}
}
+ // -X srem Y --> -(X srem Y)
+ Value *X, *Y;
+ if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
+
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
define i32 @test_srem_canonicalize_op0(i32 %x, i32 %y) {
; CHECK-LABEL: @test_srem_canonicalize_op0(
-; CHECK-NEXT: [[NEG:%.*]] = sub nsw i32 0, [[X:%.*]]
-; CHECK-NEXT: [[SREM:%.*]] = srem i32 [[NEG]], [[Y:%.*]]
+; CHECK-NEXT: [[TMP1:%.*]] = srem i32 [[X:%.*]], [[Y:%.*]]
+; CHECK-NEXT: [[SREM:%.*]] = sub nsw i32 0, [[TMP1]]
; CHECK-NEXT: ret i32 [[SREM]]
;
%neg = sub nsw i32 0, %x
define <2 x i32> @test_srem_canonicalize_vec(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: @test_srem_canonicalize_vec(
-; CHECK-NEXT: [[NEG:%.*]] = sub nsw <2 x i32> zeroinitializer, [[X:%.*]]
-; CHECK-NEXT: [[SREM:%.*]] = srem <2 x i32> [[NEG]], [[Y:%.*]]
+; CHECK-NEXT: [[TMP1:%.*]] = srem <2 x i32> [[X:%.*]], [[Y:%.*]]
+; CHECK-NEXT: [[SREM:%.*]] = sub nsw <2 x i32> zeroinitializer, [[TMP1]]
; CHECK-NEXT: ret <2 x i32> [[SREM]]
;
%neg = sub nsw <2 x i32> <i32 0, i32 0>, %x