#include "optimizer/var.h"
#include "utils/memutils.h"
#include "utils/rel.h"
+#include "utils/sampling.h"
PG_MODULE_MAGIC;
{
int numrows = 0;
double rowstoskip = -1; /* -1 means not set yet */
- double rstate;
+ ReservoirStateData rstate;
TupleDesc tupDesc;
Datum *values;
bool *nulls;
ALLOCSET_DEFAULT_MAXSIZE);
/* Prepare for sampling rows */
- rstate = anl_init_selection_state(targrows);
+ reservoir_init_selection_state(&rstate, targrows);
/* Set up callback to identify error line number. */
errcallback.callback = CopyFromErrorCallback;
* not-yet-incremented value of totalrows as t.
*/
if (rowstoskip < 0)
- rowstoskip = anl_get_next_S(*totalrows, targrows, &rstate);
+ rowstoskip = reservoir_get_next_S(&rstate, *totalrows, targrows);
if (rowstoskip <= 0)
{
* Found a suitable tuple, so save it, replacing one old tuple
* at random
*/
- int k = (int) (targrows * anl_random_fract());
+ int k = (int) (targrows * sampler_random_fract());
Assert(k >= 0 && k < targrows);
heap_freetuple(rows[k]);
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
+#include "utils/sampling.h"
PG_MODULE_MAGIC;
/* for random sampling */
double samplerows; /* # of rows fetched */
double rowstoskip; /* # of rows to skip before next sample */
- double rstate; /* random state */
+ ReservoirStateData rstate; /* state for reservoir sampling*/
/* working memory contexts */
MemoryContext anl_cxt; /* context for per-analyze lifespan data */
astate.numrows = 0;
astate.samplerows = 0;
astate.rowstoskip = -1; /* -1 means not set yet */
- astate.rstate = anl_init_selection_state(targrows);
+ reservoir_init_selection_state(&astate.rstate, targrows);
/* Remember ANALYZE context, and create a per-tuple temp context */
astate.anl_cxt = CurrentMemoryContext;
* analyze.c; see Jeff Vitter's paper.
*/
if (astate->rowstoskip < 0)
- astate->rowstoskip = anl_get_next_S(astate->samplerows, targrows,
- &astate->rstate);
+ astate->rowstoskip = reservoir_get_next_S(&astate->rstate, astate->samplerows, targrows);
if (astate->rowstoskip <= 0)
{
/* Choose a random reservoir element to replace. */
- pos = (int) (targrows * anl_random_fract());
+ pos = (int) (targrows * sampler_random_fract());
Assert(pos >= 0 && pos < targrows);
heap_freetuple(astate->rows[pos]);
}
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
+#include "utils/sampling.h"
#include "utils/sortsupport.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"
#include "utils/tqual.h"
-/* Data structure for Algorithm S from Knuth 3.4.2 */
-typedef struct
-{
- BlockNumber N; /* number of blocks, known in advance */
- int n; /* desired sample size */
- BlockNumber t; /* current block number */
- int m; /* blocks selected so far */
-} BlockSamplerData;
-
-typedef BlockSamplerData *BlockSampler;
-
/* Per-index data for ANALYZE */
typedef struct AnlIndexData
{
VacuumParams *params, List *va_cols,
AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
bool inh, bool in_outer_xact, int elevel);
-static void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
- int samplesize);
-static bool BlockSampler_HasMore(BlockSampler bs);
-static BlockNumber BlockSampler_Next(BlockSampler bs);
static void compute_index_stats(Relation onerel, double totalrows,
AnlIndexData *indexdata, int nindexes,
HeapTuple *rows, int numrows,
return stats;
}
-/*
- * BlockSampler_Init -- prepare for random sampling of blocknumbers
- *
- * BlockSampler is used for stage one of our new two-stage tuple
- * sampling mechanism as discussed on pgsql-hackers 2004-04-02 (subject
- * "Large DB"). It selects a random sample of samplesize blocks out of
- * the nblocks blocks in the table. If the table has less than
- * samplesize blocks, all blocks are selected.
- *
- * Since we know the total number of blocks in advance, we can use the
- * straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
- * algorithm.
- */
-static void
-BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize)
-{
- bs->N = nblocks; /* measured table size */
-
- /*
- * If we decide to reduce samplesize for tables that have less or not much
- * more than samplesize blocks, here is the place to do it.
- */
- bs->n = samplesize;
- bs->t = 0; /* blocks scanned so far */
- bs->m = 0; /* blocks selected so far */
-}
-
-static bool
-BlockSampler_HasMore(BlockSampler bs)
-{
- return (bs->t < bs->N) && (bs->m < bs->n);
-}
-
-static BlockNumber
-BlockSampler_Next(BlockSampler bs)
-{
- BlockNumber K = bs->N - bs->t; /* remaining blocks */
- int k = bs->n - bs->m; /* blocks still to sample */
- double p; /* probability to skip block */
- double V; /* random */
-
- Assert(BlockSampler_HasMore(bs)); /* hence K > 0 and k > 0 */
-
- if ((BlockNumber) k >= K)
- {
- /* need all the rest */
- bs->m++;
- return bs->t++;
- }
-
- /*----------
- * It is not obvious that this code matches Knuth's Algorithm S.
- * Knuth says to skip the current block with probability 1 - k/K.
- * If we are to skip, we should advance t (hence decrease K), and
- * repeat the same probabilistic test for the next block. The naive
- * implementation thus requires an anl_random_fract() call for each block
- * number. But we can reduce this to one anl_random_fract() call per
- * selected block, by noting that each time the while-test succeeds,
- * we can reinterpret V as a uniform random number in the range 0 to p.
- * Therefore, instead of choosing a new V, we just adjust p to be
- * the appropriate fraction of its former value, and our next loop
- * makes the appropriate probabilistic test.
- *
- * We have initially K > k > 0. If the loop reduces K to equal k,
- * the next while-test must fail since p will become exactly zero
- * (we assume there will not be roundoff error in the division).
- * (Note: Knuth suggests a "<=" loop condition, but we use "<" just
- * to be doubly sure about roundoff error.) Therefore K cannot become
- * less than k, which means that we cannot fail to select enough blocks.
- *----------
- */
- V = anl_random_fract();
- p = 1.0 - (double) k / (double) K;
- while (V < p)
- {
- /* skip */
- bs->t++;
- K--; /* keep K == N - t */
-
- /* adjust p to be new cutoff point in reduced range */
- p *= 1.0 - (double) k / (double) K;
- }
-
- /* select */
- bs->m++;
- return bs->t++;
-}
-
/*
* acquire_sample_rows -- acquire a random sample of rows from the table
*
BlockNumber totalblocks;
TransactionId OldestXmin;
BlockSamplerData bs;
- double rstate;
+ ReservoirStateData rstate;
Assert(targrows > 0);
OldestXmin = GetOldestXmin(onerel, true);
/* Prepare for sampling block numbers */
- BlockSampler_Init(&bs, totalblocks, targrows);
+ BlockSampler_Init(&bs, totalblocks, targrows, random());
/* Prepare for sampling rows */
- rstate = anl_init_selection_state(targrows);
+ reservoir_init_selection_state(&rstate, targrows);
/* Outer loop over blocks to sample */
while (BlockSampler_HasMore(&bs))
* t.
*/
if (rowstoskip < 0)
- rowstoskip = anl_get_next_S(samplerows, targrows,
- &rstate);
+ rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
if (rowstoskip <= 0)
{
* Found a suitable tuple, so save it, replacing one
* old tuple at random
*/
- int k = (int) (targrows * anl_random_fract());
+ int k = (int) (targrows * sampler_random_fract());
Assert(k >= 0 && k < targrows);
heap_freetuple(rows[k]);
return numrows;
}
-/* Select a random value R uniformly distributed in (0 - 1) */
-double
-anl_random_fract(void)
-{
- return ((double) random() + 1) / ((double) MAX_RANDOM_VALUE + 2);
-}
-
-/*
- * These two routines embody Algorithm Z from "Random sampling with a
- * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
- * (Mar. 1985), Pages 37-57. Vitter describes his algorithm in terms
- * of the count S of records to skip before processing another record.
- * It is computed primarily based on t, the number of records already read.
- * The only extra state needed between calls is W, a random state variable.
- *
- * anl_init_selection_state computes the initial W value.
- *
- * Given that we've already read t records (t >= n), anl_get_next_S
- * determines the number of records to skip before the next record is
- * processed.
- */
-double
-anl_init_selection_state(int n)
-{
- /* Initial value of W (for use when Algorithm Z is first applied) */
- return exp(-log(anl_random_fract()) / n);
-}
-
-double
-anl_get_next_S(double t, int n, double *stateptr)
-{
- double S;
-
- /* The magic constant here is T from Vitter's paper */
- if (t <= (22.0 * n))
- {
- /* Process records using Algorithm X until t is large enough */
- double V,
- quot;
-
- V = anl_random_fract(); /* Generate V */
- S = 0;
- t += 1;
- /* Note: "num" in Vitter's code is always equal to t - n */
- quot = (t - (double) n) / t;
- /* Find min S satisfying (4.1) */
- while (quot > V)
- {
- S += 1;
- t += 1;
- quot *= (t - (double) n) / t;
- }
- }
- else
- {
- /* Now apply Algorithm Z */
- double W = *stateptr;
- double term = t - (double) n + 1;
-
- for (;;)
- {
- double numer,
- numer_lim,
- denom;
- double U,
- X,
- lhs,
- rhs,
- y,
- tmp;
-
- /* Generate U and X */
- U = anl_random_fract();
- X = t * (W - 1.0);
- S = floor(X); /* S is tentatively set to floor(X) */
- /* Test if U <= h(S)/cg(X) in the manner of (6.3) */
- tmp = (t + 1) / term;
- lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
- rhs = (((t + X) / (term + S)) * term) / t;
- if (lhs <= rhs)
- {
- W = rhs / lhs;
- break;
- }
- /* Test if U <= f(S)/cg(X) */
- y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
- if ((double) n < S)
- {
- denom = t;
- numer_lim = term + S;
- }
- else
- {
- denom = t - (double) n + S;
- numer_lim = t + 1;
- }
- for (numer = t + S; numer >= numer_lim; numer -= 1)
- {
- y *= numer / denom;
- denom -= 1;
- }
- W = exp(-log(anl_random_fract()) / n); /* Generate W in advance */
- if (exp(log(y) / n) <= (t + X) / t)
- break;
- }
- *stateptr = W;
- }
- return S;
-}
-
/*
* qsort comparator for sorting rows[] array
*/
override CPPFLAGS := -I. -I$(srcdir) $(CPPFLAGS)
OBJS = guc.o help_config.o pg_rusage.o ps_status.o rls.o \
- superuser.o timeout.o tzparser.o
+ sampling.o superuser.o timeout.o tzparser.o
# This location might depend on the installation directories. Therefore
# we can't subsitute it into pg_config.h.
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * sampling.c
+ * Relation block sampling routines.
+ *
+ * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/utils/misc/sampling.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include <math.h>
+
+#include "utils/sampling.h"
+
+
+/*
+ * BlockSampler_Init -- prepare for random sampling of blocknumbers
+ *
+ * BlockSampler provides algorithm for block level sampling of a relation
+ * as discussed on pgsql-hackers 2004-04-02 (subject "Large DB")
+ * It selects a random sample of samplesize blocks out of
+ * the nblocks blocks in the table. If the table has less than
+ * samplesize blocks, all blocks are selected.
+ *
+ * Since we know the total number of blocks in advance, we can use the
+ * straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
+ * algorithm.
+ */
+void
+BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize,
+ long randseed)
+{
+ bs->N = nblocks; /* measured table size */
+
+ /*
+ * If we decide to reduce samplesize for tables that have less or not much
+ * more than samplesize blocks, here is the place to do it.
+ */
+ bs->n = samplesize;
+ bs->t = 0; /* blocks scanned so far */
+ bs->m = 0; /* blocks selected so far */
+}
+
+bool
+BlockSampler_HasMore(BlockSampler bs)
+{
+ return (bs->t < bs->N) && (bs->m < bs->n);
+}
+
+BlockNumber
+BlockSampler_Next(BlockSampler bs)
+{
+ BlockNumber K = bs->N - bs->t; /* remaining blocks */
+ int k = bs->n - bs->m; /* blocks still to sample */
+ double p; /* probability to skip block */
+ double V; /* random */
+
+ Assert(BlockSampler_HasMore(bs)); /* hence K > 0 and k > 0 */
+
+ if ((BlockNumber) k >= K)
+ {
+ /* need all the rest */
+ bs->m++;
+ return bs->t++;
+ }
+
+ /*----------
+ * It is not obvious that this code matches Knuth's Algorithm S.
+ * Knuth says to skip the current block with probability 1 - k/K.
+ * If we are to skip, we should advance t (hence decrease K), and
+ * repeat the same probabilistic test for the next block. The naive
+ * implementation thus requires an sampler_random_fract() call for each
+ * block number. But we can reduce this to one sampler_random_fract()
+ * call per selected block, by noting that each time the while-test
+ * succeeds, we can reinterpret V as a uniform random number in the range
+ * 0 to p. Therefore, instead of choosing a new V, we just adjust p to be
+ * the appropriate fraction of its former value, and our next loop
+ * makes the appropriate probabilistic test.
+ *
+ * We have initially K > k > 0. If the loop reduces K to equal k,
+ * the next while-test must fail since p will become exactly zero
+ * (we assume there will not be roundoff error in the division).
+ * (Note: Knuth suggests a "<=" loop condition, but we use "<" just
+ * to be doubly sure about roundoff error.) Therefore K cannot become
+ * less than k, which means that we cannot fail to select enough blocks.
+ *----------
+ */
+ V = sampler_random_fract();
+ p = 1.0 - (double) k / (double) K;
+ while (V < p)
+ {
+ /* skip */
+ bs->t++;
+ K--; /* keep K == N - t */
+
+ /* adjust p to be new cutoff point in reduced range */
+ p *= 1.0 - (double) k / (double) K;
+ }
+
+ /* select */
+ bs->m++;
+ return bs->t++;
+}
+
+/*
+ * These two routines embody Algorithm Z from "Random sampling with a
+ * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
+ * (Mar. 1985), Pages 37-57. Vitter describes his algorithm in terms
+ * of the count S of records to skip before processing another record.
+ * It is computed primarily based on t, the number of records already read.
+ * The only extra state needed between calls is W, a random state variable.
+ *
+ * reservoir_init_selection_state computes the initial W value.
+ *
+ * Given that we've already read t records (t >= n), reservoir_get_next_S
+ * determines the number of records to skip before the next record is
+ * processed.
+ */
+void
+reservoir_init_selection_state(ReservoirState rs, int n)
+{
+ /* Initial value of W (for use when Algorithm Z is first applied) */
+ *rs = exp(-log(sampler_random_fract()) / n);
+}
+
+double
+reservoir_get_next_S(ReservoirState rs, double t, int n)
+{
+ double S;
+
+ /* The magic constant here is T from Vitter's paper */
+ if (t <= (22.0 * n))
+ {
+ /* Process records using Algorithm X until t is large enough */
+ double V,
+ quot;
+
+ V = sampler_random_fract(); /* Generate V */
+ S = 0;
+ t += 1;
+ /* Note: "num" in Vitter's code is always equal to t - n */
+ quot = (t - (double) n) / t;
+ /* Find min S satisfying (4.1) */
+ while (quot > V)
+ {
+ S += 1;
+ t += 1;
+ quot *= (t - (double) n) / t;
+ }
+ }
+ else
+ {
+ /* Now apply Algorithm Z */
+ double W = *rs;
+ double term = t - (double) n + 1;
+
+ for (;;)
+ {
+ double numer,
+ numer_lim,
+ denom;
+ double U,
+ X,
+ lhs,
+ rhs,
+ y,
+ tmp;
+
+ /* Generate U and X */
+ U = sampler_random_fract();
+ X = t * (W - 1.0);
+ S = floor(X); /* S is tentatively set to floor(X) */
+ /* Test if U <= h(S)/cg(X) in the manner of (6.3) */
+ tmp = (t + 1) / term;
+ lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
+ rhs = (((t + X) / (term + S)) * term) / t;
+ if (lhs <= rhs)
+ {
+ W = rhs / lhs;
+ break;
+ }
+ /* Test if U <= f(S)/cg(X) */
+ y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
+ if ((double) n < S)
+ {
+ denom = t;
+ numer_lim = term + S;
+ }
+ else
+ {
+ denom = t - (double) n + S;
+ numer_lim = t + 1;
+ }
+ for (numer = t + S; numer >= numer_lim; numer -= 1)
+ {
+ y *= numer / denom;
+ denom -= 1;
+ }
+ W = exp(-log(sampler_random_fract()) / n); /* Generate W in advance */
+ if (exp(log(y) / n) <= (t + X) / t)
+ break;
+ }
+ *rs = W;
+ }
+ return S;
+}
+
+
+/*----------
+ * Random number generator used by sampling
+ *----------
+ */
+
+/* Select a random value R uniformly distributed in (0 - 1) */
+double
+sampler_random_fract()
+{
+ return ((double) random() + 1) / ((double) MAX_RANDOM_VALUE + 2);
+}
VacuumParams *params, List *va_cols, bool in_outer_xact,
BufferAccessStrategy bstrategy);
extern bool std_typanalyze(VacAttrStats *stats);
-extern double anl_random_fract(void);
-extern double anl_init_selection_state(int n);
-extern double anl_get_next_S(double t, int n, double *stateptr);
#endif /* VACUUM_H */
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * sampling.h
+ * definitions for sampling functions
+ *
+ * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/utils/sampling.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef SAMPLING_H
+#define SAMPLING_H
+
+#include "storage/bufmgr.h"
+
+extern double sampler_random_fract(void);
+
+/* Block sampling methods */
+/* Data structure for Algorithm S from Knuth 3.4.2 */
+typedef struct
+{
+ BlockNumber N; /* number of blocks, known in advance */
+ int n; /* desired sample size */
+ BlockNumber t; /* current block number */
+ int m; /* blocks selected so far */
+} BlockSamplerData;
+
+typedef BlockSamplerData *BlockSampler;
+
+extern void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
+ int samplesize, long randseed);
+extern bool BlockSampler_HasMore(BlockSampler bs);
+extern BlockNumber BlockSampler_Next(BlockSampler bs);
+
+/* Reservoid sampling methods */
+typedef double ReservoirStateData;
+typedef ReservoirStateData *ReservoirState;
+
+extern void reservoir_init_selection_state(ReservoirState rs, int n);
+extern double reservoir_get_next_S(ReservoirState rs, double t, int n);
+
+#endif /* SAMPLING_H */