size : %s", str );
-#endif
-}
-
-static void vddsdio_configure()
-{
-#if CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V
- rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
- if (cfg.enable == 1 && cfg.tieh == 0) { // VDDSDIO regulator is enabled @ 1.8V
- cfg.drefh = 3;
- cfg.drefm = 3;
- cfg.drefl = 3;
- cfg.force = 1;
- rtc_vddsdio_set_config(cfg);
- ets_delay_us(10); // wait for regulator to become stable
+ // 2. Select boot partition
+ int boot_index = selected_boot_partition(&bs);
+ if(boot_index == INVALID_INDEX) {
+ return ESP_FAIL; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
}
-#endif // CONFIG_BOOTLOADER_VDDSDIO_BOOST
-}
-
-
-#define FLASH_CLK_IO 6
-#define FLASH_CS_IO 11
-#define FLASH_SPIQ_IO 7
-#define FLASH_SPID_IO 8
-#define FLASH_SPIWP_IO 10
-#define FLASH_SPIHD_IO 9
-#define FLASH_IO_MATRIX_DUMMY_40M 1
-#define FLASH_IO_MATRIX_DUMMY_80M 2
-static void IRAM_ATTR flash_gpio_configure()
-{
- int spi_cache_dummy = 0;
- int drv = 2;
-#if CONFIG_FLASHMODE_QIO
- spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN; //qio 3
-#elif CONFIG_FLASHMODE_QOUT
- spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //qout 7
-#elif CONFIG_FLASHMODE_DIO
- spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN; //dio 3
-#elif CONFIG_FLASHMODE_DOUT
- spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //dout 7
-#endif
- /* dummy_len_plus values defined in ROM for SPI flash configuration */
- extern uint8_t g_rom_spiflash_dummy_len_plus[];
-#if CONFIG_ESPTOOLPY_FLASHFREQ_40M
- g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_40M;
- g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_40M;
- SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
-#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
- g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_80M;
- g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_80M;
- SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
- drv = 3;
-#endif
-
- uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
- uint32_t pkg_ver = chip_ver & 0x7;
-
- if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
- // For ESP32D2WD the SPI pins are already configured
- // flash clock signal should come from IO MUX.
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
- SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
- } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) {
- // For ESP32PICOD2 the SPI pins are already configured
- // flash clock signal should come from IO MUX.
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
- SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
- } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
- // For ESP32PICOD4 the SPI pins are already configured
- // flash clock signal should come from IO MUX.
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
- SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
- } else {
- const uint32_t spiconfig = ets_efuse_get_spiconfig();
- if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
- gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0);
- gpio_matrix_out(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0);
- gpio_matrix_in(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0);
- gpio_matrix_out(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0);
- gpio_matrix_in(FLASH_SPID_IO, SPID_IN_IDX, 0);
- gpio_matrix_out(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0);
- gpio_matrix_in(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0);
- gpio_matrix_out(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0);
- gpio_matrix_in(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0);
- //select pin function gpio
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO);
- // flash clock signal should come from IO MUX.
- // set drive ability for clock
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
- SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
- }
- }
-}
-
-
-static void uart_console_configure(void)
-{
-#if CONFIG_CONSOLE_UART_NONE
- ets_install_putc1(NULL);
- ets_install_putc2(NULL);
-#else // CONFIG_CONSOLE_UART_NONE
- const int uart_num = CONFIG_CONSOLE_UART_NUM;
-
- uartAttach();
- ets_install_uart_printf();
- // Wait for UART FIFO to be empty.
- uart_tx_wait_idle(0);
-
-#if CONFIG_CONSOLE_UART_CUSTOM
- // Some constants to make the following code less upper-case
- const int uart_tx_gpio = CONFIG_CONSOLE_UART_TX_GPIO;
- const int uart_rx_gpio = CONFIG_CONSOLE_UART_RX_GPIO;
- // Switch to the new UART (this just changes UART number used for
- // ets_printf in ROM code).
- uart_tx_switch(uart_num);
- // If console is attached to UART1 or if non-default pins are used,
- // need to reconfigure pins using GPIO matrix
- if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
- // Change pin mode for GPIO1/3 from UART to GPIO
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
- // Route GPIO signals to/from pins
- // (arrays should be optimized away by the compiler)
- const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX };
- const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX };
- const uint32_t tx_idx = tx_idx_list[uart_num];
- const uint32_t rx_idx = rx_idx_list[uart_num];
- gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
- gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
+ // 3. Load the app image for booting
+ if (!bootloader_utility_load_boot_image(&bs, boot_index, image_data)) {
+ return ESP_FAIL;
}
-#endif // CONFIG_CONSOLE_UART_CUSTOM
-
- // Set configured UART console baud rate
- const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
- uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
-
-#endif // CONFIG_CONSOLE_UART_NONE
-}
-
-static void wdt_reset_cpu0_info_enable(void)
-{
- //We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
- DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
- DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
+ return ESP_OK;
}
-static void wdt_reset_info_dump(int cpu)
+/*
+ * Selects a boot partition.
+ * The conditions for switching to another firmware are checked.
+ */
+static int selected_boot_partition(const bootloader_state_t *bs)
{
- uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
- lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
- const char *cpu_name = cpu ? "APP" : "PRO";
-
- if (cpu == 0) {
- stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
- pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
- inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
- dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
- data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
- pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
- lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
- lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
- lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
-
- } else {
- stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
- pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
- inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
- dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
- data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
- pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
- lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
- lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
- lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
- }
- if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
- DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
- ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
+ int boot_index = bootloader_utility_get_selected_boot_partition(bs);
+ if (boot_index == INVALID_INDEX) {
+ return boot_index; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
} else {
- ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
- }
- ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
-}
-
-static void wdt_reset_check(void)
-{
- int wdt_rst = 0;
- RESET_REASON rst_reas[2];
-
- rst_reas[0] = rtc_get_reset_reason(0);
- rst_reas[1] = rtc_get_reset_reason(1);
- if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
- rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
- ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
- wdt_rst = 1;
+ // Check for reset to the factory firmware or for launch OTA[x] firmware.
+ // Customer implementation.
+ // if (gpio_pin_1 == true && ...){
+ // boot_index = required_boot_partition;
+ // } ...
}
- if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
- rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
- ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
- wdt_rst = 1;
- }
- if (wdt_rst) {
- // if reset by WDT dump info from trace port
- wdt_reset_info_dump(0);
- wdt_reset_info_dump(1);
- }
- wdt_reset_cpu0_info_enable();
-}
-
-void __assert_func(const char *file, int line, const char *func, const char *expr)
-{
- ESP_LOGE(TAG, "Assert failed in %s, %s:%d (%s)", func, file, line, expr);
- while(1) {}
+ return boot_index;
}
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+/**
+ * @brief Calculate crc for the OTA data partition.
+ *
+ * @param[in] ota_data The OTA data partition.
+ * @return Returns crc value.
+ */
+uint32_t bootloader_common_ota_select_crc(const esp_ota_select_entry_t *s);
+
+/**
+ * @brief Verifies the validity of the OTA data partition
+ *
+ * @param[in] ota_data The OTA data partition.
+ * @return Returns true on valid, false otherwise.
+ */
+bool bootloader_common_ota_select_valid(const esp_ota_select_entry_t *s);
bool flash_encrypt(bootloader_state_t *bs);
+/* Indices used by index_to_partition are the OTA index
+ number, or these special constants */
+#define FACTORY_INDEX (-1)
+#define TEST_APP_INDEX (-2)
+#define INVALID_INDEX (-99)
+
#ifdef __cplusplus
}
#endif
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#pragma once
+
+#include "esp_err.h"
+
+/* @brief Prepares hardware for work.
+ *
+ * Setting up:
+ * - Disable Cache access for both CPUs;
+ * - Initialise cache mmu;
+ * - Setting up pins and mode for SD, SPI, UART, Clocking.
+
+ * @return ESP_OK - If the setting is successful.
+ * ESP_FAIL - If the setting is not successful.
+ */
+esp_err_t bootloader_init();
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#pragma once
+
+#include "esp_image_format.h"
+
+/**
+ * @brief Load partition table.
+ *
+ * Parse partition table, get useful data such as location of
+ * OTA data partition, factory app partition, and test app partition.
+ *
+ * @param[out] bs Bootloader state structure used to save read data.
+ * @return Return true if the partition table was succesfully loaded and MD5 checksum is valid.
+ */
+bool bootloader_utility_load_partition_table(bootloader_state_t* bs);
+
+/**
+ * @brief Return the index of the selected boot partition.
+ *
+ * This is the preferred boot partition, as determined by the partition table &
+ * any OTA sequence number found in OTA data.
+ * This partition will only be booted if it contains a valid app image, otherwise load_boot_image() will search
+ * for a valid partition using this selection as the starting point.
+ *
+ * @param[in] bs Bootloader state structure.
+ * @return Returns the index on success, INVALID_INDEX otherwise.
+ */
+int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs);
+
+/**
+ * @brief Load the app image for booting.
+ *
+ * Start from partition 'start_index', if not bootable then work backwards to FACTORY_INDEX
+ * (ie try any OTA slots in descending order and then the factory partition).
+ * If still nothing, start from 'start_index + 1' and work up to highest numbered OTA partition.
+ * If still nothing, try TEST_APP_INDEX.
+ *
+ * @param[in] bs Bootloader state structure.
+ * @param[in] start_index The index from which the search for images begins.
+ * @param[out] result The image found.
+ * @return Returns true on success, false if there's no bootable app in the partition table.
+ */
+bool bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index, esp_image_metadata_t *result);
+
+/**
+ * @brief Loading the selected image.
+ *
+ * Copy loaded segments to RAM, set up caches for mapped segments, and start application.
+ *
+ * @param[in] data Structure to hold on-flash image metadata.
+ */
+void bootloader_utility_load_image(const esp_image_metadata_t* image_data);
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include <stdbool.h>
+#include "rom/crc.h"
+#include "esp_flash_data_types.h"
+
+uint32_t bootloader_common_ota_select_crc(const esp_ota_select_entry_t *s)
+{
+ return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
+}
+
+bool bootloader_common_ota_select_valid(const esp_ota_select_entry_t *s)
+{
+ return s->ota_seq != UINT32_MAX && s->crc == bootloader_common_ota_select_crc(s);
+}
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include <string.h>
+#include <stdint.h>
+#include <limits.h>
+#include <sys/param.h>
+
+#include "esp_attr.h"
+#include "esp_log.h"
+
+#include "rom/cache.h"
+#include "rom/efuse.h"
+#include "rom/ets_sys.h"
+#include "rom/spi_flash.h"
+#include "rom/crc.h"
+#include "rom/rtc.h"
+#include "rom/uart.h"
+#include "rom/gpio.h"
+#include "rom/secure_boot.h"
+
+#include "soc/soc.h"
+#include "soc/cpu.h"
+#include "soc/rtc.h"
+#include "soc/dport_reg.h"
+#include "soc/io_mux_reg.h"
+#include "soc/efuse_reg.h"
+#include "soc/rtc_cntl_reg.h"
+#include "soc/timer_group_reg.h"
+#include "soc/gpio_reg.h"
+#include "soc/gpio_sig_map.h"
+
+#include "sdkconfig.h"
+#include "esp_image_format.h"
+#include "esp_secure_boot.h"
+#include "esp_flash_encrypt.h"
+#include "esp_flash_partitions.h"
+#include "bootloader_flash.h"
+#include "bootloader_random.h"
+#include "bootloader_config.h"
+#include "bootloader_clock.h"
+
+#include "flash_qio_mode.h"
+
+extern int _bss_start;
+extern int _bss_end;
+extern int _data_start;
+extern int _data_end;
+
+static const char* TAG = "boot";
+
+static esp_err_t bootloader_main();
+static void print_flash_info(const esp_image_header_t* pfhdr);
+static void update_flash_config(const esp_image_header_t* pfhdr);
+static void vddsdio_configure();
+static void flash_gpio_configure();
+static void uart_console_configure(void);
+static void wdt_reset_check(void);
+
+
+esp_err_t bootloader_init()
+{
+ cpu_configure_region_protection();
+
+ /* Sanity check that static RAM is after the stack */
+#ifndef NDEBUG
+ {
+ int *sp = get_sp();
+ assert(&_bss_start <= &_bss_end);
+ assert(&_data_start <= &_data_end);
+ assert(sp < &_bss_start);
+ assert(sp < &_data_start);
+ }
+#endif
+
+ //Clear bss
+ memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
+
+ /* completely reset MMU for both CPUs
+ (in case serial bootloader was running) */
+ Cache_Read_Disable(0);
+ Cache_Read_Disable(1);
+ Cache_Flush(0);
+ Cache_Flush(1);
+ mmu_init(0);
+ DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
+ mmu_init(1);
+ DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
+ /* (above steps probably unnecessary for most serial bootloader
+ usage, all that's absolutely needed is that we unmask DROM0
+ cache on the following two lines - normal ROM boot exits with
+ DROM0 cache unmasked, but serial bootloader exits with it
+ masked. However can't hurt to be thorough and reset
+ everything.)
+
+ The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
+ necessary to work around a hardware bug.
+ */
+ DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
+ DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
+
+ if(bootloader_main() != ESP_OK){
+ return ESP_FAIL;
+ }
+ return ESP_OK;
+}
+
+static esp_err_t bootloader_main()
+{
+ vddsdio_configure();
+ flash_gpio_configure();
+#if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ == 240)
+ //Check if ESP32 is rated for a CPU frequency of 160MHz only
+ if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_RATED) &&
+ REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_LOW)) {
+ ESP_LOGE(TAG, "Chip CPU frequency rated for 160MHz. Modify CPU frequency in menuconfig");
+ return ESP_FAIL;
+ }
+#endif
+ bootloader_clock_configure();
+ uart_console_configure();
+ wdt_reset_check();
+ ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
+
+ esp_image_header_t fhdr;
+
+ ESP_LOGI(TAG, "compile time " __TIME__ );
+ ets_set_appcpu_boot_addr(0);
+
+ /* disable watch dog here */
+ REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
+ REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
+
+#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
+ const uint32_t spiconfig = ets_efuse_get_spiconfig();
+ if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
+ ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig");
+ return ESP_FAIL;
+ }
+#endif
+
+ esp_rom_spiflash_unlock();
+
+ ESP_LOGI(TAG, "Enabling RNG early entropy source...");
+ bootloader_random_enable();
+
+#if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
+ bootloader_enable_qio_mode();
+#endif
+
+ if (bootloader_flash_read(ESP_BOOTLOADER_OFFSET, &fhdr, sizeof(esp_image_header_t), true) != ESP_OK) {
+ ESP_LOGE(TAG, "failed to load bootloader header!");
+ return ESP_FAIL;
+ }
+
+ print_flash_info(&fhdr);
+
+ update_flash_config(&fhdr);
+ return ESP_OK;
+}
+
+static void update_flash_config(const esp_image_header_t* pfhdr)
+{
+ uint32_t size;
+ switch(pfhdr->spi_size) {
+ case ESP_IMAGE_FLASH_SIZE_1MB:
+ size = 1;
+ break;
+ case ESP_IMAGE_FLASH_SIZE_2MB:
+ size = 2;
+ break;
+ case ESP_IMAGE_FLASH_SIZE_4MB:
+ size = 4;
+ break;
+ case ESP_IMAGE_FLASH_SIZE_8MB:
+ size = 8;
+ break;
+ case ESP_IMAGE_FLASH_SIZE_16MB:
+ size = 16;
+ break;
+ default:
+ size = 2;
+ }
+ Cache_Read_Disable( 0 );
+ // Set flash chip size
+ esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
+ // TODO: set mode
+ // TODO: set frequency
+ Cache_Flush(0);
+ Cache_Read_Enable( 0 );
+}
+
+static void print_flash_info(const esp_image_header_t* phdr)
+{
+#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
+
+ ESP_LOGD(TAG, "magic %02x", phdr->magic );
+ ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
+ ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
+ ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
+ ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
+
+ const char* str;
+ switch ( phdr->spi_speed ) {
+ case ESP_IMAGE_SPI_SPEED_40M:
+ str = "40MHz";
+ break;
+ case ESP_IMAGE_SPI_SPEED_26M:
+ str = "26.7MHz";
+ break;
+ case ESP_IMAGE_SPI_SPEED_20M:
+ str = "20MHz";
+ break;
+ case ESP_IMAGE_SPI_SPEED_80M:
+ str = "80MHz";
+ break;
+ default:
+ str = "20MHz";
+ break;
+ }
+ ESP_LOGI(TAG, "SPI Speed : %s", str );
+
+ /* SPI mode could have been set to QIO during boot already,
+ so test the SPI registers not the flash header */
+ uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
+ if (spi_ctrl & SPI_FREAD_QIO) {
+ str = "QIO";
+ } else if (spi_ctrl & SPI_FREAD_QUAD) {
+ str = "QOUT";
+ } else if (spi_ctrl & SPI_FREAD_DIO) {
+ str = "DIO";
+ } else if (spi_ctrl & SPI_FREAD_DUAL) {
+ str = "DOUT";
+ } else if (spi_ctrl & SPI_FASTRD_MODE) {
+ str = "FAST READ";
+ } else {
+ str = "SLOW READ";
+ }
+ ESP_LOGI(TAG, "SPI Mode : %s", str );
+
+ switch ( phdr->spi_size ) {
+ case ESP_IMAGE_FLASH_SIZE_1MB:
+ str = "1MB";
+ break;
+ case ESP_IMAGE_FLASH_SIZE_2MB:
+ str = "2MB";
+ break;
+ case ESP_IMAGE_FLASH_SIZE_4MB:
+ str = "4MB";
+ break;
+ case ESP_IMAGE_FLASH_SIZE_8MB:
+ str = "8MB";
+ break;
+ case ESP_IMAGE_FLASH_SIZE_16MB:
+ str = "16MB";
+ break;
+ default:
+ str = "2MB";
+ break;
+ }
+ ESP_LOGI(TAG, "SPI Flash Size : %s", str );
+#endif
+}
+
+static void vddsdio_configure()
+{
+#if CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V
+ rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
+ if (cfg.enable == 1 && cfg.tieh == 0) { // VDDSDIO regulator is enabled @ 1.8V
+ cfg.drefh = 3;
+ cfg.drefm = 3;
+ cfg.drefl = 3;
+ cfg.force = 1;
+ rtc_vddsdio_set_config(cfg);
+ ets_delay_us(10); // wait for regulator to become stable
+ }
+#endif // CONFIG_BOOTLOADER_VDDSDIO_BOOST
+}
+
+#define FLASH_CLK_IO 6
+#define FLASH_CS_IO 11
+#define FLASH_SPIQ_IO 7
+#define FLASH_SPID_IO 8
+#define FLASH_SPIWP_IO 10
+#define FLASH_SPIHD_IO 9
+#define FLASH_IO_MATRIX_DUMMY_40M 1
+#define FLASH_IO_MATRIX_DUMMY_80M 2
+static void IRAM_ATTR flash_gpio_configure()
+{
+ int spi_cache_dummy = 0;
+ int drv = 2;
+#if CONFIG_FLASHMODE_QIO
+ spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN; //qio 3
+#elif CONFIG_FLASHMODE_QOUT
+ spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //qout 7
+#elif CONFIG_FLASHMODE_DIO
+ spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN; //dio 3
+#elif CONFIG_FLASHMODE_DOUT
+ spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //dout 7
+#endif
+ /* dummy_len_plus values defined in ROM for SPI flash configuration */
+ extern uint8_t g_rom_spiflash_dummy_len_plus[];
+#if CONFIG_ESPTOOLPY_FLASHFREQ_40M
+ g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_40M;
+ g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_40M;
+ SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
+#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
+ g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_80M;
+ g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_80M;
+ SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
+ drv = 3;
+#endif
+
+ uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
+ uint32_t pkg_ver = chip_ver & 0x7;
+
+ if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
+ // For ESP32D2WD the SPI pins are already configured
+ // flash clock signal should come from IO MUX.
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
+ SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
+ } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) {
+ // For ESP32PICOD2 the SPI pins are already configured
+ // flash clock signal should come from IO MUX.
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
+ SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
+ } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
+ // For ESP32PICOD4 the SPI pins are already configured
+ // flash clock signal should come from IO MUX.
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
+ SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
+ } else {
+ const uint32_t spiconfig = ets_efuse_get_spiconfig();
+ if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
+ gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0);
+ gpio_matrix_out(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0);
+ gpio_matrix_in(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0);
+ gpio_matrix_out(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0);
+ gpio_matrix_in(FLASH_SPID_IO, SPID_IN_IDX, 0);
+ gpio_matrix_out(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0);
+ gpio_matrix_in(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0);
+ gpio_matrix_out(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0);
+ gpio_matrix_in(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0);
+ //select pin function gpio
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO);
+ // flash clock signal should come from IO MUX.
+ // set drive ability for clock
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
+ SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
+ }
+ }
+}
+
+static void uart_console_configure(void)
+{
+#if CONFIG_CONSOLE_UART_NONE
+ ets_install_putc1(NULL);
+ ets_install_putc2(NULL);
+#else // CONFIG_CONSOLE_UART_NONE
+ const int uart_num = CONFIG_CONSOLE_UART_NUM;
+
+ uartAttach();
+ ets_install_uart_printf();
+
+ // Wait for UART FIFO to be empty.
+ uart_tx_wait_idle(0);
+
+#if CONFIG_CONSOLE_UART_CUSTOM
+ // Some constants to make the following code less upper-case
+ const int uart_tx_gpio = CONFIG_CONSOLE_UART_TX_GPIO;
+ const int uart_rx_gpio = CONFIG_CONSOLE_UART_RX_GPIO;
+ // Switch to the new UART (this just changes UART number used for
+ // ets_printf in ROM code).
+ uart_tx_switch(uart_num);
+ // If console is attached to UART1 or if non-default pins are used,
+ // need to reconfigure pins using GPIO matrix
+ if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
+ // Change pin mode for GPIO1/3 from UART to GPIO
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
+ PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
+ // Route GPIO signals to/from pins
+ // (arrays should be optimized away by the compiler)
+ const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX };
+ const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX };
+ const uint32_t tx_idx = tx_idx_list[uart_num];
+ const uint32_t rx_idx = rx_idx_list[uart_num];
+ gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
+ gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
+ }
+#endif // CONFIG_CONSOLE_UART_CUSTOM
+
+ // Set configured UART console baud rate
+ const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
+ uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
+
+#endif // CONFIG_CONSOLE_UART_NONE
+}
+
+static void wdt_reset_cpu0_info_enable(void)
+{
+ //We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
+ DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
+ DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
+}
+
+static void wdt_reset_info_dump(int cpu)
+{
+ uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
+ lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
+ const char *cpu_name = cpu ? "APP" : "PRO";
+
+ if (cpu == 0) {
+ stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
+ pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
+ inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
+ dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
+ data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
+ pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
+ lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
+ lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
+ lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
+
+ } else {
+ stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
+ pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
+ inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
+ dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
+ data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
+ pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
+ lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
+ lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
+ lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
+ }
+ if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
+ DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
+ ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
+ } else {
+ ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
+ }
+ ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
+ ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
+}
+
+static void wdt_reset_check(void)
+{
+ int wdt_rst = 0;
+ RESET_REASON rst_reas[2];
+
+ rst_reas[0] = rtc_get_reset_reason(0);
+ rst_reas[1] = rtc_get_reset_reason(1);
+ if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
+ rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
+ ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
+ wdt_rst = 1;
+ }
+ if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
+ rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
+ ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
+ wdt_rst = 1;
+ }
+ if (wdt_rst) {
+ // if reset by WDT dump info from trace port
+ wdt_reset_info_dump(0);
+ wdt_reset_info_dump(1);
+ }
+ wdt_reset_cpu0_info_enable();
+}
+
+void __assert_func(const char *file, int line, const char *func, const char *expr)
+{
+ ESP_LOGE(TAG, "Assert failed in %s, %s:%d (%s)", func, file, line, expr);
+ while(1) {}
+}
--- /dev/null
+// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include <string.h>
+#include <stdint.h>
+#include <limits.h>
+#include <sys/param.h>
+
+#include "esp_attr.h"
+#include "esp_log.h"
+
+#include "rom/cache.h"
+#include "rom/efuse.h"
+#include "rom/ets_sys.h"
+#include "rom/spi_flash.h"
+#include "rom/crc.h"
+#include "rom/rtc.h"
+#include "rom/uart.h"
+#include "rom/gpio.h"
+#include "rom/secure_boot.h"
+
+#include "soc/soc.h"
+#include "soc/cpu.h"
+#include "soc/rtc.h"
+#include "soc/dport_reg.h"
+#include "soc/io_mux_reg.h"
+#include "soc/efuse_reg.h"
+#include "soc/rtc_cntl_reg.h"
+#include "soc/timer_group_reg.h"
+#include "soc/gpio_reg.h"
+#include "soc/gpio_sig_map.h"
+
+#include "sdkconfig.h"
+#include "esp_image_format.h"
+#include "esp_secure_boot.h"
+#include "esp_flash_encrypt.h"
+#include "esp_flash_partitions.h"
+#include "bootloader_flash.h"
+#include "bootloader_random.h"
+#include "bootloader_config.h"
+#include "bootloader_common.h"
+
+static const char* TAG = "boot";
+
+/* Reduce literal size for some generic string literals */
+#define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
+
+static void unpack_load_app(const esp_image_metadata_t *data);
+static void set_cache_and_start_app(uint32_t drom_addr,
+ uint32_t drom_load_addr,
+ uint32_t drom_size,
+ uint32_t irom_addr,
+ uint32_t irom_load_addr,
+ uint32_t irom_size,
+ uint32_t entry_addr);
+
+bool bootloader_utility_load_partition_table(bootloader_state_t* bs)
+{
+ const esp_partition_info_t *partitions;
+ const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
+ const char *partition_usage;
+ esp_err_t err;
+ int num_partitions;
+
+#ifdef CONFIG_SECURE_BOOT_ENABLED
+ if(esp_secure_boot_enabled()) {
+ ESP_LOGI(TAG, "Verifying partition table signature...");
+ err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
+ if (err != ESP_OK) {
+ ESP_LOGE(TAG, "Failed to verify partition table signature.");
+ return false;
+ }
+ ESP_LOGD(TAG, "Partition table signature verified");
+ }
+#endif
+
+ partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
+ if (!partitions) {
+ ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
+ return false;
+ }
+ ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
+
+ err = esp_partition_table_basic_verify(partitions, true, &num_partitions);
+ if (err != ESP_OK) {
+ ESP_LOGE(TAG, "Failed to verify partition table");
+ return false;
+ }
+
+ ESP_LOGI(TAG, "Partition Table:");
+ ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
+
+ for(int i = 0; i < num_partitions; i++) {
+ const esp_partition_info_t *partition = &partitions[i];
+ ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
+ ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
+ partition_usage = "unknown";
+
+ /* valid partition table */
+ switch(partition->type) {
+ case PART_TYPE_APP: /* app partition */
+ switch(partition->subtype) {
+ case PART_SUBTYPE_FACTORY: /* factory binary */
+ bs->factory = partition->pos;
+ partition_usage = "factory app";
+ break;
+ case PART_SUBTYPE_TEST: /* test binary */
+ bs->test = partition->pos;
+ partition_usage = "test app";
+ break;
+ default:
+ /* OTA binary */
+ if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
+ bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
+ ++bs->app_count;
+ partition_usage = "OTA app";
+ }
+ else {
+ partition_usage = "Unknown app";
+ }
+ break;
+ }
+ break; /* PART_TYPE_APP */
+ case PART_TYPE_DATA: /* data partition */
+ switch(partition->subtype) {
+ case PART_SUBTYPE_DATA_OTA: /* ota data */
+ bs->ota_info = partition->pos;
+ partition_usage = "OTA data";
+ break;
+ case PART_SUBTYPE_DATA_RF:
+ partition_usage = "RF data";
+ break;
+ case PART_SUBTYPE_DATA_WIFI:
+ partition_usage = "WiFi data";
+ break;
+ default:
+ partition_usage = "Unknown data";
+ break;
+ }
+ break; /* PARTITION_USAGE_DATA */
+ default: /* other partition type */
+ break;
+ }
+
+ /* print partition type info */
+ ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
+ partition->type, partition->subtype,
+ partition->pos.offset, partition->pos.size);
+ }
+
+ bootloader_munmap(partitions);
+
+ ESP_LOGI(TAG,"End of partition table");
+ return true;
+}
+
+/* Given a partition index, return the partition position data from the bootloader_state_t structure */
+static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
+{
+ if (index == FACTORY_INDEX) {
+ return bs->factory;
+ }
+
+ if (index == TEST_APP_INDEX) {
+ return bs->test;
+ }
+
+ if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
+ return bs->ota[index];
+ }
+
+ esp_partition_pos_t invalid = { 0 };
+ return invalid;
+}
+
+static void log_invalid_app_partition(int index)
+{
+ const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
+ switch(index) {
+ case FACTORY_INDEX:
+ ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
+ break;
+ case TEST_APP_INDEX:
+ ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
+ break;
+ default:
+ ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
+ break;
+ }
+}
+
+int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
+{
+ esp_ota_select_entry_t sa,sb;
+ const esp_ota_select_entry_t *ota_select_map;
+
+ if (bs->ota_info.offset != 0) {
+ // partition table has OTA data partition
+ if (bs->ota_info.size < 2 * SPI_SEC_SIZE) {
+ ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", bs->ota_info.size, sizeof(esp_ota_select_entry_t));
+ return INVALID_INDEX; // can't proceed
+ }
+
+ ESP_LOGD(TAG, "OTA data offset 0x%x", bs->ota_info.offset);
+ ota_select_map = bootloader_mmap(bs->ota_info.offset, bs->ota_info.size);
+ if (!ota_select_map) {
+ ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs->ota_info.offset, bs->ota_info.size);
+ return INVALID_INDEX; // can't proceed
+ }
+ memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
+ memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
+ bootloader_munmap(ota_select_map);
+
+ ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
+ if(sa.ota_seq == UINT32_MAX && sb.ota_seq == UINT32_MAX) {
+ ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF)");
+ if (bs->factory.offset != 0) {
+ ESP_LOGI(TAG, "Defaulting to factory image");
+ return FACTORY_INDEX;
+ } else {
+ ESP_LOGI(TAG, "No factory image, trying OTA 0");
+ return 0;
+ }
+ } else {
+ bool ota_valid = false;
+ const char *ota_msg;
+ int ota_seq; // Raw OTA sequence number. May be more than # of OTA slots
+ if(bootloader_common_ota_select_valid(&sa) && bootloader_common_ota_select_valid(&sb)) {
+ ota_valid = true;
+ ota_msg = "Both OTA values";
+ ota_seq = MAX(sa.ota_seq, sb.ota_seq) - 1;
+ } else if(bootloader_common_ota_select_valid(&sa)) {
+ ota_valid = true;
+ ota_msg = "Only OTA sequence A is";
+ ota_seq = sa.ota_seq - 1;
+ } else if(bootloader_common_ota_select_valid(&sb)) {
+ ota_valid = true;
+ ota_msg = "Only OTA sequence B is";
+ ota_seq = sb.ota_seq - 1;
+ }
+
+ if (ota_valid) {
+ int ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
+ ESP_LOGD(TAG, "%s valid. Mapping seq %d -> OTA slot %d", ota_msg, ota_seq, ota_slot);
+ return ota_slot;
+ } else if (bs->factory.offset != 0) {
+ ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
+ return FACTORY_INDEX;
+ } else {
+ ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
+ return FACTORY_INDEX;
+ }
+ }
+ }
+
+ // otherwise, start from factory app partition and let the search logic
+ // proceed from there
+ return FACTORY_INDEX;
+}
+
+/* Return true if a partition has a valid app image that was successfully loaded */
+static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
+{
+ if (partition->size == 0) {
+ ESP_LOGD(TAG, "Can't boot from zero-length partition");
+ return false;
+ }
+#ifdef BOOTLOADER_BUILD
+ if (esp_image_load(ESP_IMAGE_LOAD, partition, data) == ESP_OK) {
+ ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
+ partition->offset);
+ return true;
+ }
+#endif
+
+ return false;
+}
+
+#define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
+
+bool bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index, esp_image_metadata_t *result)
+{
+ int index = start_index;
+ esp_partition_pos_t part;
+
+ /* work backwards from start_index, down to the factory app */
+ for(index = start_index; index >= FACTORY_INDEX; index--) {
+ part = index_to_partition(bs, index);
+ if (part.size == 0) {
+ continue;
+ }
+ ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
+ if (try_load_partition(&part, result)) {
+ return true;
+ }
+ log_invalid_app_partition(index);
+ }
+
+ /* failing that work forwards from start_index, try valid OTA slots */
+ for(index = start_index + 1; index < bs->app_count; index++) {
+ part = index_to_partition(bs, index);
+ if (part.size == 0) {
+ continue;
+ }
+ ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
+ if (try_load_partition(&part, result)) {
+ return true;
+ }
+ log_invalid_app_partition(index);
+ }
+
+ if (try_load_partition(&bs->test, result)) {
+ ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
+ return true;
+ }
+
+ ESP_LOGE(TAG, "No bootable app partitions in the partition table");
+ bzero(result, sizeof(esp_image_metadata_t));
+ return false;
+}
+
+void bootloader_utility_load_image(const esp_image_metadata_t* image_data)
+{
+#if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
+ esp_err_t err;
+#endif
+#ifdef CONFIG_SECURE_BOOT_ENABLED
+ /* Generate secure digest from this bootloader to protect future
+ modifications */
+ ESP_LOGI(TAG, "Checking secure boot...");
+ err = esp_secure_boot_permanently_enable();
+ if (err != ESP_OK) {
+ ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
+ /* Allow booting to continue, as the failure is probably
+ due to user-configured EFUSEs for testing...
+ */
+ }
+#endif
+
+#ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
+ /* encrypt flash */
+ ESP_LOGI(TAG, "Checking flash encryption...");
+ bool flash_encryption_enabled = esp_flash_encryption_enabled();
+ err = esp_flash_encrypt_check_and_update();
+ if (err != ESP_OK) {
+ ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
+ return;
+ }
+
+ if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
+ /* Flash encryption was just enabled for the first time,
+ so issue a system reset to ensure flash encryption
+ cache resets properly */
+ ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
+ REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
+ return;
+ }
+#endif
+
+ ESP_LOGI(TAG, "Disabling RNG early entropy source...");
+ bootloader_random_disable();
+
+ // copy loaded segments to RAM, set up caches for mapped segments, and start application
+ unpack_load_app(image_data);
+}
+
+static void unpack_load_app(const esp_image_metadata_t* data)
+{
+ uint32_t drom_addr = 0;
+ uint32_t drom_load_addr = 0;
+ uint32_t drom_size = 0;
+ uint32_t irom_addr = 0;
+ uint32_t irom_load_addr = 0;
+ uint32_t irom_size = 0;
+
+ // Find DROM & IROM addresses, to configure cache mappings
+ for (int i = 0; i < data->image.segment_count; i++) {
+ const esp_image_segment_header_t *header = &data->segments[i];
+ if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
+ if (drom_addr != 0) {
+ ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
+ } else {
+ ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
+ }
+ drom_addr = data->segment_data[i];
+ drom_load_addr = header->load_addr;
+ drom_size = header->data_len;
+ }
+ if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
+ if (irom_addr != 0) {
+ ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
+ } else {
+ ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
+ }
+ irom_addr = data->segment_data[i];
+ irom_load_addr = header->load_addr;
+ irom_size = header->data_len;
+ }
+ }
+
+ ESP_LOGD(TAG, "calling set_cache_and_start_app");
+ set_cache_and_start_app(drom_addr,
+ drom_load_addr,
+ drom_size,
+ irom_addr,
+ irom_load_addr,
+ irom_size,
+ data->image.entry_addr);
+}
+
+static void set_cache_and_start_app(
+ uint32_t drom_addr,
+ uint32_t drom_load_addr,
+ uint32_t drom_size,
+ uint32_t irom_addr,
+ uint32_t irom_load_addr,
+ uint32_t irom_size,
+ uint32_t entry_addr)
+{
+ ESP_LOGD(TAG, "configure drom and irom and start");
+ Cache_Read_Disable( 0 );
+ Cache_Flush( 0 );
+
+ /* Clear the MMU entries that are already set up,
+ so the new app only has the mappings it creates.
+ */
+ for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
+ DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
+ }
+
+ uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
+ ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
+ int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
+ ESP_LOGV(TAG, "rc=%d", rc );
+ rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
+ ESP_LOGV(TAG, "rc=%d", rc );
+ uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
+ ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
+ rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
+ ESP_LOGV(TAG, "rc=%d", rc );
+ rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
+ ESP_LOGV(TAG, "rc=%d", rc );
+ DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
+ DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
+ Cache_Read_Enable( 0 );
+
+ // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
+
+ ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
+ typedef void (*entry_t)(void);
+ entry_t entry = ((entry_t) entry_addr);
+
+ // TODO: we have used quite a bit of stack at this point.
+ // use "movsp" instruction to reset stack back to where ROM stack starts.
+ (*entry)();
+}
--- /dev/null
+Bootloader
+=====================
+
+Bootloader performs the following functions:
+
+1. Minimal initial configuration of internal modules;
+2. Select the application partition to boot, based on the partition table and ota_data (if any);
+3. Load this image to RAM (IRAM & DRAM) and transfer management to it.
+
+Bootloader is located at the address `0x1000` in the flash.
+
+Customer bootloader
+---------------------
+The current bootloader implementation allows the customer to override it. To do this, you must copy the folder `/esp-idf/components/bootloader` and then edit `/your_project/components/bootloader/subproject/main/bootloader_main.c`.
+
Thread Local Storage <thread-local-storage>
High Level Interrupts <hlinterrupts>
JTAG Debugging <jtag-debugging/index>
+ Bootloader <bootloader>
Partition Tables <partition-tables>
Secure Boot <../security/secure-boot>
ULP Coprocessor <ulp>
--- /dev/null
+.. include:: ../../en/api-guides/bootloader.rst
\ No newline at end of file