typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct16x16Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht16x16Param;
+typedef std::tr1::tuple<IdctFunc, IdctFunc, int, vpx_bit_depth_t>
+ Idct16x16Param;
void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride,
int /*tx_type*/) {
void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
vp9_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12);
}
-#endif
+
+void idct16x16_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_10_add_c(in, out, stride, 10);
+}
+
+void idct16x16_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_10_add_c(in, out, stride, 12);
+}
+
+#if HAVE_SSE2
+void idct16x16_256_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_256_add_sse2(in, out, stride, 10);
+}
+
+void idct16x16_256_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_256_add_sse2(in, out, stride, 12);
+}
+
+void idct16x16_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_10_add_sse2(in, out, stride, 10);
+}
+
+void idct16x16_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct16x16_10_add_sse2(in, out, stride, 12);
+}
+#endif // HAVE_SSE2
+#endif // CONFIG_VP9_HIGHBITDEPTH
class Trans16x16TestBase {
public:
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, kNumCoeffs);
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
- coeff[j] = round(out_r[j]);
+ coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
} else {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
16));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
}
for (int j = 0; j < kNumCoeffs; ++j) {
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const uint32_t diff = dst[j] - src[j];
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
const uint32_t error = diff * diff;
EXPECT_GE(1u, error)
<< "Error: 16x16 IDCT has error " << error
}
}
}
+
+ void CompareInvReference(IdctFunc ref_txfm, int thresh) {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ const int count_test_block = 10000;
+ const int eob = 10;
+ const int16_t *scan = vp9_default_scan_orders[TX_16X16].scan;
+ DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, ref, kNumCoeffs);
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint16_t, ref16, kNumCoeffs);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ for (int i = 0; i < count_test_block; ++i) {
+ for (int j = 0; j < kNumCoeffs; ++j) {
+ if (j < eob) {
+ // Random values less than the threshold, either positive or negative
+ coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
+ } else {
+ coeff[scan[j]] = 0;
+ }
+ if (bit_depth_ == VPX_BITS_8) {
+ dst[j] = 0;
+ ref[j] = 0;
+#if CONFIG_VP9_HIGHBITDEPTH
+ } else {
+ dst16[j] = 0;
+ ref16[j] = 0;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ }
+ if (bit_depth_ == VPX_BITS_8) {
+ ref_txfm(coeff, ref, pitch_);
+ ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
+ } else {
+#if CONFIG_VP9_HIGHBITDEPTH
+ ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
+ ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
+ pitch_));
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ for (int j = 0; j < kNumCoeffs; ++j) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const uint32_t diff =
+ bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
+#else
+ const uint32_t diff = dst[j] - ref[j];
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ const uint32_t error = diff * diff;
+ EXPECT_EQ(0u, error)
+ << "Error: 16x16 IDCT Comparison has error " << error
+ << " at index " << j;
+ }
+ }
+ }
+
int pitch_;
int tx_type_;
vpx_bit_depth_t bit_depth_;
mask_ = (1 << bit_depth_) - 1;
#if CONFIG_VP9_HIGHBITDEPTH
switch (bit_depth_) {
- case 10:
+ case VPX_BITS_10:
inv_txfm_ref = idct16x16_10_ref;
break;
- case 12:
+ case VPX_BITS_12:
inv_txfm_ref = idct16x16_12_ref;
break;
default:
RunQuantCheck(429, 729);
}
+class InvTrans16x16DCT
+ : public Trans16x16TestBase,
+ public ::testing::TestWithParam<Idct16x16Param> {
+ public:
+ virtual ~InvTrans16x16DCT() {}
+
+ virtual void SetUp() {
+ ref_txfm_ = GET_PARAM(0);
+ inv_txfm_ = GET_PARAM(1);
+ thresh_ = GET_PARAM(2);
+ bit_depth_ = GET_PARAM(3);
+ pitch_ = 16;
+ mask_ = (1 << bit_depth_) - 1;
+}
+ virtual void TearDown() { libvpx_test::ClearSystemState(); }
+
+ protected:
+ void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {}
+ void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
+ inv_txfm_(out, dst, stride);
+ }
+
+ IdctFunc ref_txfm_;
+ IdctFunc inv_txfm_;
+ int thresh_;
+};
+
+TEST_P(InvTrans16x16DCT, CompareReference) {
+ CompareInvReference(ref_txfm_, thresh_);
+}
+
using std::tr1::make_tuple;
#if CONFIG_VP9_HIGHBITDEPTH
C, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
VPX_BITS_8),
make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 3,
VPX_BITS_8)));
-#endif
+#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+
+#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+INSTANTIATE_TEST_CASE_P(
+ SSE2, Trans16x16DCT,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fdct16x16_sse2,
+ &idct16x16_10, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct16x16_c,
+ &idct16x16_256_add_10_sse2, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct16x16_sse2,
+ &idct16x16_12, 0, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fdct16x16_c,
+ &idct16x16_256_add_12_sse2, 0, VPX_BITS_12),
+ make_tuple(&vp9_fdct16x16_sse2,
+ &vp9_idct16x16_256_add_c, 0, VPX_BITS_8)));
+INSTANTIATE_TEST_CASE_P(
+ SSE2, Trans16x16HT,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 1, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 2, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 3, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 0, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 1, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 2, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 3, VPX_BITS_12),
+ make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
+ make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
+ make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
+ make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 3,
+ VPX_BITS_8)));
+// Optimizations take effect at a threshold of 3155, so we use a value close to
+// that to test both branches.
+INSTANTIATE_TEST_CASE_P(
+ SSE2, InvTrans16x16DCT,
+ ::testing::Values(
+ make_tuple(&idct16x16_10_add_10_c,
+ &idct16x16_10_add_10_sse2, 3167, VPX_BITS_10),
+ make_tuple(&idct16x16_10,
+ &idct16x16_256_add_10_sse2, 3167, VPX_BITS_10),
+ make_tuple(&idct16x16_10_add_12_c,
+ &idct16x16_10_add_12_sse2, 3167, VPX_BITS_12),
+ make_tuple(&idct16x16_12,
+ &idct16x16_256_add_12_sse2, 3167, VPX_BITS_12)));
+#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
::testing::Values(
make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_ssse3, 0,
VPX_BITS_8)));
-#endif
+#endif // HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace
Trans32x32Param;
#if CONFIG_VP9_HIGHBITDEPTH
+void idct32x32_8(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct32x32_1024_add_c(in, out, stride, 8);
+}
+
void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) {
vp9_highbd_idct32x32_1024_add_c(in, out, stride, 10);
}
void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) {
vp9_highbd_idct32x32_1024_add_c(in, out, stride, 12);
}
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
class Trans32x32Test : public ::testing::TestWithParam<Trans32x32Param> {
public:
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
- const int count_test_block = 1000;
+ const int count_test_block = 10000;
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, tran_low_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
- if (bit_depth_ == 8) {
+ if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
- coeff[j] = round(out_r[j]);
+ coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
#if CONFIG_VP9_HIGHBITDEPTH
&vp9_idct32x32_1024_add_c, 0, VPX_BITS_8),
make_tuple(&vp9_fdct32x32_rd_c,
&vp9_idct32x32_1024_add_c, 1, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
&vp9_idct32x32_1024_add_neon, 0, VPX_BITS_8),
make_tuple(&vp9_fdct32x32_rd_c,
&vp9_idct32x32_1024_add_neon, 1, VPX_BITS_8)));
-#endif
+#endif // HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
&vp9_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
make_tuple(&vp9_fdct32x32_rd_sse2,
&vp9_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
-#endif
+#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+
+#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+INSTANTIATE_TEST_CASE_P(
+ SSE2, Trans32x32Test,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fdct32x32_sse2, &idct32x32_10, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1,
+ VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct32x32_sse2, &idct32x32_12, 0, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1,
+ VPX_BITS_12),
+ make_tuple(&vp9_fdct32x32_sse2, &vp9_idct32x32_1024_add_c, 0,
+ VPX_BITS_8),
+ make_tuple(&vp9_fdct32x32_rd_sse2, &vp9_idct32x32_1024_add_c, 1,
+ VPX_BITS_8)));
+#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
&vp9_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
make_tuple(&vp9_fdct32x32_rd_avx2,
&vp9_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
-#endif
+#endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace
void iwht4x4_12(const tran_low_t *in, uint8_t *out, int stride) {
vp9_highbd_iwht4x4_16_add_c(in, out, stride, 12);
}
-#endif
+
+#if HAVE_SSE2
+void idct4x4_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct4x4_16_add_sse2(in, out, stride, 10);
+}
+
+void idct4x4_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct4x4_16_add_sse2(in, out, stride, 12);
+}
+#endif // HAVE_SSE2
+#endif // CONFIG_VP9_HIGHBITDEPTH
class Trans4x4TestBase {
public:
C, Trans4x4DCT,
::testing::Values(
make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, 0, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 3, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, Trans4x4WHT,
::testing::Values(
make_tuple(&vp9_fwht4x4_c, &vp9_iwht4x4_16_add_c, 0, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 1, VPX_BITS_8),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 2, VPX_BITS_8),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 3, VPX_BITS_8)));
-#endif
+#endif // HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if CONFIG_USE_X86INC && HAVE_MMX && !CONFIG_VP9_HIGHBITDEPTH && \
!CONFIG_EMULATE_HARDWARE
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 1, VPX_BITS_8),
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 2, VPX_BITS_8),
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 3, VPX_BITS_8)));
-#endif
+#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+
+#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+INSTANTIATE_TEST_CASE_P(
+ SSE2, Trans4x4DCT,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fdct4x4_c, &idct4x4_10_sse2, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct4x4_sse2, &idct4x4_10_sse2, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct4x4_c, &idct4x4_12_sse2, 0, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fdct4x4_sse2, &idct4x4_12_sse2, 0, VPX_BITS_12),
+ make_tuple(&vp9_fdct4x4_sse2, &vp9_idct4x4_16_add_c, 0,
+ VPX_BITS_8)));
+INSTANTIATE_TEST_CASE_P(
+ SSE2, Trans4x4HT,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_10, 0, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_10, 1, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_10, 2, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_10, 3, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_12, 0, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_12, 1, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_12, 2, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fht4x4_sse2, &iht4x4_12, 3, VPX_BITS_12),
+ make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_c, 0, VPX_BITS_8),
+ make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_c, 1, VPX_BITS_8),
+ make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_c, 2, VPX_BITS_8),
+ make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_c, 3, VPX_BITS_8)));
+#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace
typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct8x8Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht8x8Param;
+typedef std::tr1::tuple<IdctFunc, IdctFunc, int, vpx_bit_depth_t> Idct8x8Param;
void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
vp9_fdct8x8_c(in, out, stride);
void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
vp9_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 12);
}
-#endif
+
+void idct8x8_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_10_add_c(in, out, stride, 10);
+}
+
+void idct8x8_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_10_add_c(in, out, stride, 12);
+}
+
+#if HAVE_SSE2
+void idct8x8_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_10_add_sse2(in, out, stride, 10);
+}
+
+void idct8x8_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_10_add_sse2(in, out, stride, 12);
+}
+
+void idct8x8_64_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_64_add_sse2(in, out, stride, 10);
+}
+
+void idct8x8_64_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
+ vp9_highbd_idct8x8_64_add_sse2(in, out, stride, 12);
+}
+#endif // HAVE_SSE2
+#endif // CONFIG_VP9_HIGHBITDEPTH
class FwdTrans8x8TestBase {
public:
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
- // Initialize a test block with input range [-15, 15].
+ // Initialize a test block with input range [-mask_ / 16, mask_ / 16].
for (int j = 0; j < 64; ++j)
- test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
+ test_input_block[j] = ((rnd.Rand16() & mask_) >> 4) -
+ ((rnd.Rand16() & mask_) >> 4);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
#endif
for (int i = 0; i < count_test_block; ++i) {
- // Initialize a test block with input range [-255, 255].
+ // Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < 64; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
}
}
}
+
+void CompareInvReference(IdctFunc ref_txfm, int thresh) {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ const int count_test_block = 10000;
+ const int eob = 12;
+ DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, ref, kNumCoeffs);
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint16_t, ref16, kNumCoeffs);
+#endif
+ const int16_t *scan = vp9_default_scan_orders[TX_8X8].scan;
+
+ for (int i = 0; i < count_test_block; ++i) {
+ for (int j = 0; j < kNumCoeffs; ++j) {
+ if (j < eob) {
+ // Random values less than the threshold, either positive or negative
+ coeff[scan[j]] = rnd(thresh) * (1-2*(i%2));
+ } else {
+ coeff[scan[j]] = 0;
+ }
+ if (bit_depth_ == VPX_BITS_8) {
+ dst[j] = 0;
+ ref[j] = 0;
+#if CONFIG_VP9_HIGHBITDEPTH
+ } else {
+ dst16[j] = 0;
+ ref16[j] = 0;
+#endif
+ }
+ }
+ if (bit_depth_ == VPX_BITS_8) {
+ ref_txfm(coeff, ref, pitch_);
+ ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
+#if CONFIG_VP9_HIGHBITDEPTH
+ } else {
+ ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
+ ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
+ pitch_));
+#endif
+ }
+
+ for (int j = 0; j < kNumCoeffs; ++j) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const uint32_t diff =
+ bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
+#else
+ const uint32_t diff = dst[j] - ref[j];
+#endif
+ const uint32_t error = diff * diff;
+ EXPECT_EQ(0u, error)
+ << "Error: 8x8 IDCT has error " << error
+ << " at index " << j;
+ }
+ }
+ }
int pitch_;
int tx_type_;
FhtFunc fwd_txfm_ref;
RunExtremalCheck();
}
+class InvTrans8x8DCT
+ : public FwdTrans8x8TestBase,
+ public ::testing::TestWithParam<Idct8x8Param> {
+ public:
+ virtual ~InvTrans8x8DCT() {}
+
+ virtual void SetUp() {
+ ref_txfm_ = GET_PARAM(0);
+ inv_txfm_ = GET_PARAM(1);
+ thresh_ = GET_PARAM(2);
+ pitch_ = 8;
+ bit_depth_ = GET_PARAM(3);
+ mask_ = (1 << bit_depth_) - 1;
+ }
+
+ virtual void TearDown() { libvpx_test::ClearSystemState(); }
+
+ protected:
+ void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
+ inv_txfm_(out, dst, stride);
+ }
+ void RunFwdTxfm(int16_t *out, tran_low_t *dst, int stride) {}
+
+ IdctFunc ref_txfm_;
+ IdctFunc inv_txfm_;
+ int thresh_;
+};
+
+TEST_P(InvTrans8x8DCT, CompareReference) {
+ CompareInvReference(ref_txfm_, thresh_);
+}
+
using std::tr1::make_tuple;
#if CONFIG_VP9_HIGHBITDEPTH
C, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, 0, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8)));
-#endif
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 3, VPX_BITS_8)));
-#endif
+#endif // HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 3, VPX_BITS_8)));
-#endif
+#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+
+#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+INSTANTIATE_TEST_CASE_P(
+ SSE2, FwdTrans8x8DCT,
+ ::testing::Values(
+ make_tuple(&vp9_highbd_fdct8x8_c,
+ &idct8x8_64_add_10_sse2, 12, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct8x8_sse2,
+ &idct8x8_64_add_10_sse2, 12, VPX_BITS_10),
+ make_tuple(&vp9_highbd_fdct8x8_c,
+ &idct8x8_64_add_12_sse2, 12, VPX_BITS_12),
+ make_tuple(&vp9_highbd_fdct8x8_sse2,
+ &idct8x8_64_add_12_sse2, 12, VPX_BITS_12),
+ make_tuple(&vp9_fdct8x8_sse2, &vp9_idct8x8_64_add_c, 0, VPX_BITS_8)));
+
+
+INSTANTIATE_TEST_CASE_P(
+ SSE2, FwdTrans8x8HT,
+ ::testing::Values(
+ make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8),
+ make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8),
+ make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8),
+ make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8)));
+
+// Optimizations take effect at a threshold of 6201, so we use a value close to
+// that to test both branches.
+INSTANTIATE_TEST_CASE_P(
+ SSE2, InvTrans8x8DCT,
+ ::testing::Values(
+ make_tuple(&idct8x8_10_add_10_c,
+ &idct8x8_10_add_10_sse2, 6225, VPX_BITS_10),
+ make_tuple(&idct8x8_10,
+ &idct8x8_64_add_10_sse2, 6225, VPX_BITS_10),
+ make_tuple(&idct8x8_10_add_12_c,
+ &idct8x8_10_add_12_sse2, 6225, VPX_BITS_12),
+ make_tuple(&idct8x8_12,
+ &idct8x8_64_add_12_sse2, 6225, VPX_BITS_12)));
+#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \
!CONFIG_EMULATE_HARDWARE
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type;
PREDICTION_MODE mode;
-#if CONFIG_FILTERINTRA
- int filterbit, uv_filterbit;
-#endif
TX_SIZE tx_size;
int8_t skip;
int8_t segment_id;
uint8_t mode_context[MAX_REF_FRAMES];
INTERP_FILTER interp_filter;
-#if CONFIG_EXT_TX
- EXT_TX_TYPE ext_txfrm;
-#endif
} MB_MODE_INFO;
typedef struct MODE_INFO {
struct MODE_INFO *src_mi;
MB_MODE_INFO mbmi;
-#if CONFIG_FILTERINTRA
- int b_filter_info[4];
-#endif
b_mode_info bmi[4];
} MODE_INFO;
: mi->mbmi.mode;
}
-#if CONFIG_FILTERINTRA
-static INLINE int is_filter_allowed(PREDICTION_MODE mode) {
- (void)mode;
- return 1;
-}
-
-static INLINE int is_filter_enabled(TX_SIZE txsize) {
- return (txsize < TX_SIZES);
-}
-#endif
-
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
extern const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES];
-#if CONFIG_EXT_TX
-static TX_TYPE ext_tx_to_txtype(EXT_TX_TYPE ext_tx) {
- switch (ext_tx) {
- case NORM:
- default:
- return DCT_DCT;
- case ALT:
- return ADST_ADST;
- }
-}
-#endif
-
static INLINE TX_TYPE get_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
const MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
-#if CONFIG_EXT_TX
- if (plane_type != PLANE_TYPE_Y || xd->lossless)
- return DCT_DCT;
-
- if (is_inter_block(mbmi)) {
- return ext_tx_to_txtype(mbmi->ext_txfrm);
- }
-#else
if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(mbmi))
return DCT_DCT;
-#endif
+
return intra_mode_to_tx_type_lookup[mbmi->mode];
}
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mi[0].src_mi;
-#if CONFIG_EXT_TX
- if (plane_type != PLANE_TYPE_Y || xd->lossless)
- return DCT_DCT;
-
- if (is_inter_block(&mi->mbmi)) {
- return ext_tx_to_txtype(mi->mbmi.ext_txfrm);
- }
-#else
if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(&mi->mbmi))
return DCT_DCT;
-#endif
return intra_mode_to_tx_type_lookup[get_y_mode(mi, ib)];
}
add_proto qw/void vp9_highbd_idct4x4_1_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
specialize qw/vp9_highbd_idct4x4_1_add/;
- add_proto qw/void vp9_highbd_idct4x4_16_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
- specialize qw/vp9_highbd_idct4x4_16_add/;
-
add_proto qw/void vp9_highbd_idct8x8_1_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
specialize qw/vp9_highbd_idct8x8_1_add/;
- add_proto qw/void vp9_highbd_idct8x8_64_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
- specialize qw/vp9_highbd_idct8x8_64_add/;
-
- add_proto qw/void vp9_highbd_idct8x8_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
- specialize qw/vp9_highbd_idct8x8_10_add/;
-
add_proto qw/void vp9_highbd_idct16x16_1_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
specialize qw/vp9_highbd_idct16x16_1_add/;
- add_proto qw/void vp9_highbd_idct16x16_256_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
- specialize qw/vp9_highbd_idct16x16_256_add/;
-
- add_proto qw/void vp9_highbd_idct16x16_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
- specialize qw/vp9_highbd_idct16x16_10_add/;
-
add_proto qw/void vp9_highbd_idct32x32_1024_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
specialize qw/vp9_highbd_idct32x32_1024_add/;
add_proto qw/void vp9_highbd_iwht4x4_16_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
specialize qw/vp9_highbd_iwht4x4_16_add/;
+
+ # Force C versions if CONFIG_EMULATE_HARDWARE is 1
+ if (vpx_config("CONFIG_EMULATE_HARDWARE") eq "yes") {
+
+ add_proto qw/void vp9_highbd_idct4x4_16_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct4x4_16_add/;
+
+ add_proto qw/void vp9_highbd_idct8x8_64_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct8x8_64_add/;
+
+ add_proto qw/void vp9_highbd_idct8x8_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct8x8_10_add/;
+
+ add_proto qw/void vp9_highbd_idct16x16_256_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct16x16_256_add/;
+
+ add_proto qw/void vp9_highbd_idct16x16_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct16x16_10_add/;
+
+ } else {
+
+ add_proto qw/void vp9_highbd_idct4x4_16_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct4x4_16_add sse2/;
+
+ add_proto qw/void vp9_highbd_idct8x8_64_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct8x8_64_add sse2/;
+
+ add_proto qw/void vp9_highbd_idct8x8_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct8x8_10_add sse2/;
+
+ add_proto qw/void vp9_highbd_idct16x16_256_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct16x16_256_add sse2/;
+
+ add_proto qw/void vp9_highbd_idct16x16_10_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int bd";
+ specialize qw/vp9_highbd_idct16x16_10_add sse2/;
+ }
}
#
if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
add_proto qw/void vp9_fht4x4/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_fht4x4/;
+ specialize qw/vp9_fht4x4 sse2/;
add_proto qw/void vp9_fht8x8/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_fht8x8/;
+ specialize qw/vp9_fht8x8 sse2/;
add_proto qw/void vp9_fht16x16/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_fht16x16/;
+ specialize qw/vp9_fht16x16 sse2/;
add_proto qw/void vp9_fwht4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fwht4x4/;
+ specialize qw/vp9_fwht4x4/, "$mmx_x86inc";
add_proto qw/void vp9_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct4x4_1/;
+ specialize qw/vp9_fdct4x4_1 sse2/;
add_proto qw/void vp9_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct4x4/;
+ specialize qw/vp9_fdct4x4 sse2/;
add_proto qw/void vp9_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct8x8_1/;
+ specialize qw/vp9_fdct8x8_1 sse2/;
add_proto qw/void vp9_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct8x8/;
+ specialize qw/vp9_fdct8x8 sse2/;
add_proto qw/void vp9_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct16x16_1/;
+ specialize qw/vp9_fdct16x16_1 sse2/;
add_proto qw/void vp9_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct16x16/;
+ specialize qw/vp9_fdct16x16 sse2/;
add_proto qw/void vp9_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct32x32_1/;
+ specialize qw/vp9_fdct32x32_1 sse2/;
add_proto qw/void vp9_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct32x32/;
+ specialize qw/vp9_fdct32x32 sse2/;
add_proto qw/void vp9_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct32x32_rd/;
+ specialize qw/vp9_fdct32x32_rd sse2/;
} else {
add_proto qw/void vp9_fht4x4/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
specialize qw/vp9_fht4x4 sse2/;
# fdct functions
add_proto qw/void vp9_highbd_fht4x4/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_highbd_fht4x4/;
+ specialize qw/vp9_highbd_fht4x4 sse2/;
add_proto qw/void vp9_highbd_fht8x8/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_highbd_fht8x8/;
+ specialize qw/vp9_highbd_fht8x8 sse2/;
add_proto qw/void vp9_highbd_fht16x16/, "const int16_t *input, tran_low_t *output, int stride, int tx_type";
- specialize qw/vp9_highbd_fht16x16/;
+ specialize qw/vp9_highbd_fht16x16 sse2/;
add_proto qw/void vp9_highbd_fwht4x4/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fwht4x4/;
add_proto qw/void vp9_highbd_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct4x4/;
+ specialize qw/vp9_highbd_fdct4x4 sse2/;
add_proto qw/void vp9_highbd_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct8x8_1/;
add_proto qw/void vp9_highbd_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct8x8/;
+ specialize qw/vp9_highbd_fdct8x8 sse2/;
add_proto qw/void vp9_highbd_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct16x16_1/;
add_proto qw/void vp9_highbd_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct16x16/;
+ specialize qw/vp9_highbd_fdct16x16 sse2/;
add_proto qw/void vp9_highbd_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct32x32_1/;
add_proto qw/void vp9_highbd_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct32x32/;
+ specialize qw/vp9_highbd_fdct32x32 sse2/;
add_proto qw/void vp9_highbd_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct32x32_rd/;
+ specialize qw/vp9_highbd_fdct32x32_rd sse2/;
add_proto qw/void vp9_highbd_temporal_filter_apply/, "uint8_t *frame1, unsigned int stride, uint8_t *frame2, unsigned int block_width, unsigned int block_height, int strength, int filter_weight, unsigned int *accumulator, uint16_t *count";
specialize qw/vp9_highbd_temporal_filter_apply/;
*/
#include "vp9/common/x86/vp9_idct_intrin_sse2.h"
+#include "vp9/common/vp9_idct.h"
#define RECON_AND_STORE4X4(dest, in_x) \
{ \
dest += 8 - (stride * 32);
}
}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static INLINE __m128i clamp_high_sse2(__m128i value, int bd) {
+ __m128i ubounded, retval;
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i one = _mm_set1_epi16(1);
+ const __m128i max = _mm_subs_epi16(_mm_slli_epi16(one, bd), one);
+ ubounded = _mm_cmpgt_epi16(value, max);
+ retval = _mm_andnot_si128(ubounded, value);
+ ubounded = _mm_and_si128(ubounded, max);
+ retval = _mm_or_si128(retval, ubounded);
+ retval = _mm_and_si128(retval, _mm_cmpgt_epi16(retval, zero));
+ return retval;
+}
+
+void vp9_highbd_idct4x4_16_add_sse2(const tran_low_t *input, uint8_t *dest8,
+ int stride, int bd) {
+ tran_low_t out[4 * 4];
+ tran_low_t *outptr = out;
+ int i, j;
+ __m128i inptr[4];
+ __m128i sign_bits[2];
+ __m128i temp_mm, min_input, max_input;
+ int test;
+ uint16_t * dest = CONVERT_TO_SHORTPTR(dest8);
+ int optimised_cols = 0;
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i eight = _mm_set1_epi16(8);
+ const __m128i max = _mm_set1_epi16(12043);
+ const __m128i min = _mm_set1_epi16(-12043);
+ // Load input into __m128i
+ inptr[0] = _mm_loadu_si128((const __m128i *)input);
+ inptr[1] = _mm_loadu_si128((const __m128i *)(input + 4));
+ inptr[2] = _mm_loadu_si128((const __m128i *)(input + 8));
+ inptr[3] = _mm_loadu_si128((const __m128i *)(input + 12));
+
+ // Pack to 16 bits
+ inptr[0] = _mm_packs_epi32(inptr[0], inptr[1]);
+ inptr[1] = _mm_packs_epi32(inptr[2], inptr[3]);
+
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp_mm = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp_mm);
+
+ if (!test) {
+ // Do the row transform
+ idct4_sse2(inptr);
+
+ // Check the min & max values
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp_mm = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp_mm);
+
+ if (test) {
+ transpose_4x4(inptr);
+ sign_bits[0] = _mm_cmplt_epi16(inptr[0], zero);
+ sign_bits[1] = _mm_cmplt_epi16(inptr[1], zero);
+ inptr[3] = _mm_unpackhi_epi16(inptr[1], sign_bits[1]);
+ inptr[2] = _mm_unpacklo_epi16(inptr[1], sign_bits[1]);
+ inptr[1] = _mm_unpackhi_epi16(inptr[0], sign_bits[0]);
+ inptr[0] = _mm_unpacklo_epi16(inptr[0], sign_bits[0]);
+ _mm_storeu_si128((__m128i*)outptr, inptr[0]);
+ _mm_storeu_si128((__m128i*)(outptr + 4), inptr[1]);
+ _mm_storeu_si128((__m128i*)(outptr + 8), inptr[2]);
+ _mm_storeu_si128((__m128i*)(outptr + 12), inptr[3]);
+ } else {
+ // Set to use the optimised transform for the column
+ optimised_cols = 1;
+ }
+ } else {
+ // Run the un-optimised row transform
+ for (i = 0; i < 4; ++i) {
+ vp9_highbd_idct4(input, outptr, bd);
+ input += 4;
+ outptr += 4;
+ }
+ }
+
+ if (optimised_cols) {
+ idct4_sse2(inptr);
+
+ // Final round and shift
+ inptr[0] = _mm_add_epi16(inptr[0], eight);
+ inptr[1] = _mm_add_epi16(inptr[1], eight);
+
+ inptr[0] = _mm_srai_epi16(inptr[0], 4);
+ inptr[1] = _mm_srai_epi16(inptr[1], 4);
+
+ // Reconstruction and Store
+ {
+ __m128i d0 = _mm_loadl_epi64((const __m128i *)dest);
+ __m128i d2 = _mm_loadl_epi64((const __m128i *)(dest + stride * 2));
+ d0 = _mm_unpacklo_epi64(d0,
+ _mm_loadl_epi64((const __m128i *)(dest + stride)));
+ d2 = _mm_unpacklo_epi64(d2,
+ _mm_loadl_epi64((const __m128i *)(dest + stride * 3)));
+ d0 = clamp_high_sse2(_mm_adds_epi16(d0, inptr[0]), bd);
+ d2 = clamp_high_sse2(_mm_adds_epi16(d2, inptr[1]), bd);
+ // store input0
+ _mm_storel_epi64((__m128i *)dest, d0);
+ // store input1
+ d0 = _mm_srli_si128(d0, 8);
+ _mm_storel_epi64((__m128i *)(dest + stride), d0);
+ // store input2
+ _mm_storel_epi64((__m128i *)(dest + stride * 2), d2);
+ // store input3
+ d2 = _mm_srli_si128(d2, 8);
+ _mm_storel_epi64((__m128i *)(dest + stride * 3), d2);
+ }
+ } else {
+ // Run the un-optimised column transform
+ tran_low_t temp_in[4], temp_out[4];
+ // Columns
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = out[j * 4 + i];
+ vp9_highbd_idct4(temp_in, temp_out, bd);
+ for (j = 0; j < 4; ++j) {
+ dest[j * stride + i] = highbd_clip_pixel_add(
+ dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd);
+ }
+ }
+ }
+}
+
+void vp9_highbd_idct8x8_64_add_sse2(const tran_low_t *input, uint8_t *dest8,
+ int stride, int bd) {
+ tran_low_t out[8 * 8];
+ tran_low_t *outptr = out;
+ int i, j, test;
+ __m128i inptr[8];
+ __m128i min_input, max_input, temp1, temp2, sign_bits;
+ uint16_t * dest = CONVERT_TO_SHORTPTR(dest8);
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i sixteen = _mm_set1_epi16(16);
+ const __m128i max = _mm_set1_epi16(6201);
+ const __m128i min = _mm_set1_epi16(-6201);
+ int optimised_cols = 0;
+
+ // Load input into __m128i & pack to 16 bits
+ for (i = 0; i < 8; i++) {
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 8*i));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 8*i + 4));
+ inptr[i] = _mm_packs_epi32(temp1, temp2);
+ }
+
+ // Find the min & max for the row transform
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 8; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (!test) {
+ // Do the row transform
+ idct8_sse2(inptr);
+
+ // Find the min & max for the column transform
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 8; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (test) {
+ array_transpose_8x8(inptr, inptr);
+ for (i = 0; i < 8; i++) {
+ sign_bits = _mm_cmplt_epi16(inptr[i], zero);
+ temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits);
+ temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(2*i+1)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(2*i)), temp2);
+ }
+ } else {
+ // Set to use the optimised transform for the column
+ optimised_cols = 1;
+ }
+ } else {
+ // Run the un-optimised row transform
+ for (i = 0; i < 8; ++i) {
+ vp9_highbd_idct8(input, outptr, bd);
+ input += 8;
+ outptr += 8;
+ }
+ }
+
+ if (optimised_cols) {
+ idct8_sse2(inptr);
+
+ // Final round & shift and Reconstruction and Store
+ {
+ __m128i d[8];
+ for (i = 0; i < 8; i++) {
+ inptr[i] = _mm_add_epi16(inptr[i], sixteen);
+ d[i] = _mm_loadu_si128((const __m128i *)(dest + stride*i));
+ inptr[i] = _mm_srai_epi16(inptr[i], 5);
+ d[i] = clamp_high_sse2(_mm_adds_epi16(d[i], inptr[i]), bd);
+ // Store
+ _mm_storeu_si128((__m128i *)(dest + stride*i), d[i]);
+ }
+ }
+ } else {
+ // Run the un-optimised column transform
+ tran_low_t temp_in[8], temp_out[8];
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j * 8 + i];
+ vp9_highbd_idct8(temp_in, temp_out, bd);
+ for (j = 0; j < 8; ++j) {
+ dest[j * stride + i] = highbd_clip_pixel_add(
+ dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
+ }
+ }
+ }
+}
+
+void vp9_highbd_idct8x8_10_add_sse2(const tran_low_t *input, uint8_t *dest8,
+ int stride, int bd) {
+ tran_low_t out[8 * 8] = { 0 };
+ tran_low_t *outptr = out;
+ int i, j, test;
+ __m128i inptr[8];
+ __m128i min_input, max_input, temp1, temp2, sign_bits;
+ uint16_t * dest = CONVERT_TO_SHORTPTR(dest8);
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i sixteen = _mm_set1_epi16(16);
+ const __m128i max = _mm_set1_epi16(6201);
+ const __m128i min = _mm_set1_epi16(-6201);
+ int optimised_cols = 0;
+
+ // Load input into __m128i & pack to 16 bits
+ for (i = 0; i < 8; i++) {
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 8*i));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 8*i + 4));
+ inptr[i] = _mm_packs_epi32(temp1, temp2);
+ }
+
+ // Find the min & max for the row transform
+ // only first 4 row has non-zero coefs
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 4; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (!test) {
+ // Do the row transform
+ idct8_sse2(inptr);
+
+ // Find the min & max for the column transform
+ // N.B. Only first 4 cols contain non-zero coeffs
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 4; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (test) {
+ // Use fact only first 4 rows contain non-zero coeffs
+ array_transpose_4X8(inptr, inptr);
+ for (i = 0; i < 4; i++) {
+ sign_bits = _mm_cmplt_epi16(inptr[i], zero);
+ temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits);
+ temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(2*i+1)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(2*i)), temp2);
+ }
+ } else {
+ // Set to use the optimised transform for the column
+ optimised_cols = 1;
+ }
+ } else {
+ // Run the un-optimised row transform
+ for (i = 0; i < 4; ++i) {
+ vp9_highbd_idct8(input, outptr, bd);
+ input += 8;
+ outptr += 8;
+ }
+ }
+
+ if (optimised_cols) {
+ idct8_sse2(inptr);
+
+ // Final round & shift and Reconstruction and Store
+ {
+ __m128i d[8];
+ for (i = 0; i < 8; i++) {
+ inptr[i] = _mm_add_epi16(inptr[i], sixteen);
+ d[i] = _mm_loadu_si128((const __m128i *)(dest + stride*i));
+ inptr[i] = _mm_srai_epi16(inptr[i], 5);
+ d[i] = clamp_high_sse2(_mm_adds_epi16(d[i], inptr[i]), bd);
+ // Store
+ _mm_storeu_si128((__m128i *)(dest + stride*i), d[i]);
+ }
+ }
+ } else {
+ // Run the un-optimised column transform
+ tran_low_t temp_in[8], temp_out[8];
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j * 8 + i];
+ vp9_highbd_idct8(temp_in, temp_out, bd);
+ for (j = 0; j < 8; ++j) {
+ dest[j * stride + i] = highbd_clip_pixel_add(
+ dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
+ }
+ }
+ }
+}
+
+void vp9_highbd_idct16x16_256_add_sse2(const tran_low_t *input, uint8_t *dest8,
+ int stride, int bd) {
+ tran_low_t out[16 * 16];
+ tran_low_t *outptr = out;
+ int i, j, test;
+ __m128i inptr[32];
+ __m128i min_input, max_input, temp1, temp2, sign_bits;
+ uint16_t * dest = CONVERT_TO_SHORTPTR(dest8);
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i rounding = _mm_set1_epi16(32);
+ const __m128i max = _mm_set1_epi16(3155);
+ const __m128i min = _mm_set1_epi16(-3155);
+ int optimised_cols = 0;
+
+ // Load input into __m128i & pack to 16 bits
+ for (i = 0; i < 16; i++) {
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 16*i));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 16*i + 4));
+ inptr[i] = _mm_packs_epi32(temp1, temp2);
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 16*i + 8));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 16*i + 12));
+ inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
+ }
+
+ // Find the min & max for the row transform
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 32; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (!test) {
+ // Do the row transform
+ idct16_sse2(inptr, inptr + 16);
+
+ // Find the min & max for the column transform
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 32; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (test) {
+ array_transpose_16x16(inptr, inptr + 16);
+ for (i = 0; i < 16; i++) {
+ sign_bits = _mm_cmplt_epi16(inptr[i], zero);
+ temp1 = _mm_unpacklo_epi16(inptr[i ], sign_bits);
+ temp2 = _mm_unpackhi_epi16(inptr[i ], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+1)), temp2);
+ sign_bits = _mm_cmplt_epi16(inptr[i+16], zero);
+ temp1 = _mm_unpacklo_epi16(inptr[i+16], sign_bits);
+ temp2 = _mm_unpackhi_epi16(inptr[i+16], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+2)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+3)), temp2);
+ }
+ } else {
+ // Set to use the optimised transform for the column
+ optimised_cols = 1;
+ }
+ } else {
+ // Run the un-optimised row transform
+ for (i = 0; i < 16; ++i) {
+ vp9_highbd_idct16(input, outptr, bd);
+ input += 16;
+ outptr += 16;
+ }
+ }
+
+ if (optimised_cols) {
+ idct16_sse2(inptr, inptr + 16);
+
+ // Final round & shift and Reconstruction and Store
+ {
+ __m128i d[2];
+ for (i = 0; i < 16; i++) {
+ inptr[i ] = _mm_add_epi16(inptr[i ], rounding);
+ inptr[i+16] = _mm_add_epi16(inptr[i+16], rounding);
+ d[0] = _mm_loadu_si128((const __m128i *)(dest + stride*i));
+ d[1] = _mm_loadu_si128((const __m128i *)(dest + stride*i + 8));
+ inptr[i ] = _mm_srai_epi16(inptr[i ], 6);
+ inptr[i+16] = _mm_srai_epi16(inptr[i+16], 6);
+ d[0] = clamp_high_sse2(_mm_add_epi16(d[0], inptr[i ]), bd);
+ d[1] = clamp_high_sse2(_mm_add_epi16(d[1], inptr[i+16]), bd);
+ // Store
+ _mm_storeu_si128((__m128i *)(dest + stride*i), d[0]);
+ _mm_storeu_si128((__m128i *)(dest + stride*i + 8), d[1]);
+ }
+ }
+ } else {
+ // Run the un-optimised column transform
+ tran_low_t temp_in[16], temp_out[16];
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j * 16 + i];
+ vp9_highbd_idct16(temp_in, temp_out, bd);
+ for (j = 0; j < 16; ++j) {
+ dest[j * stride + i] = highbd_clip_pixel_add(
+ dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
+ }
+ }
+ }
+}
+
+void vp9_highbd_idct16x16_10_add_sse2(const tran_low_t *input, uint8_t *dest8,
+ int stride, int bd) {
+ tran_low_t out[16 * 16] = { 0 };
+ tran_low_t *outptr = out;
+ int i, j, test;
+ __m128i inptr[32];
+ __m128i min_input, max_input, temp1, temp2, sign_bits;
+ uint16_t * dest = CONVERT_TO_SHORTPTR(dest8);
+ const __m128i zero = _mm_set1_epi16(0);
+ const __m128i rounding = _mm_set1_epi16(32);
+ const __m128i max = _mm_set1_epi16(3155);
+ const __m128i min = _mm_set1_epi16(-3155);
+ int optimised_cols = 0;
+
+ // Load input into __m128i & pack to 16 bits
+ for (i = 0; i < 16; i++) {
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 16*i));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 16*i + 4));
+ inptr[i] = _mm_packs_epi32(temp1, temp2);
+ temp1 = _mm_loadu_si128((const __m128i *)(input + 16*i + 8));
+ temp2 = _mm_loadu_si128((const __m128i *)(input + 16*i + 12));
+ inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
+ }
+
+ // Find the min & max for the row transform
+ // Since all non-zero dct coefficients are in upper-left 4x4 area,
+ // we only need to consider first 4 rows here.
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 4; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (!test) {
+ // Do the row transform (N.B. This transposes inptr)
+ idct16_sse2(inptr, inptr + 16);
+
+ // Find the min & max for the column transform
+ // N.B. Only first 4 cols contain non-zero coeffs
+ max_input = _mm_max_epi16(inptr[0], inptr[1]);
+ min_input = _mm_min_epi16(inptr[0], inptr[1]);
+ for (i = 2; i < 16; i++) {
+ max_input = _mm_max_epi16(max_input, inptr[i]);
+ min_input = _mm_min_epi16(min_input, inptr[i]);
+ }
+ max_input = _mm_cmpgt_epi16(max_input, max);
+ min_input = _mm_cmplt_epi16(min_input, min);
+ temp1 = _mm_or_si128(max_input, min_input);
+ test = _mm_movemask_epi8(temp1);
+
+ if (test) {
+ // Use fact only first 4 rows contain non-zero coeffs
+ array_transpose_8x8(inptr, inptr);
+ array_transpose_8x8(inptr + 8, inptr + 16);
+ for (i = 0; i < 4; i++) {
+ sign_bits = _mm_cmplt_epi16(inptr[i], zero);
+ temp1 = _mm_unpacklo_epi16(inptr[i ], sign_bits);
+ temp2 = _mm_unpackhi_epi16(inptr[i ], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+1)), temp2);
+ sign_bits = _mm_cmplt_epi16(inptr[i+16], zero);
+ temp1 = _mm_unpacklo_epi16(inptr[i+16], sign_bits);
+ temp2 = _mm_unpackhi_epi16(inptr[i+16], sign_bits);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+2)), temp1);
+ _mm_storeu_si128((__m128i*)(outptr + 4*(i*4+3)), temp2);
+ }
+ } else {
+ // Set to use the optimised transform for the column
+ optimised_cols = 1;
+ }
+ } else {
+ // Run the un-optimised row transform
+ for (i = 0; i < 4; ++i) {
+ vp9_highbd_idct16(input, outptr, bd);
+ input += 16;
+ outptr += 16;
+ }
+ }
+
+ if (optimised_cols) {
+ idct16_sse2(inptr, inptr + 16);
+
+ // Final round & shift and Reconstruction and Store
+ {
+ __m128i d[2];
+ for (i = 0; i < 16; i++) {
+ inptr[i ] = _mm_add_epi16(inptr[i ], rounding);
+ inptr[i+16] = _mm_add_epi16(inptr[i+16], rounding);
+ d[0] = _mm_loadu_si128((const __m128i *)(dest + stride*i));
+ d[1] = _mm_loadu_si128((const __m128i *)(dest + stride*i + 8));
+ inptr[i ] = _mm_srai_epi16(inptr[i ], 6);
+ inptr[i+16] = _mm_srai_epi16(inptr[i+16], 6);
+ d[0] = clamp_high_sse2(_mm_add_epi16(d[0], inptr[i ]), bd);
+ d[1] = clamp_high_sse2(_mm_add_epi16(d[1], inptr[i+16]), bd);
+ // Store
+ _mm_storeu_si128((__m128i *)(dest + stride*i), d[0]);
+ _mm_storeu_si128((__m128i *)(dest + stride*i + 8), d[1]);
+ }
+ }
+ } else {
+ // Run the un-optimised column transform
+ tran_low_t temp_in[16], temp_out[16];
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j * 16 + i];
+ vp9_highbd_idct16(temp_in, temp_out, bd);
+ for (j = 0; j < 16; ++j) {
+ dest[j * stride + i] = highbd_clip_pixel_add(
+ dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
+ }
+ }
+ }
+}
+
+#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
- x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
- else
x->fwd_txm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vp9_highbd_fdct4x4;
+ else
+ x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
x->highbd_itxm_add = xd->lossless ? vp9_highbd_iwht4x4_add :
vp9_highbd_idct4x4_add;
#else
#include <emmintrin.h> // SSE2
#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vp9/encoder/vp9_dct.h"
#include "vpx_ports/mem.h"
-#define pair_set_epi32(a, b) \
- _mm_set_epi32((int)(b), (int)(a), (int)(b), (int)(a))
-
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
#if FDCT32x32_HIGH_PRECISION
-static INLINE __m128i k_madd_epi32(__m128i a, __m128i b) {
- __m128i buf0, buf1;
- buf0 = _mm_mul_epu32(a, b);
- a = _mm_srli_epi64(a, 32);
- b = _mm_srli_epi64(b, 32);
- buf1 = _mm_mul_epu32(a, b);
- return _mm_add_epi64(buf0, buf1);
+void vp9_fdct32x32_rows_c(const int16_t *intermediate, tran_low_t *out) {
+ int i, j;
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = intermediate[j * 32 + i];
+ vp9_fdct32(temp_in, temp_out, 0);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
}
-
-static INLINE __m128i k_packs_epi64(__m128i a, __m128i b) {
- __m128i buf0 = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0));
- __m128i buf1 = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0));
- return _mm_unpacklo_epi64(buf0, buf1);
+ #define HIGH_FDCT32x32_2D_C vp9_highbd_fdct32x32_c
+ #define HIGH_FDCT32x32_2D_ROWS_C vp9_fdct32x32_rows_c
+#else
+void vp9_fdct32x32_rd_rows_c(const int16_t *intermediate, tran_low_t *out) {
+ int i, j;
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = intermediate[j * 32 + i];
+ vp9_fdct32(temp_in, temp_out, 1);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] = temp_out[j];
+ }
}
-#endif
+ #define HIGH_FDCT32x32_2D_C vp9_highbd_fdct32x32_rd_c
+ #define HIGH_FDCT32x32_2D_ROWS_C vp9_fdct32x32_rd_rows_c
+#endif // FDCT32x32_HIGH_PRECISION
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif // DCT_HIGH_BIT_DEPTH
+
void FDCT32x32_2D(const int16_t *input,
- int16_t *output_org, int stride) {
+ tran_low_t *output_org, int stride) {
// Calculate pre-multiplied strides
const int str1 = stride;
const int str2 = 2 * stride;
const __m128i kOne = _mm_set1_epi16(1);
// Do the two transform/transpose passes
int pass;
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
for (pass = 0; pass < 2; ++pass) {
// We process eight columns (transposed rows in second pass) at a time.
int column_start;
__m128i in29 = _mm_loadu_si128((const __m128i *)(in + 29 * 32));
__m128i in30 = _mm_loadu_si128((const __m128i *)(in + 30 * 32));
__m128i in31 = _mm_loadu_si128((const __m128i *)(in + 31 * 32));
- step1[ 0] = _mm_add_epi16(in00, in31);
- step1[ 1] = _mm_add_epi16(in01, in30);
- step1[ 2] = _mm_add_epi16(in02, in29);
- step1[ 3] = _mm_add_epi16(in03, in28);
- step1[28] = _mm_sub_epi16(in03, in28);
- step1[29] = _mm_sub_epi16(in02, in29);
- step1[30] = _mm_sub_epi16(in01, in30);
- step1[31] = _mm_sub_epi16(in00, in31);
+ step1[0] = ADD_EPI16(in00, in31);
+ step1[1] = ADD_EPI16(in01, in30);
+ step1[2] = ADD_EPI16(in02, in29);
+ step1[3] = ADD_EPI16(in03, in28);
+ step1[28] = SUB_EPI16(in03, in28);
+ step1[29] = SUB_EPI16(in02, in29);
+ step1[30] = SUB_EPI16(in01, in30);
+ step1[31] = SUB_EPI16(in00, in31);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1[0], step1[1], step1[2],
+ step1[3], step1[28], step1[29], step1[30], step1[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
__m128i in04 = _mm_loadu_si128((const __m128i *)(in + 4 * 32));
__m128i in25 = _mm_loadu_si128((const __m128i *)(in + 25 * 32));
__m128i in26 = _mm_loadu_si128((const __m128i *)(in + 26 * 32));
__m128i in27 = _mm_loadu_si128((const __m128i *)(in + 27 * 32));
- step1[ 4] = _mm_add_epi16(in04, in27);
- step1[ 5] = _mm_add_epi16(in05, in26);
- step1[ 6] = _mm_add_epi16(in06, in25);
- step1[ 7] = _mm_add_epi16(in07, in24);
- step1[24] = _mm_sub_epi16(in07, in24);
- step1[25] = _mm_sub_epi16(in06, in25);
- step1[26] = _mm_sub_epi16(in05, in26);
- step1[27] = _mm_sub_epi16(in04, in27);
+ step1[4] = ADD_EPI16(in04, in27);
+ step1[5] = ADD_EPI16(in05, in26);
+ step1[6] = ADD_EPI16(in06, in25);
+ step1[7] = ADD_EPI16(in07, in24);
+ step1[24] = SUB_EPI16(in07, in24);
+ step1[25] = SUB_EPI16(in06, in25);
+ step1[26] = SUB_EPI16(in05, in26);
+ step1[27] = SUB_EPI16(in04, in27);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1[4], step1[5], step1[6],
+ step1[7], step1[24], step1[25],
+ step1[26], step1[27]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
__m128i in08 = _mm_loadu_si128((const __m128i *)(in + 8 * 32));
__m128i in21 = _mm_loadu_si128((const __m128i *)(in + 21 * 32));
__m128i in22 = _mm_loadu_si128((const __m128i *)(in + 22 * 32));
__m128i in23 = _mm_loadu_si128((const __m128i *)(in + 23 * 32));
- step1[ 8] = _mm_add_epi16(in08, in23);
- step1[ 9] = _mm_add_epi16(in09, in22);
- step1[10] = _mm_add_epi16(in10, in21);
- step1[11] = _mm_add_epi16(in11, in20);
- step1[20] = _mm_sub_epi16(in11, in20);
- step1[21] = _mm_sub_epi16(in10, in21);
- step1[22] = _mm_sub_epi16(in09, in22);
- step1[23] = _mm_sub_epi16(in08, in23);
+ step1[8] = ADD_EPI16(in08, in23);
+ step1[9] = ADD_EPI16(in09, in22);
+ step1[10] = ADD_EPI16(in10, in21);
+ step1[11] = ADD_EPI16(in11, in20);
+ step1[20] = SUB_EPI16(in11, in20);
+ step1[21] = SUB_EPI16(in10, in21);
+ step1[22] = SUB_EPI16(in09, in22);
+ step1[23] = SUB_EPI16(in08, in23);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1[8], step1[9], step1[10],
+ step1[11], step1[20], step1[21],
+ step1[22], step1[23]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
__m128i in12 = _mm_loadu_si128((const __m128i *)(in + 12 * 32));
__m128i in17 = _mm_loadu_si128((const __m128i *)(in + 17 * 32));
__m128i in18 = _mm_loadu_si128((const __m128i *)(in + 18 * 32));
__m128i in19 = _mm_loadu_si128((const __m128i *)(in + 19 * 32));
- step1[12] = _mm_add_epi16(in12, in19);
- step1[13] = _mm_add_epi16(in13, in18);
- step1[14] = _mm_add_epi16(in14, in17);
- step1[15] = _mm_add_epi16(in15, in16);
- step1[16] = _mm_sub_epi16(in15, in16);
- step1[17] = _mm_sub_epi16(in14, in17);
- step1[18] = _mm_sub_epi16(in13, in18);
- step1[19] = _mm_sub_epi16(in12, in19);
+ step1[12] = ADD_EPI16(in12, in19);
+ step1[13] = ADD_EPI16(in13, in18);
+ step1[14] = ADD_EPI16(in14, in17);
+ step1[15] = ADD_EPI16(in15, in16);
+ step1[16] = SUB_EPI16(in15, in16);
+ step1[17] = SUB_EPI16(in14, in17);
+ step1[18] = SUB_EPI16(in13, in18);
+ step1[19] = SUB_EPI16(in12, in19);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1[12], step1[13], step1[14],
+ step1[15], step1[16], step1[17],
+ step1[18], step1[19]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
}
// Stage 2
{
- step2[ 0] = _mm_add_epi16(step1[0], step1[15]);
- step2[ 1] = _mm_add_epi16(step1[1], step1[14]);
- step2[ 2] = _mm_add_epi16(step1[2], step1[13]);
- step2[ 3] = _mm_add_epi16(step1[3], step1[12]);
- step2[ 4] = _mm_add_epi16(step1[4], step1[11]);
- step2[ 5] = _mm_add_epi16(step1[5], step1[10]);
- step2[ 6] = _mm_add_epi16(step1[6], step1[ 9]);
- step2[ 7] = _mm_add_epi16(step1[7], step1[ 8]);
- step2[ 8] = _mm_sub_epi16(step1[7], step1[ 8]);
- step2[ 9] = _mm_sub_epi16(step1[6], step1[ 9]);
- step2[10] = _mm_sub_epi16(step1[5], step1[10]);
- step2[11] = _mm_sub_epi16(step1[4], step1[11]);
- step2[12] = _mm_sub_epi16(step1[3], step1[12]);
- step2[13] = _mm_sub_epi16(step1[2], step1[13]);
- step2[14] = _mm_sub_epi16(step1[1], step1[14]);
- step2[15] = _mm_sub_epi16(step1[0], step1[15]);
+ step2[0] = ADD_EPI16(step1[0], step1[15]);
+ step2[1] = ADD_EPI16(step1[1], step1[14]);
+ step2[2] = ADD_EPI16(step1[2], step1[13]);
+ step2[3] = ADD_EPI16(step1[3], step1[12]);
+ step2[4] = ADD_EPI16(step1[4], step1[11]);
+ step2[5] = ADD_EPI16(step1[5], step1[10]);
+ step2[6] = ADD_EPI16(step1[6], step1[ 9]);
+ step2[7] = ADD_EPI16(step1[7], step1[ 8]);
+ step2[8] = SUB_EPI16(step1[7], step1[ 8]);
+ step2[9] = SUB_EPI16(step1[6], step1[ 9]);
+ step2[10] = SUB_EPI16(step1[5], step1[10]);
+ step2[11] = SUB_EPI16(step1[4], step1[11]);
+ step2[12] = SUB_EPI16(step1[3], step1[12]);
+ step2[13] = SUB_EPI16(step1[2], step1[13]);
+ step2[14] = SUB_EPI16(step1[1], step1[14]);
+ step2[15] = SUB_EPI16(step1[0], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ step2[0], step2[1], step2[2], step2[3],
+ step2[4], step2[5], step2[6], step2[7],
+ step2[8], step2[9], step2[10], step2[11],
+ step2[12], step2[13], step2[14], step2[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s2_20_0 = _mm_unpacklo_epi16(step1[27], step1[20]);
step2[25] = _mm_packs_epi32(s2_25_6, s2_25_7);
step2[26] = _mm_packs_epi32(s2_26_6, s2_26_7);
step2[27] = _mm_packs_epi32(s2_27_6, s2_27_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step2[20], step2[21], step2[22],
+ step2[23], step2[24], step2[25],
+ step2[26], step2[27]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
#if !FDCT32x32_HIGH_PRECISION
__m128i s3_30_0 = _mm_cmplt_epi16(step1[30], kZero);
__m128i s3_31_0 = _mm_cmplt_epi16(step1[31], kZero);
- step2[ 0] = _mm_sub_epi16(step2[ 0], s3_00_0);
- step2[ 1] = _mm_sub_epi16(step2[ 1], s3_01_0);
- step2[ 2] = _mm_sub_epi16(step2[ 2], s3_02_0);
- step2[ 3] = _mm_sub_epi16(step2[ 3], s3_03_0);
- step2[ 4] = _mm_sub_epi16(step2[ 4], s3_04_0);
- step2[ 5] = _mm_sub_epi16(step2[ 5], s3_05_0);
- step2[ 6] = _mm_sub_epi16(step2[ 6], s3_06_0);
- step2[ 7] = _mm_sub_epi16(step2[ 7], s3_07_0);
- step2[ 8] = _mm_sub_epi16(step2[ 8], s2_08_0);
- step2[ 9] = _mm_sub_epi16(step2[ 9], s2_09_0);
- step2[10] = _mm_sub_epi16(step2[10], s3_10_0);
- step2[11] = _mm_sub_epi16(step2[11], s3_11_0);
- step2[12] = _mm_sub_epi16(step2[12], s3_12_0);
- step2[13] = _mm_sub_epi16(step2[13], s3_13_0);
- step2[14] = _mm_sub_epi16(step2[14], s2_14_0);
- step2[15] = _mm_sub_epi16(step2[15], s2_15_0);
- step1[16] = _mm_sub_epi16(step1[16], s3_16_0);
- step1[17] = _mm_sub_epi16(step1[17], s3_17_0);
- step1[18] = _mm_sub_epi16(step1[18], s3_18_0);
- step1[19] = _mm_sub_epi16(step1[19], s3_19_0);
- step2[20] = _mm_sub_epi16(step2[20], s3_20_0);
- step2[21] = _mm_sub_epi16(step2[21], s3_21_0);
- step2[22] = _mm_sub_epi16(step2[22], s3_22_0);
- step2[23] = _mm_sub_epi16(step2[23], s3_23_0);
- step2[24] = _mm_sub_epi16(step2[24], s3_24_0);
- step2[25] = _mm_sub_epi16(step2[25], s3_25_0);
- step2[26] = _mm_sub_epi16(step2[26], s3_26_0);
- step2[27] = _mm_sub_epi16(step2[27], s3_27_0);
- step1[28] = _mm_sub_epi16(step1[28], s3_28_0);
- step1[29] = _mm_sub_epi16(step1[29], s3_29_0);
- step1[30] = _mm_sub_epi16(step1[30], s3_30_0);
- step1[31] = _mm_sub_epi16(step1[31], s3_31_0);
-
- step2[ 0] = _mm_add_epi16(step2[ 0], kOne);
- step2[ 1] = _mm_add_epi16(step2[ 1], kOne);
- step2[ 2] = _mm_add_epi16(step2[ 2], kOne);
- step2[ 3] = _mm_add_epi16(step2[ 3], kOne);
- step2[ 4] = _mm_add_epi16(step2[ 4], kOne);
- step2[ 5] = _mm_add_epi16(step2[ 5], kOne);
- step2[ 6] = _mm_add_epi16(step2[ 6], kOne);
- step2[ 7] = _mm_add_epi16(step2[ 7], kOne);
- step2[ 8] = _mm_add_epi16(step2[ 8], kOne);
- step2[ 9] = _mm_add_epi16(step2[ 9], kOne);
+ step2[0] = SUB_EPI16(step2[ 0], s3_00_0);
+ step2[1] = SUB_EPI16(step2[ 1], s3_01_0);
+ step2[2] = SUB_EPI16(step2[ 2], s3_02_0);
+ step2[3] = SUB_EPI16(step2[ 3], s3_03_0);
+ step2[4] = SUB_EPI16(step2[ 4], s3_04_0);
+ step2[5] = SUB_EPI16(step2[ 5], s3_05_0);
+ step2[6] = SUB_EPI16(step2[ 6], s3_06_0);
+ step2[7] = SUB_EPI16(step2[ 7], s3_07_0);
+ step2[8] = SUB_EPI16(step2[ 8], s2_08_0);
+ step2[9] = SUB_EPI16(step2[ 9], s2_09_0);
+ step2[10] = SUB_EPI16(step2[10], s3_10_0);
+ step2[11] = SUB_EPI16(step2[11], s3_11_0);
+ step2[12] = SUB_EPI16(step2[12], s3_12_0);
+ step2[13] = SUB_EPI16(step2[13], s3_13_0);
+ step2[14] = SUB_EPI16(step2[14], s2_14_0);
+ step2[15] = SUB_EPI16(step2[15], s2_15_0);
+ step1[16] = SUB_EPI16(step1[16], s3_16_0);
+ step1[17] = SUB_EPI16(step1[17], s3_17_0);
+ step1[18] = SUB_EPI16(step1[18], s3_18_0);
+ step1[19] = SUB_EPI16(step1[19], s3_19_0);
+ step2[20] = SUB_EPI16(step2[20], s3_20_0);
+ step2[21] = SUB_EPI16(step2[21], s3_21_0);
+ step2[22] = SUB_EPI16(step2[22], s3_22_0);
+ step2[23] = SUB_EPI16(step2[23], s3_23_0);
+ step2[24] = SUB_EPI16(step2[24], s3_24_0);
+ step2[25] = SUB_EPI16(step2[25], s3_25_0);
+ step2[26] = SUB_EPI16(step2[26], s3_26_0);
+ step2[27] = SUB_EPI16(step2[27], s3_27_0);
+ step1[28] = SUB_EPI16(step1[28], s3_28_0);
+ step1[29] = SUB_EPI16(step1[29], s3_29_0);
+ step1[30] = SUB_EPI16(step1[30], s3_30_0);
+ step1[31] = SUB_EPI16(step1[31], s3_31_0);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x32(
+ step2[0], step2[1], step2[2], step2[3],
+ step2[4], step2[5], step2[6], step2[7],
+ step2[8], step2[9], step2[10], step2[11],
+ step2[12], step2[13], step2[14], step2[15],
+ step1[16], step1[17], step1[18], step1[19],
+ step2[20], step2[21], step2[22], step2[23],
+ step2[24], step2[25], step2[26], step2[27],
+ step1[28], step1[29], step1[30], step1[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ step2[0] = _mm_add_epi16(step2[ 0], kOne);
+ step2[1] = _mm_add_epi16(step2[ 1], kOne);
+ step2[2] = _mm_add_epi16(step2[ 2], kOne);
+ step2[3] = _mm_add_epi16(step2[ 3], kOne);
+ step2[4] = _mm_add_epi16(step2[ 4], kOne);
+ step2[5] = _mm_add_epi16(step2[ 5], kOne);
+ step2[6] = _mm_add_epi16(step2[ 6], kOne);
+ step2[7] = _mm_add_epi16(step2[ 7], kOne);
+ step2[8] = _mm_add_epi16(step2[ 8], kOne);
+ step2[9] = _mm_add_epi16(step2[ 9], kOne);
step2[10] = _mm_add_epi16(step2[10], kOne);
step2[11] = _mm_add_epi16(step2[11], kOne);
step2[12] = _mm_add_epi16(step2[12], kOne);
step1[30] = _mm_add_epi16(step1[30], kOne);
step1[31] = _mm_add_epi16(step1[31], kOne);
- step2[ 0] = _mm_srai_epi16(step2[ 0], 2);
- step2[ 1] = _mm_srai_epi16(step2[ 1], 2);
- step2[ 2] = _mm_srai_epi16(step2[ 2], 2);
- step2[ 3] = _mm_srai_epi16(step2[ 3], 2);
- step2[ 4] = _mm_srai_epi16(step2[ 4], 2);
- step2[ 5] = _mm_srai_epi16(step2[ 5], 2);
- step2[ 6] = _mm_srai_epi16(step2[ 6], 2);
- step2[ 7] = _mm_srai_epi16(step2[ 7], 2);
- step2[ 8] = _mm_srai_epi16(step2[ 8], 2);
- step2[ 9] = _mm_srai_epi16(step2[ 9], 2);
+ step2[0] = _mm_srai_epi16(step2[ 0], 2);
+ step2[1] = _mm_srai_epi16(step2[ 1], 2);
+ step2[2] = _mm_srai_epi16(step2[ 2], 2);
+ step2[3] = _mm_srai_epi16(step2[ 3], 2);
+ step2[4] = _mm_srai_epi16(step2[ 4], 2);
+ step2[5] = _mm_srai_epi16(step2[ 5], 2);
+ step2[6] = _mm_srai_epi16(step2[ 6], 2);
+ step2[7] = _mm_srai_epi16(step2[ 7], 2);
+ step2[8] = _mm_srai_epi16(step2[ 8], 2);
+ step2[9] = _mm_srai_epi16(step2[ 9], 2);
step2[10] = _mm_srai_epi16(step2[10], 2);
step2[11] = _mm_srai_epi16(step2[11], 2);
step2[12] = _mm_srai_epi16(step2[12], 2);
step1[30] = _mm_srai_epi16(step1[30], 2);
step1[31] = _mm_srai_epi16(step1[31], 2);
}
-#endif
+#endif // !FDCT32x32_HIGH_PRECISION
#if FDCT32x32_HIGH_PRECISION
if (pass == 0) {
#endif
// Stage 3
{
- step3[0] = _mm_add_epi16(step2[(8 - 1)], step2[0]);
- step3[1] = _mm_add_epi16(step2[(8 - 2)], step2[1]);
- step3[2] = _mm_add_epi16(step2[(8 - 3)], step2[2]);
- step3[3] = _mm_add_epi16(step2[(8 - 4)], step2[3]);
- step3[4] = _mm_sub_epi16(step2[(8 - 5)], step2[4]);
- step3[5] = _mm_sub_epi16(step2[(8 - 6)], step2[5]);
- step3[6] = _mm_sub_epi16(step2[(8 - 7)], step2[6]);
- step3[7] = _mm_sub_epi16(step2[(8 - 8)], step2[7]);
+ step3[0] = ADD_EPI16(step2[(8 - 1)], step2[0]);
+ step3[1] = ADD_EPI16(step2[(8 - 2)], step2[1]);
+ step3[2] = ADD_EPI16(step2[(8 - 3)], step2[2]);
+ step3[3] = ADD_EPI16(step2[(8 - 4)], step2[3]);
+ step3[4] = SUB_EPI16(step2[(8 - 5)], step2[4]);
+ step3[5] = SUB_EPI16(step2[(8 - 6)], step2[5]);
+ step3[6] = SUB_EPI16(step2[(8 - 7)], step2[6]);
+ step3[7] = SUB_EPI16(step2[(8 - 8)], step2[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step3[0], step3[1], step3[2],
+ step3[3], step3[4], step3[5],
+ step3[6], step3[7]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]);
step3[11] = _mm_packs_epi32(s3_11_6, s3_11_7);
step3[12] = _mm_packs_epi32(s3_12_6, s3_12_7);
step3[13] = _mm_packs_epi32(s3_13_6, s3_13_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(step3[10], step3[11],
+ step3[12], step3[13]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
- step3[16] = _mm_add_epi16(step2[23], step1[16]);
- step3[17] = _mm_add_epi16(step2[22], step1[17]);
- step3[18] = _mm_add_epi16(step2[21], step1[18]);
- step3[19] = _mm_add_epi16(step2[20], step1[19]);
- step3[20] = _mm_sub_epi16(step1[19], step2[20]);
- step3[21] = _mm_sub_epi16(step1[18], step2[21]);
- step3[22] = _mm_sub_epi16(step1[17], step2[22]);
- step3[23] = _mm_sub_epi16(step1[16], step2[23]);
- step3[24] = _mm_sub_epi16(step1[31], step2[24]);
- step3[25] = _mm_sub_epi16(step1[30], step2[25]);
- step3[26] = _mm_sub_epi16(step1[29], step2[26]);
- step3[27] = _mm_sub_epi16(step1[28], step2[27]);
- step3[28] = _mm_add_epi16(step2[27], step1[28]);
- step3[29] = _mm_add_epi16(step2[26], step1[29]);
- step3[30] = _mm_add_epi16(step2[25], step1[30]);
- step3[31] = _mm_add_epi16(step2[24], step1[31]);
+ step3[16] = ADD_EPI16(step2[23], step1[16]);
+ step3[17] = ADD_EPI16(step2[22], step1[17]);
+ step3[18] = ADD_EPI16(step2[21], step1[18]);
+ step3[19] = ADD_EPI16(step2[20], step1[19]);
+ step3[20] = SUB_EPI16(step1[19], step2[20]);
+ step3[21] = SUB_EPI16(step1[18], step2[21]);
+ step3[22] = SUB_EPI16(step1[17], step2[22]);
+ step3[23] = SUB_EPI16(step1[16], step2[23]);
+ step3[24] = SUB_EPI16(step1[31], step2[24]);
+ step3[25] = SUB_EPI16(step1[30], step2[25]);
+ step3[26] = SUB_EPI16(step1[29], step2[26]);
+ step3[27] = SUB_EPI16(step1[28], step2[27]);
+ step3[28] = ADD_EPI16(step2[27], step1[28]);
+ step3[29] = ADD_EPI16(step2[26], step1[29]);
+ step3[30] = ADD_EPI16(step2[25], step1[30]);
+ step3[31] = ADD_EPI16(step2[24], step1[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ step3[16], step3[17], step3[18], step3[19],
+ step3[20], step3[21], step3[22], step3[23],
+ step3[24], step3[25], step3[26], step3[27],
+ step3[28], step3[29], step3[30], step3[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
// Stage 4
{
- step1[ 0] = _mm_add_epi16(step3[ 3], step3[ 0]);
- step1[ 1] = _mm_add_epi16(step3[ 2], step3[ 1]);
- step1[ 2] = _mm_sub_epi16(step3[ 1], step3[ 2]);
- step1[ 3] = _mm_sub_epi16(step3[ 0], step3[ 3]);
- step1[ 8] = _mm_add_epi16(step3[11], step2[ 8]);
- step1[ 9] = _mm_add_epi16(step3[10], step2[ 9]);
- step1[10] = _mm_sub_epi16(step2[ 9], step3[10]);
- step1[11] = _mm_sub_epi16(step2[ 8], step3[11]);
- step1[12] = _mm_sub_epi16(step2[15], step3[12]);
- step1[13] = _mm_sub_epi16(step2[14], step3[13]);
- step1[14] = _mm_add_epi16(step3[13], step2[14]);
- step1[15] = _mm_add_epi16(step3[12], step2[15]);
+ step1[0] = ADD_EPI16(step3[ 3], step3[ 0]);
+ step1[1] = ADD_EPI16(step3[ 2], step3[ 1]);
+ step1[2] = SUB_EPI16(step3[ 1], step3[ 2]);
+ step1[3] = SUB_EPI16(step3[ 0], step3[ 3]);
+ step1[8] = ADD_EPI16(step3[11], step2[ 8]);
+ step1[9] = ADD_EPI16(step3[10], step2[ 9]);
+ step1[10] = SUB_EPI16(step2[ 9], step3[10]);
+ step1[11] = SUB_EPI16(step2[ 8], step3[11]);
+ step1[12] = SUB_EPI16(step2[15], step3[12]);
+ step1[13] = SUB_EPI16(step2[14], step3[13]);
+ step1[14] = ADD_EPI16(step3[13], step2[14]);
+ step1[15] = ADD_EPI16(step3[12], step2[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ step1[0], step1[1], step1[2], step1[3],
+ step1[4], step1[5], step1[6], step1[7],
+ step1[8], step1[9], step1[10], step1[11],
+ step1[12], step1[13], step1[14], step1[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s1_05_0 = _mm_unpacklo_epi16(step3[6], step3[5]);
// Combine
step1[5] = _mm_packs_epi32(s1_05_6, s1_05_7);
step1[6] = _mm_packs_epi32(s1_06_6, s1_06_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(step1[5], step1[6]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s1_18_0 = _mm_unpacklo_epi16(step3[18], step3[29]);
step1[27] = _mm_packs_epi32(s1_27_6, s1_27_7);
step1[28] = _mm_packs_epi32(s1_28_6, s1_28_7);
step1[29] = _mm_packs_epi32(s1_29_6, s1_29_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1[18], step1[19], step1[20],
+ step1[21], step1[26], step1[27],
+ step1[28], step1[29]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
// Stage 5
{
- step2[4] = _mm_add_epi16(step1[5], step3[4]);
- step2[5] = _mm_sub_epi16(step3[4], step1[5]);
- step2[6] = _mm_sub_epi16(step3[7], step1[6]);
- step2[7] = _mm_add_epi16(step1[6], step3[7]);
+ step2[4] = ADD_EPI16(step1[5], step3[4]);
+ step2[5] = SUB_EPI16(step3[4], step1[5]);
+ step2[6] = SUB_EPI16(step3[7], step1[6]);
+ step2[7] = ADD_EPI16(step1[6], step3[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(step2[4], step2[5],
+ step2[6], step2[7]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i out_00_0 = _mm_unpacklo_epi16(step1[0], step1[1]);
out[16] = _mm_packs_epi32(out_16_6, out_16_7);
out[ 8] = _mm_packs_epi32(out_08_6, out_08_7);
out[24] = _mm_packs_epi32(out_24_6, out_24_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(out[0], out[16], out[8], out[24]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s2_09_0 = _mm_unpacklo_epi16(step1[ 9], step1[14]);
step2[10] = _mm_packs_epi32(s2_10_6, s2_10_7);
step2[13] = _mm_packs_epi32(s2_13_6, s2_13_7);
step2[14] = _mm_packs_epi32(s2_14_6, s2_14_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(step2[9], step2[10],
+ step2[13], step2[14]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
- step2[16] = _mm_add_epi16(step1[19], step3[16]);
- step2[17] = _mm_add_epi16(step1[18], step3[17]);
- step2[18] = _mm_sub_epi16(step3[17], step1[18]);
- step2[19] = _mm_sub_epi16(step3[16], step1[19]);
- step2[20] = _mm_sub_epi16(step3[23], step1[20]);
- step2[21] = _mm_sub_epi16(step3[22], step1[21]);
- step2[22] = _mm_add_epi16(step1[21], step3[22]);
- step2[23] = _mm_add_epi16(step1[20], step3[23]);
- step2[24] = _mm_add_epi16(step1[27], step3[24]);
- step2[25] = _mm_add_epi16(step1[26], step3[25]);
- step2[26] = _mm_sub_epi16(step3[25], step1[26]);
- step2[27] = _mm_sub_epi16(step3[24], step1[27]);
- step2[28] = _mm_sub_epi16(step3[31], step1[28]);
- step2[29] = _mm_sub_epi16(step3[30], step1[29]);
- step2[30] = _mm_add_epi16(step1[29], step3[30]);
- step2[31] = _mm_add_epi16(step1[28], step3[31]);
+ step2[16] = ADD_EPI16(step1[19], step3[16]);
+ step2[17] = ADD_EPI16(step1[18], step3[17]);
+ step2[18] = SUB_EPI16(step3[17], step1[18]);
+ step2[19] = SUB_EPI16(step3[16], step1[19]);
+ step2[20] = SUB_EPI16(step3[23], step1[20]);
+ step2[21] = SUB_EPI16(step3[22], step1[21]);
+ step2[22] = ADD_EPI16(step1[21], step3[22]);
+ step2[23] = ADD_EPI16(step1[20], step3[23]);
+ step2[24] = ADD_EPI16(step1[27], step3[24]);
+ step2[25] = ADD_EPI16(step1[26], step3[25]);
+ step2[26] = SUB_EPI16(step3[25], step1[26]);
+ step2[27] = SUB_EPI16(step3[24], step1[27]);
+ step2[28] = SUB_EPI16(step3[31], step1[28]);
+ step2[29] = SUB_EPI16(step3[30], step1[29]);
+ step2[30] = ADD_EPI16(step1[29], step3[30]);
+ step2[31] = ADD_EPI16(step1[28], step3[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ step2[16], step2[17], step2[18], step2[19],
+ step2[20], step2[21], step2[22], step2[23],
+ step2[24], step2[25], step2[26], step2[27],
+ step2[28], step2[29], step2[30], step2[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
// Stage 6
{
const __m128i out_28_6 = _mm_srai_epi32(out_28_4, DCT_CONST_BITS);
const __m128i out_28_7 = _mm_srai_epi32(out_28_5, DCT_CONST_BITS);
// Combine
- out[ 4] = _mm_packs_epi32(out_04_6, out_04_7);
+ out[4] = _mm_packs_epi32(out_04_6, out_04_7);
out[20] = _mm_packs_epi32(out_20_6, out_20_7);
out[12] = _mm_packs_epi32(out_12_6, out_12_7);
out[28] = _mm_packs_epi32(out_28_6, out_28_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(out[4], out[20], out[12], out[28]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
- step3[ 8] = _mm_add_epi16(step2[ 9], step1[ 8]);
- step3[ 9] = _mm_sub_epi16(step1[ 8], step2[ 9]);
- step3[10] = _mm_sub_epi16(step1[11], step2[10]);
- step3[11] = _mm_add_epi16(step2[10], step1[11]);
- step3[12] = _mm_add_epi16(step2[13], step1[12]);
- step3[13] = _mm_sub_epi16(step1[12], step2[13]);
- step3[14] = _mm_sub_epi16(step1[15], step2[14]);
- step3[15] = _mm_add_epi16(step2[14], step1[15]);
+ step3[8] = ADD_EPI16(step2[ 9], step1[ 8]);
+ step3[9] = SUB_EPI16(step1[ 8], step2[ 9]);
+ step3[10] = SUB_EPI16(step1[11], step2[10]);
+ step3[11] = ADD_EPI16(step2[10], step1[11]);
+ step3[12] = ADD_EPI16(step2[13], step1[12]);
+ step3[13] = SUB_EPI16(step1[12], step2[13]);
+ step3[14] = SUB_EPI16(step1[15], step2[14]);
+ step3[15] = ADD_EPI16(step2[14], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step3[8], step3[9], step3[10],
+ step3[11], step3[12], step3[13],
+ step3[14], step3[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i s3_17_0 = _mm_unpacklo_epi16(step2[17], step2[30]);
step3[26] = _mm_packs_epi32(s3_26_6, s3_26_7);
step3[29] = _mm_packs_epi32(s3_29_6, s3_29_7);
step3[30] = _mm_packs_epi32(s3_30_6, s3_30_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step3[17], step3[18], step3[21],
+ step3[22], step3[25], step3[26],
+ step3[29], step3[30]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
// Stage 7
{
out[22] = _mm_packs_epi32(out_22_6, out_22_7);
out[14] = _mm_packs_epi32(out_14_6, out_14_7);
out[30] = _mm_packs_epi32(out_30_6, out_30_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[2], out[18], out[10], out[26],
+ out[6], out[22], out[14], out[30]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
- step1[16] = _mm_add_epi16(step3[17], step2[16]);
- step1[17] = _mm_sub_epi16(step2[16], step3[17]);
- step1[18] = _mm_sub_epi16(step2[19], step3[18]);
- step1[19] = _mm_add_epi16(step3[18], step2[19]);
- step1[20] = _mm_add_epi16(step3[21], step2[20]);
- step1[21] = _mm_sub_epi16(step2[20], step3[21]);
- step1[22] = _mm_sub_epi16(step2[23], step3[22]);
- step1[23] = _mm_add_epi16(step3[22], step2[23]);
- step1[24] = _mm_add_epi16(step3[25], step2[24]);
- step1[25] = _mm_sub_epi16(step2[24], step3[25]);
- step1[26] = _mm_sub_epi16(step2[27], step3[26]);
- step1[27] = _mm_add_epi16(step3[26], step2[27]);
- step1[28] = _mm_add_epi16(step3[29], step2[28]);
- step1[29] = _mm_sub_epi16(step2[28], step3[29]);
- step1[30] = _mm_sub_epi16(step2[31], step3[30]);
- step1[31] = _mm_add_epi16(step3[30], step2[31]);
+ step1[16] = ADD_EPI16(step3[17], step2[16]);
+ step1[17] = SUB_EPI16(step2[16], step3[17]);
+ step1[18] = SUB_EPI16(step2[19], step3[18]);
+ step1[19] = ADD_EPI16(step3[18], step2[19]);
+ step1[20] = ADD_EPI16(step3[21], step2[20]);
+ step1[21] = SUB_EPI16(step2[20], step3[21]);
+ step1[22] = SUB_EPI16(step2[23], step3[22]);
+ step1[23] = ADD_EPI16(step3[22], step2[23]);
+ step1[24] = ADD_EPI16(step3[25], step2[24]);
+ step1[25] = SUB_EPI16(step2[24], step3[25]);
+ step1[26] = SUB_EPI16(step2[27], step3[26]);
+ step1[27] = ADD_EPI16(step3[26], step2[27]);
+ step1[28] = ADD_EPI16(step3[29], step2[28]);
+ step1[29] = SUB_EPI16(step2[28], step3[29]);
+ step1[30] = SUB_EPI16(step2[31], step3[30]);
+ step1[31] = ADD_EPI16(step3[30], step2[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ step1[16], step1[17], step1[18], step1[19],
+ step1[20], step1[21], step1[22], step1[23],
+ step1[24], step1[25], step1[26], step1[27],
+ step1[28], step1[29], step1[30], step1[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
// Final stage --- outputs indices are bit-reversed.
{
out[23] = _mm_packs_epi32(out_23_6, out_23_7);
out[15] = _mm_packs_epi32(out_15_6, out_15_7);
out[31] = _mm_packs_epi32(out_31_6, out_31_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[1], out[17], out[9], out[25],
+ out[7], out[23], out[15], out[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i out_05_0 = _mm_unpacklo_epi16(step1[20], step1[27]);
out[19] = _mm_packs_epi32(out_19_6, out_19_7);
out[11] = _mm_packs_epi32(out_11_6, out_11_7);
out[27] = _mm_packs_epi32(out_27_6, out_27_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[5], out[21], out[13], out[29],
+ out[3], out[19], out[11], out[27]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
#if FDCT32x32_HIGH_PRECISION
} else {
// TODO(jingning): manually inline k_madd_epi32_ to further hide
// instruction latency.
- v[ 0] = k_madd_epi32(u[0], k32_p16_m16);
- v[ 1] = k_madd_epi32(u[1], k32_p16_m16);
- v[ 2] = k_madd_epi32(u[2], k32_p16_m16);
- v[ 3] = k_madd_epi32(u[3], k32_p16_m16);
- v[ 4] = k_madd_epi32(u[0], k32_p16_p16);
- v[ 5] = k_madd_epi32(u[1], k32_p16_p16);
- v[ 6] = k_madd_epi32(u[2], k32_p16_p16);
- v[ 7] = k_madd_epi32(u[3], k32_p16_p16);
-
+ v[0] = k_madd_epi32(u[0], k32_p16_m16);
+ v[1] = k_madd_epi32(u[1], k32_p16_m16);
+ v[2] = k_madd_epi32(u[2], k32_p16_m16);
+ v[3] = k_madd_epi32(u[3], k32_p16_m16);
+ v[4] = k_madd_epi32(u[0], k32_p16_p16);
+ v[5] = k_madd_epi32(u[1], k32_p16_p16);
+ v[6] = k_madd_epi32(u[2], k32_p16_p16);
+ v[7] = k_madd_epi32(u[3], k32_p16_p16);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_8(v[0], v[1], v[2], v[3], v[4], v[5],
+ v[6], v[7], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[0] = k_packs_epi64(v[0], v[1]);
u[1] = k_packs_epi64(v[2], v[3]);
u[2] = k_packs_epi64(v[4], v[5]);
v[30] = k_madd_epi32(u[ 2], k32_p24_p08);
v[31] = k_madd_epi32(u[ 3], k32_p24_p08);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15],
+ v[16], v[17], v[18], v[19], v[20], v[21], v[22], v[23],
+ v[24], v[25], v[26], v[27], v[28], v[29], v[30], v[31], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
v[14] = k_madd_epi32(u[6], k32_m08_p24);
v[15] = k_madd_epi32(u[7], k32_m08_p24);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[0] = k_packs_epi64(v[0], v[1]);
u[1] = k_packs_epi64(v[2], v[3]);
u[2] = k_packs_epi64(v[4], v[5]);
out[16] = _mm_packs_epi32(u[2], u[3]);
out[ 8] = _mm_packs_epi32(u[4], u[5]);
out[24] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(out[0], out[16], out[8], out[24]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
v[14] = k_madd_epi32(u[2], k32_p24_p08);
v[15] = k_madd_epi32(u[3], k32_p24_p08);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[0] = k_packs_epi64(v[0], v[1]);
u[1] = k_packs_epi64(v[2], v[3]);
u[2] = k_packs_epi64(v[4], v[5]);
v[14] = k_madd_epi32(u[14], k32_m04_p28);
v[15] = k_madd_epi32(u[15], k32_m04_p28);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[0] = k_packs_epi64(v[0], v[1]);
u[1] = k_packs_epi64(v[2], v[3]);
u[2] = k_packs_epi64(v[4], v[5]);
out[20] = _mm_packs_epi32(u[2], u[3]);
out[12] = _mm_packs_epi32(u[4], u[5]);
out[28] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(out[4], out[20], out[12], out[28]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
lstep3[16] = _mm_add_epi32(lstep2[18], lstep1[16]);
v[30] = k_madd_epi32(u[ 2], k32_p28_p04);
v[31] = k_madd_epi32(u[ 3], k32_p28_p04);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15],
+ v[16], v[17], v[18], v[19], v[20], v[21], v[22], v[23],
+ v[24], v[25], v[26], v[27], v[28], v[29], v[30], v[31], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
v[30] = k_madd_epi32(u[ 2], k32_m02_p30);
v[31] = k_madd_epi32(u[ 3], k32_m02_p30);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15],
+ v[16], v[17], v[18], v[19], v[20], v[21], v[22], v[23],
+ v[24], v[25], v[26], v[27], v[28], v[29], v[30], v[31], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
out[22] = _mm_packs_epi32(u[10], u[11]);
out[14] = _mm_packs_epi32(u[12], u[13]);
out[30] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[2], out[18], out[10], out[26],
+ out[6], out[22], out[14], out[30]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
lstep1[32] = _mm_add_epi32(lstep3[34], lstep2[32]);
v[30] = k_madd_epi32(u[ 2], k32_m01_p31);
v[31] = k_madd_epi32(u[ 3], k32_m01_p31);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15],
+ v[16], v[17], v[18], v[19], v[20], v[21], v[22], v[23],
+ v[24], v[25], v[26], v[27], v[28], v[29], v[30], v[31], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
out[23] = _mm_packs_epi32(u[10], u[11]);
out[15] = _mm_packs_epi32(u[12], u[13]);
out[31] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[1], out[17], out[9], out[25],
+ out[7], out[23], out[15], out[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
{
const __m128i k32_p27_p05 = pair_set_epi32(cospi_27_64, cospi_5_64);
v[30] = k_madd_epi32(u[ 2], k32_m05_p27);
v[31] = k_madd_epi32(u[ 3], k32_m05_p27);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
+ v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15],
+ v[16], v[17], v[18], v[19], v[20], v[21], v[22], v[23],
+ v[24], v[25], v[26], v[27], v[28], v[29], v[30], v[31], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
out[19] = _mm_packs_epi32(u[10], u[11]);
out[11] = _mm_packs_epi32(u[12], u[13]);
out[27] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(out[5], out[21], out[13], out[29],
+ out[3], out[19], out[11], out[27]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
}
}
-#endif
+#endif // FDCT32x32_HIGH_PRECISION
// Transpose the results, do it as four 8x8 transposes.
{
int transpose_block;
- int16_t *output;
- if (0 == pass) {
- output = &intermediate[column_start * 32];
- } else {
- output = &output_org[column_start * 32];
- }
+ int16_t *output0 = &intermediate[column_start * 32];
+ tran_low_t *output1 = &output_org[column_start * 32];
for (transpose_block = 0; transpose_block < 4; ++transpose_block) {
__m128i *this_out = &out[8 * transpose_block];
// 00 01 02 03 04 05 06 07
}
// Note: even though all these stores are aligned, using the aligned
// intrinsic make the code slightly slower.
- _mm_storeu_si128((__m128i *)(output + 0 * 32), tr2_0);
- _mm_storeu_si128((__m128i *)(output + 1 * 32), tr2_1);
- _mm_storeu_si128((__m128i *)(output + 2 * 32), tr2_2);
- _mm_storeu_si128((__m128i *)(output + 3 * 32), tr2_3);
- _mm_storeu_si128((__m128i *)(output + 4 * 32), tr2_4);
- _mm_storeu_si128((__m128i *)(output + 5 * 32), tr2_5);
- _mm_storeu_si128((__m128i *)(output + 6 * 32), tr2_6);
- _mm_storeu_si128((__m128i *)(output + 7 * 32), tr2_7);
- // Process next 8x8
- output += 8;
+ if (pass == 0) {
+ _mm_storeu_si128((__m128i *)(output0 + 0 * 32), tr2_0);
+ _mm_storeu_si128((__m128i *)(output0 + 1 * 32), tr2_1);
+ _mm_storeu_si128((__m128i *)(output0 + 2 * 32), tr2_2);
+ _mm_storeu_si128((__m128i *)(output0 + 3 * 32), tr2_3);
+ _mm_storeu_si128((__m128i *)(output0 + 4 * 32), tr2_4);
+ _mm_storeu_si128((__m128i *)(output0 + 5 * 32), tr2_5);
+ _mm_storeu_si128((__m128i *)(output0 + 6 * 32), tr2_6);
+ _mm_storeu_si128((__m128i *)(output0 + 7 * 32), tr2_7);
+ // Process next 8x8
+ output0 += 8;
+ } else {
+ storeu_output(tr2_0, (output1 + 0 * 32));
+ storeu_output(tr2_1, (output1 + 1 * 32));
+ storeu_output(tr2_2, (output1 + 2 * 32));
+ storeu_output(tr2_3, (output1 + 3 * 32));
+ storeu_output(tr2_4, (output1 + 4 * 32));
+ storeu_output(tr2_5, (output1 + 5 * 32));
+ storeu_output(tr2_6, (output1 + 6 * 32));
+ storeu_output(tr2_7, (output1 + 7 * 32));
+ // Process next 8x8
+ output1 += 8;
+ }
}
}
}
}
} // NOLINT
+
+#undef ADD_EPI16
+#undef SUB_EPI16
+#undef HIGH_FDCT32x32_2D_C
+#undef HIGH_FDCT32x32_2D_ROWS_C
--- /dev/null
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h> // SSE2
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/vp9_dct.h"
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vpx_ports/mem.h"
+
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif
+
+void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // This 2D transform implements 4 vertical 1D transforms followed
+ // by 4 horizontal 1D transforms. The multiplies and adds are as given
+ // by Chen, Smith and Fralick ('77). The commands for moving the data
+ // around have been minimized by hand.
+ // For the purposes of the comments, the 16 inputs are referred to at i0
+ // through iF (in raster order), intermediate variables are a0, b0, c0
+ // through f, and correspond to the in-place computations mapped to input
+ // locations. The outputs, o0 through oF are labeled according to the
+ // output locations.
+
+ // Constants
+ // These are the coefficients used for the multiplies.
+ // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
+ // where cospi_N_64 = cos(N pi /64)
+ const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ -cospi_8_64, -cospi_24_64,
+ -cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ -cospi_24_64, cospi_8_64,
+ -cospi_24_64, cospi_8_64);
+
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // This second rounding constant saves doing some extra adds at the end
+ const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+ +(DCT_CONST_ROUNDING << 1));
+ const int DCT_CONST_BITS2 = DCT_CONST_BITS+2;
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ __m128i in0, in1;
+#if DCT_HIGH_BIT_DEPTH
+ __m128i cmp0, cmp1;
+ int test, overflow;
+#endif
+
+ // Load inputs.
+ in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+ (input + 2 * stride)));
+ in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+ (input + 3 * stride)));
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+#if DCT_HIGH_BIT_DEPTH
+ // Check inputs small enough to use optimised code
+ cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00)));
+ cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00)));
+ test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
+ if (test) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // multiply by 16 to give some extra precision
+ in0 = _mm_slli_epi16(in0, 4);
+ in1 = _mm_slli_epi16(in1, 4);
+ // if (i == 0 && input[0]) input[0] += 1;
+ // add 1 to the upper left pixel if it is non-zero, which helps reduce
+ // the round-trip error
+ {
+ // The mask will only contain whether the first value is zero, all
+ // other comparison will fail as something shifted by 4 (above << 4)
+ // can never be equal to one. To increment in the non-zero case, we
+ // add the mask and one for the first element:
+ // - if zero, mask = -1, v = v - 1 + 1 = v
+ // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
+ __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
+ in0 = _mm_add_epi16(in0, mask);
+ in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
+ }
+ // There are 4 total stages, alternating between an add/subtract stage
+ // followed by an multiply-and-add stage.
+ {
+ // Stage 1: Add/subtract
+
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+ const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
+ const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
+ // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
+ // r1 = [iC i8 iD i9 iE iA iF iB]
+ const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
+ const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
+ // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
+ // r3 = [iC i8 iD i9 iF iB iE iA]
+
+ const __m128i t0 = _mm_add_epi16(r2, r3);
+ const __m128i t1 = _mm_sub_epi16(r2, r3);
+ // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
+ // t1 = [aC a8 aD a9 aF aB aE aA]
+
+ // Stage 2: multiply by constants (which gets us into 32 bits).
+ // The constants needed here are:
+ // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
+ // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
+ // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
+ // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
+ // Then add and right-shift to get back to 16-bit range
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // w0 = [b0 b1 b7 b6]
+ // w1 = [b8 b9 bF bE]
+ // w2 = [b4 b5 b3 b2]
+ // w3 = [bC bD bB bA]
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(x0, x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
+ // x1 = [b4 b5 b3 b2 bC bD bB bA]
+ in0 = _mm_shuffle_epi32(x0, 0xD8);
+ in1 = _mm_shuffle_epi32(x1, 0x8D);
+ // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
+ // in1 = [b3 b2 bB bA b4 b5 bC bD]
+ }
+ {
+ // vertical DCTs finished. Now we do the horizontal DCTs.
+ // Stage 3: Add/subtract
+
+ const __m128i t0 = ADD_EPI16(in0, in1);
+ const __m128i t1 = SUB_EPI16(in0, in1);
+ // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
+ // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(t0, t1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // Stage 4: multiply by constants (which gets us into 32 bits).
+ {
+ // The constants needed here are:
+ // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
+ // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
+ // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
+ // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
+ const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
+ const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
+ // Then add and right-shift to get back to 16-bit range
+ // but this combines the final right-shift as well to save operations
+ // This unusual rounding operations is to maintain bit-accurate
+ // compatibility with the c version of this function which has two
+ // rounding steps in a row.
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
+ // w0 = [o0 o4 o8 oC]
+ // w1 = [o2 o6 oA oE]
+ // w2 = [o1 o5 o9 oD]
+ // w3 = [o3 o7 oB oF]
+ // remember the o's are numbered according to the correct output location
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(x0, x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // x0 = [o0 o4 o8 oC o2 o6 oA oE]
+ // x1 = [o1 o5 o9 oD o3 o7 oB oF]
+ const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
+ const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
+ // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
+ // y1 = [o2 o3 o6 o7 oA oB oE oF]
+ in0 = _mm_unpacklo_epi32(y0, y1);
+ // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
+ in1 = _mm_unpackhi_epi32(y0, y1);
+ // in1 = [o8 o9 oA oB oC oD oE oF]
+ }
+ }
+ }
+ // Post-condition (v + 1) >> 2 is now incorporated into previous
+ // add and right-shift commands. Only 2 store instructions needed
+ // because we are using the fact that 1/3 are stored just after 0/2.
+ storeu_output(in0, output + 0 * 4);
+ storeu_output(in1, output + 2 * 4);
+}
+
+
+void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(in0, in7);
+ const __m128i q1 = ADD_EPI16(in1, in6);
+ const __m128i q2 = ADD_EPI16(in2, in5);
+ const __m128i q3 = ADD_EPI16(in3, in4);
+ const __m128i q4 = SUB_EPI16(in3, in4);
+ const __m128i q5 = SUB_EPI16(in2, in5);
+ const __m128i q6 = SUB_EPI16(in1, in6);
+ const __m128i q7 = SUB_EPI16(in0, in7);
+#if DCT_HIGH_BIT_DEPTH
+ if (pass == 1) {
+ overflow = check_epi16_overflow_x8(q0, q1, q2, q3, q4, q5, q6, q7);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(r0, r1, r2, r3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res0, res4, res2, res6);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(r0, r1);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(x0, x1, x2, x3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res1, res7, res5, res3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ // store results
+ store_output(in0, (output + 0 * 8));
+ store_output(in1, (output + 1 * 8));
+ store_output(in2, (output + 2 * 8));
+ store_output(in3, (output + 3 * 8));
+ store_output(in4, (output + 4 * 8));
+ store_output(in5, (output + 5 * 8));
+ store_output(in6, (output + 6 * 8));
+ store_output(in7, (output + 7 * 8));
+ }
+}
+
+void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256);
+ const int16_t *in = input;
+ int16_t *out0 = intermediate;
+ tran_low_t *out1 = output;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kOne = _mm_set1_epi16(1);
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ // We process eight columns (transposed rows in second pass) at a time.
+ int column_start;
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ for (column_start = 0; column_start < 16; column_start += 8) {
+ __m128i in00, in01, in02, in03, in04, in05, in06, in07;
+ __m128i in08, in09, in10, in11, in12, in13, in14, in15;
+ __m128i input0, input1, input2, input3, input4, input5, input6, input7;
+ __m128i step1_0, step1_1, step1_2, step1_3;
+ __m128i step1_4, step1_5, step1_6, step1_7;
+ __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
+ __m128i step3_0, step3_1, step3_2, step3_3;
+ __m128i step3_4, step3_5, step3_6, step3_7;
+ __m128i res00, res01, res02, res03, res04, res05, res06, res07;
+ __m128i res08, res09, res10, res11, res12, res13, res14, res15;
+ // Load and pre-condition input.
+ if (0 == pass) {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
+ // x = x << 2
+ in00 = _mm_slli_epi16(in00, 2);
+ in01 = _mm_slli_epi16(in01, 2);
+ in02 = _mm_slli_epi16(in02, 2);
+ in03 = _mm_slli_epi16(in03, 2);
+ in04 = _mm_slli_epi16(in04, 2);
+ in05 = _mm_slli_epi16(in05, 2);
+ in06 = _mm_slli_epi16(in06, 2);
+ in07 = _mm_slli_epi16(in07, 2);
+ in08 = _mm_slli_epi16(in08, 2);
+ in09 = _mm_slli_epi16(in09, 2);
+ in10 = _mm_slli_epi16(in10, 2);
+ in11 = _mm_slli_epi16(in11, 2);
+ in12 = _mm_slli_epi16(in12, 2);
+ in13 = _mm_slli_epi16(in13, 2);
+ in14 = _mm_slli_epi16(in14, 2);
+ in15 = _mm_slli_epi16(in15, 2);
+ } else {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
+ // x = (x + 1) >> 2
+ in00 = _mm_add_epi16(in00, kOne);
+ in01 = _mm_add_epi16(in01, kOne);
+ in02 = _mm_add_epi16(in02, kOne);
+ in03 = _mm_add_epi16(in03, kOne);
+ in04 = _mm_add_epi16(in04, kOne);
+ in05 = _mm_add_epi16(in05, kOne);
+ in06 = _mm_add_epi16(in06, kOne);
+ in07 = _mm_add_epi16(in07, kOne);
+ in08 = _mm_add_epi16(in08, kOne);
+ in09 = _mm_add_epi16(in09, kOne);
+ in10 = _mm_add_epi16(in10, kOne);
+ in11 = _mm_add_epi16(in11, kOne);
+ in12 = _mm_add_epi16(in12, kOne);
+ in13 = _mm_add_epi16(in13, kOne);
+ in14 = _mm_add_epi16(in14, kOne);
+ in15 = _mm_add_epi16(in15, kOne);
+ in00 = _mm_srai_epi16(in00, 2);
+ in01 = _mm_srai_epi16(in01, 2);
+ in02 = _mm_srai_epi16(in02, 2);
+ in03 = _mm_srai_epi16(in03, 2);
+ in04 = _mm_srai_epi16(in04, 2);
+ in05 = _mm_srai_epi16(in05, 2);
+ in06 = _mm_srai_epi16(in06, 2);
+ in07 = _mm_srai_epi16(in07, 2);
+ in08 = _mm_srai_epi16(in08, 2);
+ in09 = _mm_srai_epi16(in09, 2);
+ in10 = _mm_srai_epi16(in10, 2);
+ in11 = _mm_srai_epi16(in11, 2);
+ in12 = _mm_srai_epi16(in12, 2);
+ in13 = _mm_srai_epi16(in13, 2);
+ in14 = _mm_srai_epi16(in14, 2);
+ in15 = _mm_srai_epi16(in15, 2);
+ }
+ in += 8;
+ // Calculate input for the first 8 results.
+ {
+ input0 = ADD_EPI16(in00, in15);
+ input1 = ADD_EPI16(in01, in14);
+ input2 = ADD_EPI16(in02, in13);
+ input3 = ADD_EPI16(in03, in12);
+ input4 = ADD_EPI16(in04, in11);
+ input5 = ADD_EPI16(in05, in10);
+ input6 = ADD_EPI16(in06, in09);
+ input7 = ADD_EPI16(in07, in08);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(input0, input1, input2, input3,
+ input4, input5, input6, input7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Calculate input for the next 8 results.
+ {
+ step1_0 = SUB_EPI16(in07, in08);
+ step1_1 = SUB_EPI16(in06, in09);
+ step1_2 = SUB_EPI16(in05, in10);
+ step1_3 = SUB_EPI16(in04, in11);
+ step1_4 = SUB_EPI16(in03, in12);
+ step1_5 = SUB_EPI16(in02, in13);
+ step1_6 = SUB_EPI16(in01, in14);
+ step1_7 = SUB_EPI16(in00, in15);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1_0, step1_1, step1_2, step1_3,
+ step1_4, step1_5, step1_6, step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(input0, input7);
+ const __m128i q1 = ADD_EPI16(input1, input6);
+ const __m128i q2 = ADD_EPI16(input2, input5);
+ const __m128i q3 = ADD_EPI16(input3, input4);
+ const __m128i q4 = SUB_EPI16(input3, input4);
+ const __m128i q5 = SUB_EPI16(input2, input5);
+ const __m128i q6 = SUB_EPI16(input1, input6);
+ const __m128i q7 = SUB_EPI16(input0, input7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(q0, q1, q2, q3, q4, q5, q6, q7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(r0, r1, r2, r3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ res00 = mult_round_shift(t0, t1, k__cospi_p16_p16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res08 = mult_round_shift(t0, t1, k__cospi_p16_m16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res04 = mult_round_shift(t2, t3, k__cospi_p24_p08,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res12 = mult_round_shift(t2, t3, k__cospi_m08_p24,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res00, res08, res04, res12);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i r0 = mult_round_shift(d0, d1, k__cospi_p16_m16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ const __m128i r1 = mult_round_shift(d0, d1, k__cospi_p16_p16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(r0, r1);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(x0, x1, x2, x3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ res02 = mult_round_shift(t0, t1, k__cospi_p28_p04,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res14 = mult_round_shift(t0, t1, k__cospi_m04_p28,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res10 = mult_round_shift(t2, t3, k__cospi_p12_p20,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res06 = mult_round_shift(t2, t3, k__cospi_m20_p12,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res02, res14, res10, res06);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+ step2_2 = mult_round_shift(t0, t1, k__cospi_p16_m16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_3 = mult_round_shift(t2, t3, k__cospi_p16_m16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(t0, t1, k__cospi_p16_p16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_4 = mult_round_shift(t2, t3, k__cospi_p16_p16,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(step2_2, step2_3, step2_5,
+ step2_4);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 3
+ {
+ step3_0 = ADD_EPI16(step1_0, step2_3);
+ step3_1 = ADD_EPI16(step1_1, step2_2);
+ step3_2 = SUB_EPI16(step1_1, step2_2);
+ step3_3 = SUB_EPI16(step1_0, step2_3);
+ step3_4 = SUB_EPI16(step1_7, step2_4);
+ step3_5 = SUB_EPI16(step1_6, step2_5);
+ step3_6 = ADD_EPI16(step1_6, step2_5);
+ step3_7 = ADD_EPI16(step1_7, step2_4);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step3_0, step3_1, step3_2, step3_3,
+ step3_4, step3_5, step3_6, step3_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 4
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+ const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+ const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+ const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+ step2_1 = mult_round_shift(t0, t1, k__cospi_m08_p24,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_2 = mult_round_shift(t2, t3, k__cospi_p24_p08,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_6 = mult_round_shift(t0, t1, k__cospi_p24_p08,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(t2, t3, k__cospi_p08_m24,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(step2_1, step2_2, step2_6,
+ step2_5);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 5
+ {
+ step1_0 = ADD_EPI16(step3_0, step2_1);
+ step1_1 = SUB_EPI16(step3_0, step2_1);
+ step1_2 = ADD_EPI16(step3_3, step2_2);
+ step1_3 = SUB_EPI16(step3_3, step2_2);
+ step1_4 = SUB_EPI16(step3_4, step2_5);
+ step1_5 = ADD_EPI16(step3_4, step2_5);
+ step1_6 = SUB_EPI16(step3_7, step2_6);
+ step1_7 = ADD_EPI16(step3_7, step2_6);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(step1_0, step1_1, step1_2, step1_3,
+ step1_4, step1_5, step1_6, step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 6
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+ res01 = mult_round_shift(t0, t1, k__cospi_p30_p02,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res09 = mult_round_shift(t2, t3, k__cospi_p14_p18,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res15 = mult_round_shift(t0, t1, k__cospi_m02_p30,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res07 = mult_round_shift(t2, t3, k__cospi_m18_p14,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res01, res09, res15, res07);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+ res05 = mult_round_shift(t0, t1, k__cospi_p22_p10,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res13 = mult_round_shift(t2, t3, k__cospi_p06_p26,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res11 = mult_round_shift(t0, t1, k__cospi_m10_p22,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res03 = mult_round_shift(t2, t3, k__cospi_m26_p06,
+ k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(res05, res13, res11, res03);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Transpose the results, do it as two 8x8 transposes.
+ transpose_and_output8x8(res00, res01, res02, res03,
+ res04, res05, res06, res07,
+ pass, out0, out1);
+ transpose_and_output8x8(res08, res09, res10, res11,
+ res12, res13, res14, res15,
+ pass, out0 + 8, out1 + 8);
+ if (pass == 0) {
+ out0 += 8*16;
+ } else {
+ out1 += 8*16;
+ }
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ }
+}
+
+#undef ADD_EPI16
+#undef SUB_EPI16
psllw m2, 2
psllw m3, 2
+%if CONFIG_VP9_HIGHBITDEPTH
+ pxor m4, m4
+ pxor m5, m5
+ pcmpgtw m4, m0
+ pcmpgtw m5, m1
+ movq m6, m0
+ movq m7, m1
+ punpcklwd m0, m4
+ punpcklwd m1, m5
+ punpckhwd m6, m4
+ punpckhwd m7, m5
+ movq [outputq], m0
+ movq [outputq + 8], m6
+ movq [outputq + 16], m1
+ movq [outputq + 24], m7
+ pxor m4, m4
+ pxor m5, m5
+ pcmpgtw m4, m2
+ pcmpgtw m5, m3
+ movq m6, m2
+ movq m7, m3
+ punpcklwd m2, m4
+ punpcklwd m3, m5
+ punpckhwd m6, m4
+ punpckhwd m7, m5
+ movq [outputq + 32], m2
+ movq [outputq + 40], m6
+ movq [outputq + 48], m3
+ movq [outputq + 56], m7
+%else
movq [outputq], m0
movq [outputq + 8], m1
movq [outputq + 16], m2
movq [outputq + 24], m3
+%endif
RET
#include <emmintrin.h> // SSE2
#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/vp9_dct.h"
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
#include "vpx_ports/mem.h"
-#include "vp9/common/x86/vp9_idct_intrin_sse2.h"
-
-void vp9_fdct4x4_1_sse2(const int16_t *input, int16_t *output, int stride) {
+void vp9_fdct4x4_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
__m128i in0, in1;
__m128i tmp;
const __m128i zero = _mm_setzero_si128();
in1 = _mm_add_epi32(tmp, in0);
in0 = _mm_slli_epi32(in1, 1);
- _mm_store_si128((__m128i *)(output), in0);
+ store_output(in0, output);
}
-void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) {
- // This 2D transform implements 4 vertical 1D transforms followed
- // by 4 horizontal 1D transforms. The multiplies and adds are as given
- // by Chen, Smith and Fralick ('77). The commands for moving the data
- // around have been minimized by hand.
- // For the purposes of the comments, the 16 inputs are referred to at i0
- // through iF (in raster order), intermediate variables are a0, b0, c0
- // through f, and correspond to the in-place computations mapped to input
- // locations. The outputs, o0 through oF are labeled according to the
- // output locations.
-
- // Constants
- // These are the coefficients used for the multiplies.
- // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
- // where cospi_N_64 = cos(N pi /64)
- const __m128i k__cospi_A = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64);
- const __m128i k__cospi_B = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64);
- const __m128i k__cospi_C = _mm_setr_epi16((int16_t)cospi_8_64, (int16_t)cospi_24_64,
- (int16_t)cospi_8_64, (int16_t)cospi_24_64,
- (int16_t)cospi_24_64, (int16_t)-cospi_8_64,
- (int16_t)cospi_24_64, (int16_t)-cospi_8_64);
- const __m128i k__cospi_D = _mm_setr_epi16((int16_t)cospi_24_64, (int16_t)-cospi_8_64,
- (int16_t)cospi_24_64, (int16_t)-cospi_8_64,
- (int16_t)cospi_8_64, (int16_t)cospi_24_64,
- (int16_t)cospi_8_64, (int16_t)cospi_24_64);
- const __m128i k__cospi_E = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)cospi_16_64);
- const __m128i k__cospi_F = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64,
- (int16_t)cospi_16_64, (int16_t)-cospi_16_64);
- const __m128i k__cospi_G = _mm_setr_epi16((int16_t)cospi_8_64, (int16_t)cospi_24_64,
- (int16_t)cospi_8_64, (int16_t)cospi_24_64,
- (int16_t)-cospi_8_64, (int16_t)-cospi_24_64,
- (int16_t)-cospi_8_64, (int16_t)-cospi_24_64);
- const __m128i k__cospi_H = _mm_setr_epi16((int16_t)cospi_24_64, (int16_t)-cospi_8_64,
- (int16_t)cospi_24_64, (int16_t)-cospi_8_64,
- (int16_t)-cospi_24_64, (int16_t)cospi_8_64,
- (int16_t)-cospi_24_64, (int16_t)cospi_8_64);
-
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
- // This second rounding constant saves doing some extra adds at the end
- const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
- +(DCT_CONST_ROUNDING << 1));
- const int DCT_CONST_BITS2 = DCT_CONST_BITS+2;
- const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
- const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
- __m128i in0, in1;
-
- // Load inputs.
- {
- in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
- in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
- in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
- (input + 2 * stride)));
- in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
- (input + 3 * stride)));
- // in0 = [i0 i1 i2 i3 iC iD iE iF]
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
-
-
- // multiply by 16 to give some extra precision
- in0 = _mm_slli_epi16(in0, 4);
- in1 = _mm_slli_epi16(in1, 4);
- // if (i == 0 && input[0]) input[0] += 1;
- // add 1 to the upper left pixel if it is non-zero, which helps reduce
- // the round-trip error
- {
- // The mask will only contain whether the first value is zero, all
- // other comparison will fail as something shifted by 4 (above << 4)
- // can never be equal to one. To increment in the non-zero case, we
- // add the mask and one for the first element:
- // - if zero, mask = -1, v = v - 1 + 1 = v
- // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
- __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
- in0 = _mm_add_epi16(in0, mask);
- in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
- }
- }
- // There are 4 total stages, alternating between an add/subtract stage
- // followed by an multiply-and-add stage.
- {
- // Stage 1: Add/subtract
-
- // in0 = [i0 i1 i2 i3 iC iD iE iF]
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
- const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
- const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
- // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
- // r1 = [iC i8 iD i9 iE iA iF iB]
- const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
- const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
- // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
- // r3 = [iC i8 iD i9 iF iB iE iA]
-
- const __m128i t0 = _mm_add_epi16(r2, r3);
- const __m128i t1 = _mm_sub_epi16(r2, r3);
- // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
- // t1 = [aC a8 aD a9 aF aB aE aA]
-
- // Stage 2: multiply by constants (which gets us into 32 bits).
- // The constants needed here are:
- // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
- // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
- // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
- // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
- // Then add and right-shift to get back to 16-bit range
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // w0 = [b0 b1 b7 b6]
- // w1 = [b8 b9 bF bE]
- // w2 = [b4 b5 b3 b2]
- // w3 = [bC bD bB bA]
- const __m128i x0 = _mm_packs_epi32(w0, w1);
- const __m128i x1 = _mm_packs_epi32(w2, w3);
- // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
- // x1 = [b4 b5 b3 b2 bC bD bB bA]
- in0 = _mm_shuffle_epi32(x0, 0xD8);
- in1 = _mm_shuffle_epi32(x1, 0x8D);
- // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
- // in1 = [b3 b2 bB bA b4 b5 bC bD]
- }
- {
- // vertical DCTs finished. Now we do the horizontal DCTs.
- // Stage 3: Add/subtract
-
- const __m128i t0 = _mm_add_epi16(in0, in1);
- const __m128i t1 = _mm_sub_epi16(in0, in1);
- // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
- // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
-
- // Stage 4: multiply by constants (which gets us into 32 bits).
- // The constants needed here are:
- // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
- // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
- // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
- // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
- const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
- const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
- // Then add and right-shift to get back to 16-bit range
- // but this combines the final right-shift as well to save operations
- // This unusual rounding operations is to maintain bit-accurate
- // compatibility with the c version of this function which has two
- // rounding steps in a row.
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
- // w0 = [o0 o4 o8 oC]
- // w1 = [o2 o6 oA oE]
- // w2 = [o1 o5 o9 oD]
- // w3 = [o3 o7 oB oF]
- // remember the o's are numbered according to the correct output location
- const __m128i x0 = _mm_packs_epi32(w0, w1);
- const __m128i x1 = _mm_packs_epi32(w2, w3);
- // x0 = [o0 o4 o8 oC o2 o6 oA oE]
- // x1 = [o1 o5 o9 oD o3 o7 oB oF]
- const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
- const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
- // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
- // y1 = [o2 o3 o6 o7 oA oB oE oF]
- in0 = _mm_unpacklo_epi32(y0, y1);
- // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
- in1 = _mm_unpackhi_epi32(y0, y1);
- // in1 = [o8 o9 oA oB oC oD oE oF]
- }
- // Post-condition (v + 1) >> 2 is now incorporated into previous
- // add and right-shift commands. Only 2 store instructions needed
- // because we are using the fact that 1/3 are stored just after 0/2.
- {
- _mm_storeu_si128((__m128i *)(output + 0 * 4), in0);
- _mm_storeu_si128((__m128i *)(output + 2 * 4), in1);
- }
-}
-
-
static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
int stride) {
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
}
-static INLINE void write_buffer_4x4(int16_t *output, __m128i *res) {
+static INLINE void write_buffer_4x4(tran_low_t *output, __m128i *res) {
const __m128i kOne = _mm_set1_epi16(1);
__m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
__m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
__m128i out23 = _mm_add_epi16(in23, kOne);
out01 = _mm_srai_epi16(out01, 2);
out23 = _mm_srai_epi16(out23, 2);
- _mm_store_si128((__m128i *)(output + 0 * 8), out01);
- _mm_store_si128((__m128i *)(output + 1 * 8), out23);
+ store_output(out01, (output + 0 * 8));
+ store_output(out23, (output + 1 * 8));
}
static INLINE void transpose_4x4(__m128i *res) {
transpose_4x4(in);
}
-void vp9_fht4x4_sse2(const int16_t *input, int16_t *output,
+void vp9_fht4x4_sse2(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
__m128i in[4];
}
}
-void vp9_fdct8x8_1_sse2(const int16_t *input, int16_t *output, int stride) {
+void vp9_fdct8x8_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
__m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
__m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
__m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
in0 = _mm_srli_si128(sum, 8);
in1 = _mm_add_epi32(sum, in0);
- _mm_store_si128((__m128i *)(output), in1);
-}
-
-void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
- int pass;
- // Constants
- // When we use them, in one case, they are all the same. In all others
- // it's a pair of them that we need to repeat four times. This is done
- // by constructing the 32 bit constant corresponding to that pair.
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
- // Load input
- __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
- __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
- __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
- __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
- __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
- __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
- __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
- __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
- // Pre-condition input (shift by two)
- in0 = _mm_slli_epi16(in0, 2);
- in1 = _mm_slli_epi16(in1, 2);
- in2 = _mm_slli_epi16(in2, 2);
- in3 = _mm_slli_epi16(in3, 2);
- in4 = _mm_slli_epi16(in4, 2);
- in5 = _mm_slli_epi16(in5, 2);
- in6 = _mm_slli_epi16(in6, 2);
- in7 = _mm_slli_epi16(in7, 2);
-
- // We do two passes, first the columns, then the rows. The results of the
- // first pass are transposed so that the same column code can be reused. The
- // results of the second pass are also transposed so that the rows (processed
- // as columns) are put back in row positions.
- for (pass = 0; pass < 2; pass++) {
- // To store results of each pass before the transpose.
- __m128i res0, res1, res2, res3, res4, res5, res6, res7;
- // Add/subtract
- const __m128i q0 = _mm_add_epi16(in0, in7);
- const __m128i q1 = _mm_add_epi16(in1, in6);
- const __m128i q2 = _mm_add_epi16(in2, in5);
- const __m128i q3 = _mm_add_epi16(in3, in4);
- const __m128i q4 = _mm_sub_epi16(in3, in4);
- const __m128i q5 = _mm_sub_epi16(in2, in5);
- const __m128i q6 = _mm_sub_epi16(in1, in6);
- const __m128i q7 = _mm_sub_epi16(in0, in7);
- // Work on first four results
- {
- // Add/subtract
- const __m128i r0 = _mm_add_epi16(q0, q3);
- const __m128i r1 = _mm_add_epi16(q1, q2);
- const __m128i r2 = _mm_sub_epi16(q1, q2);
- const __m128i r3 = _mm_sub_epi16(q0, q3);
- // Interleave to do the multiply by constants which gets us into 32bits
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res0 = _mm_packs_epi32(w0, w1);
- res4 = _mm_packs_epi32(w2, w3);
- res2 = _mm_packs_epi32(w4, w5);
- res6 = _mm_packs_epi32(w6, w7);
- }
- // Work on next four results
- {
- // Interleave to do the multiply by constants which gets us into 32bits
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
- const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
- const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
- const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
- const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
- // dct_const_round_shift
- const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
- const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
- const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
- const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
- const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
- const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
- const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
- const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
- // Combine
- const __m128i r0 = _mm_packs_epi32(s0, s1);
- const __m128i r1 = _mm_packs_epi32(s2, s3);
- // Add/subtract
- const __m128i x0 = _mm_add_epi16(q4, r0);
- const __m128i x1 = _mm_sub_epi16(q4, r0);
- const __m128i x2 = _mm_sub_epi16(q7, r1);
- const __m128i x3 = _mm_add_epi16(q7, r1);
- // Interleave to do the multiply by constants which gets us into 32bits
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res1 = _mm_packs_epi32(w0, w1);
- res7 = _mm_packs_epi32(w2, w3);
- res5 = _mm_packs_epi32(w4, w5);
- res3 = _mm_packs_epi32(w6, w7);
- }
- // Transpose the 8x8.
- {
- // 00 01 02 03 04 05 06 07
- // 10 11 12 13 14 15 16 17
- // 20 21 22 23 24 25 26 27
- // 30 31 32 33 34 35 36 37
- // 40 41 42 43 44 45 46 47
- // 50 51 52 53 54 55 56 57
- // 60 61 62 63 64 65 66 67
- // 70 71 72 73 74 75 76 77
- const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
- const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
- const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
- const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
- const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
- const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
- const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
- const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
- // 00 10 01 11 02 12 03 13
- // 20 30 21 31 22 32 23 33
- // 04 14 05 15 06 16 07 17
- // 24 34 25 35 26 36 27 37
- // 40 50 41 51 42 52 43 53
- // 60 70 61 71 62 72 63 73
- // 54 54 55 55 56 56 57 57
- // 64 74 65 75 66 76 67 77
- const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
- const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
- const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
- const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
- const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
- const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
- const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
- const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
- // 00 10 20 30 01 11 21 31
- // 40 50 60 70 41 51 61 71
- // 02 12 22 32 03 13 23 33
- // 42 52 62 72 43 53 63 73
- // 04 14 24 34 05 15 21 36
- // 44 54 64 74 45 55 61 76
- // 06 16 26 36 07 17 27 37
- // 46 56 66 76 47 57 67 77
- in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
- in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
- in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
- in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
- in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
- in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
- in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
- in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
- // 00 10 20 30 40 50 60 70
- // 01 11 21 31 41 51 61 71
- // 02 12 22 32 42 52 62 72
- // 03 13 23 33 43 53 63 73
- // 04 14 24 34 44 54 64 74
- // 05 15 25 35 45 55 65 75
- // 06 16 26 36 46 56 66 76
- // 07 17 27 37 47 57 67 77
- }
- }
- // Post-condition output and store it
- {
- // Post-condition (division by two)
- // division of two 16 bits signed numbers using shifts
- // n / 2 = (n - (n >> 15)) >> 1
- const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
- const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
- const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
- const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
- const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
- const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
- const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
- const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
- in0 = _mm_sub_epi16(in0, sign_in0);
- in1 = _mm_sub_epi16(in1, sign_in1);
- in2 = _mm_sub_epi16(in2, sign_in2);
- in3 = _mm_sub_epi16(in3, sign_in3);
- in4 = _mm_sub_epi16(in4, sign_in4);
- in5 = _mm_sub_epi16(in5, sign_in5);
- in6 = _mm_sub_epi16(in6, sign_in6);
- in7 = _mm_sub_epi16(in7, sign_in7);
- in0 = _mm_srai_epi16(in0, 1);
- in1 = _mm_srai_epi16(in1, 1);
- in2 = _mm_srai_epi16(in2, 1);
- in3 = _mm_srai_epi16(in3, 1);
- in4 = _mm_srai_epi16(in4, 1);
- in5 = _mm_srai_epi16(in5, 1);
- in6 = _mm_srai_epi16(in6, 1);
- in7 = _mm_srai_epi16(in7, 1);
- // store results
- _mm_store_si128((__m128i *)(output + 0 * 8), in0);
- _mm_store_si128((__m128i *)(output + 1 * 8), in1);
- _mm_store_si128((__m128i *)(output + 2 * 8), in2);
- _mm_store_si128((__m128i *)(output + 3 * 8), in3);
- _mm_store_si128((__m128i *)(output + 4 * 8), in4);
- _mm_store_si128((__m128i *)(output + 5 * 8), in5);
- _mm_store_si128((__m128i *)(output + 6 * 8), in6);
- _mm_store_si128((__m128i *)(output + 7 * 8), in7);
- }
+ store_output(in1, output);
}
void vp9_fdct8x8_quant_sse2(const int16_t *input, int stride,
}
// write 8x8 array
-static INLINE void write_buffer_8x8(int16_t *output, __m128i *res, int stride) {
- _mm_store_si128((__m128i *)(output + 0 * stride), res[0]);
- _mm_store_si128((__m128i *)(output + 1 * stride), res[1]);
- _mm_store_si128((__m128i *)(output + 2 * stride), res[2]);
- _mm_store_si128((__m128i *)(output + 3 * stride), res[3]);
- _mm_store_si128((__m128i *)(output + 4 * stride), res[4]);
- _mm_store_si128((__m128i *)(output + 5 * stride), res[5]);
- _mm_store_si128((__m128i *)(output + 6 * stride), res[6]);
- _mm_store_si128((__m128i *)(output + 7 * stride), res[7]);
+static INLINE void write_buffer_8x8(tran_low_t *output, __m128i *res,
+ int stride) {
+ store_output(res[0], (output + 0 * stride));
+ store_output(res[1], (output + 1 * stride));
+ store_output(res[2], (output + 2 * stride));
+ store_output(res[3], (output + 3 * stride));
+ store_output(res[4], (output + 4 * stride));
+ store_output(res[5], (output + 5 * stride));
+ store_output(res[6], (output + 6 * stride));
+ store_output(res[7], (output + 7 * stride));
+}
+
+// perform in-place transpose
+static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
+ const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 44 54 45 55 46 56 47 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 25 35
+ // 44 54 64 74 45 55 65 75
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
+ res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
+ res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
+ res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
+ res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
+ res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
+ res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
+ res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
}
void fdct8_sse2(__m128i *in) {
array_transpose_8x8(in, in);
}
-void vp9_fht8x8_sse2(const int16_t *input, int16_t *output,
+void vp9_fht8x8_sse2(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
__m128i in[8];
}
}
-void vp9_fdct16x16_1_sse2(const int16_t *input, int16_t *output, int stride) {
+void vp9_fdct16x16_1_sse2(const int16_t *input, tran_low_t *output,
+ int stride) {
__m128i in0, in1, in2, in3;
__m128i u0, u1;
__m128i sum = _mm_setzero_si128();
in1 = _mm_add_epi32(sum, in0);
in1 = _mm_srai_epi32(in1, 1);
- _mm_store_si128((__m128i *)(output), in1);
-}
-
-void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256);
- const int16_t *in = input;
- int16_t *out = intermediate;
- // Constants
- // When we use them, in one case, they are all the same. In all others
- // it's a pair of them that we need to repeat four times. This is done
- // by constructing the 32 bit constant corresponding to that pair.
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
- const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
- const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
- const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
- const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
- const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
- const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
- const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
- const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
- const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
- const __m128i kOne = _mm_set1_epi16(1);
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- // We process eight columns (transposed rows in second pass) at a time.
- int column_start;
- for (column_start = 0; column_start < 16; column_start += 8) {
- __m128i in00, in01, in02, in03, in04, in05, in06, in07;
- __m128i in08, in09, in10, in11, in12, in13, in14, in15;
- __m128i input0, input1, input2, input3, input4, input5, input6, input7;
- __m128i step1_0, step1_1, step1_2, step1_3;
- __m128i step1_4, step1_5, step1_6, step1_7;
- __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
- __m128i step3_0, step3_1, step3_2, step3_3;
- __m128i step3_4, step3_5, step3_6, step3_7;
- __m128i res00, res01, res02, res03, res04, res05, res06, res07;
- __m128i res08, res09, res10, res11, res12, res13, res14, res15;
- // Load and pre-condition input.
- if (0 == pass) {
- in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
- in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
- in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
- in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
- in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
- in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
- in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
- in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
- in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
- in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
- in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
- in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
- in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
- in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
- in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
- in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
- // x = x << 2
- in00 = _mm_slli_epi16(in00, 2);
- in01 = _mm_slli_epi16(in01, 2);
- in02 = _mm_slli_epi16(in02, 2);
- in03 = _mm_slli_epi16(in03, 2);
- in04 = _mm_slli_epi16(in04, 2);
- in05 = _mm_slli_epi16(in05, 2);
- in06 = _mm_slli_epi16(in06, 2);
- in07 = _mm_slli_epi16(in07, 2);
- in08 = _mm_slli_epi16(in08, 2);
- in09 = _mm_slli_epi16(in09, 2);
- in10 = _mm_slli_epi16(in10, 2);
- in11 = _mm_slli_epi16(in11, 2);
- in12 = _mm_slli_epi16(in12, 2);
- in13 = _mm_slli_epi16(in13, 2);
- in14 = _mm_slli_epi16(in14, 2);
- in15 = _mm_slli_epi16(in15, 2);
- } else {
- in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
- in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
- in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
- in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
- in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
- in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
- in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
- in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
- in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
- in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
- in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
- in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
- in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
- in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
- in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
- in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
- // x = (x + 1) >> 2
- in00 = _mm_add_epi16(in00, kOne);
- in01 = _mm_add_epi16(in01, kOne);
- in02 = _mm_add_epi16(in02, kOne);
- in03 = _mm_add_epi16(in03, kOne);
- in04 = _mm_add_epi16(in04, kOne);
- in05 = _mm_add_epi16(in05, kOne);
- in06 = _mm_add_epi16(in06, kOne);
- in07 = _mm_add_epi16(in07, kOne);
- in08 = _mm_add_epi16(in08, kOne);
- in09 = _mm_add_epi16(in09, kOne);
- in10 = _mm_add_epi16(in10, kOne);
- in11 = _mm_add_epi16(in11, kOne);
- in12 = _mm_add_epi16(in12, kOne);
- in13 = _mm_add_epi16(in13, kOne);
- in14 = _mm_add_epi16(in14, kOne);
- in15 = _mm_add_epi16(in15, kOne);
- in00 = _mm_srai_epi16(in00, 2);
- in01 = _mm_srai_epi16(in01, 2);
- in02 = _mm_srai_epi16(in02, 2);
- in03 = _mm_srai_epi16(in03, 2);
- in04 = _mm_srai_epi16(in04, 2);
- in05 = _mm_srai_epi16(in05, 2);
- in06 = _mm_srai_epi16(in06, 2);
- in07 = _mm_srai_epi16(in07, 2);
- in08 = _mm_srai_epi16(in08, 2);
- in09 = _mm_srai_epi16(in09, 2);
- in10 = _mm_srai_epi16(in10, 2);
- in11 = _mm_srai_epi16(in11, 2);
- in12 = _mm_srai_epi16(in12, 2);
- in13 = _mm_srai_epi16(in13, 2);
- in14 = _mm_srai_epi16(in14, 2);
- in15 = _mm_srai_epi16(in15, 2);
- }
- in += 8;
- // Calculate input for the first 8 results.
- {
- input0 = _mm_add_epi16(in00, in15);
- input1 = _mm_add_epi16(in01, in14);
- input2 = _mm_add_epi16(in02, in13);
- input3 = _mm_add_epi16(in03, in12);
- input4 = _mm_add_epi16(in04, in11);
- input5 = _mm_add_epi16(in05, in10);
- input6 = _mm_add_epi16(in06, in09);
- input7 = _mm_add_epi16(in07, in08);
- }
- // Calculate input for the next 8 results.
- {
- step1_0 = _mm_sub_epi16(in07, in08);
- step1_1 = _mm_sub_epi16(in06, in09);
- step1_2 = _mm_sub_epi16(in05, in10);
- step1_3 = _mm_sub_epi16(in04, in11);
- step1_4 = _mm_sub_epi16(in03, in12);
- step1_5 = _mm_sub_epi16(in02, in13);
- step1_6 = _mm_sub_epi16(in01, in14);
- step1_7 = _mm_sub_epi16(in00, in15);
- }
- // Work on the first eight values; fdct8(input, even_results);
- {
- // Add/subtract
- const __m128i q0 = _mm_add_epi16(input0, input7);
- const __m128i q1 = _mm_add_epi16(input1, input6);
- const __m128i q2 = _mm_add_epi16(input2, input5);
- const __m128i q3 = _mm_add_epi16(input3, input4);
- const __m128i q4 = _mm_sub_epi16(input3, input4);
- const __m128i q5 = _mm_sub_epi16(input2, input5);
- const __m128i q6 = _mm_sub_epi16(input1, input6);
- const __m128i q7 = _mm_sub_epi16(input0, input7);
- // Work on first four results
- {
- // Add/subtract
- const __m128i r0 = _mm_add_epi16(q0, q3);
- const __m128i r1 = _mm_add_epi16(q1, q2);
- const __m128i r2 = _mm_sub_epi16(q1, q2);
- const __m128i r3 = _mm_sub_epi16(q0, q3);
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res00 = _mm_packs_epi32(w0, w1);
- res08 = _mm_packs_epi32(w2, w3);
- res04 = _mm_packs_epi32(w4, w5);
- res12 = _mm_packs_epi32(w6, w7);
- }
- // Work on next four results
- {
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
- const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
- const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
- const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
- const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
- // dct_const_round_shift
- const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
- const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
- const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
- const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
- const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
- const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
- const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
- const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
- // Combine
- const __m128i r0 = _mm_packs_epi32(s0, s1);
- const __m128i r1 = _mm_packs_epi32(s2, s3);
- // Add/subtract
- const __m128i x0 = _mm_add_epi16(q4, r0);
- const __m128i x1 = _mm_sub_epi16(q4, r0);
- const __m128i x2 = _mm_sub_epi16(q7, r1);
- const __m128i x3 = _mm_add_epi16(q7, r1);
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res02 = _mm_packs_epi32(w0, w1);
- res14 = _mm_packs_epi32(w2, w3);
- res10 = _mm_packs_epi32(w4, w5);
- res06 = _mm_packs_epi32(w6, w7);
- }
- }
- // Work on the next eight values; step1 -> odd_results
- {
- // step 2
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
- const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
- const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
- const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_m16);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_m16);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_m16);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_m16);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- step2_2 = _mm_packs_epi32(w0, w1);
- step2_3 = _mm_packs_epi32(w2, w3);
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
- const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
- const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
- const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_p16);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_p16);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- step2_5 = _mm_packs_epi32(w0, w1);
- step2_4 = _mm_packs_epi32(w2, w3);
- }
- // step 3
- {
- step3_0 = _mm_add_epi16(step1_0, step2_3);
- step3_1 = _mm_add_epi16(step1_1, step2_2);
- step3_2 = _mm_sub_epi16(step1_1, step2_2);
- step3_3 = _mm_sub_epi16(step1_0, step2_3);
- step3_4 = _mm_sub_epi16(step1_7, step2_4);
- step3_5 = _mm_sub_epi16(step1_6, step2_5);
- step3_6 = _mm_add_epi16(step1_6, step2_5);
- step3_7 = _mm_add_epi16(step1_7, step2_4);
- }
- // step 4
- {
- const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
- const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
- const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
- const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m08_p24);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m08_p24);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p24_p08);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p24_p08);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- step2_1 = _mm_packs_epi32(w0, w1);
- step2_2 = _mm_packs_epi32(w2, w3);
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
- const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
- const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
- const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p24_p08);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p24_p08);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p08_m24);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p08_m24);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- step2_6 = _mm_packs_epi32(w0, w1);
- step2_5 = _mm_packs_epi32(w2, w3);
- }
- // step 5
- {
- step1_0 = _mm_add_epi16(step3_0, step2_1);
- step1_1 = _mm_sub_epi16(step3_0, step2_1);
- step1_2 = _mm_add_epi16(step3_3, step2_2);
- step1_3 = _mm_sub_epi16(step3_3, step2_2);
- step1_4 = _mm_sub_epi16(step3_4, step2_5);
- step1_5 = _mm_add_epi16(step3_4, step2_5);
- step1_6 = _mm_sub_epi16(step3_7, step2_6);
- step1_7 = _mm_add_epi16(step3_7, step2_6);
- }
- // step 6
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
- const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
- const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
- const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p30_p02);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p30_p02);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p14_p18);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p14_p18);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- res01 = _mm_packs_epi32(w0, w1);
- res09 = _mm_packs_epi32(w2, w3);
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
- const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
- const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
- const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p22_p10);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p22_p10);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p06_p26);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p06_p26);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- res05 = _mm_packs_epi32(w0, w1);
- res13 = _mm_packs_epi32(w2, w3);
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
- const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
- const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
- const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m10_p22);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m10_p22);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m26_p06);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m26_p06);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- res11 = _mm_packs_epi32(w0, w1);
- res03 = _mm_packs_epi32(w2, w3);
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
- const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
- const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
- const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m02_p30);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m02_p30);
- const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m18_p14);
- const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m18_p14);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // Combine
- res15 = _mm_packs_epi32(w0, w1);
- res07 = _mm_packs_epi32(w2, w3);
- }
- }
- // Transpose the results, do it as two 8x8 transposes.
- {
- // 00 01 02 03 04 05 06 07
- // 10 11 12 13 14 15 16 17
- // 20 21 22 23 24 25 26 27
- // 30 31 32 33 34 35 36 37
- // 40 41 42 43 44 45 46 47
- // 50 51 52 53 54 55 56 57
- // 60 61 62 63 64 65 66 67
- // 70 71 72 73 74 75 76 77
- const __m128i tr0_0 = _mm_unpacklo_epi16(res00, res01);
- const __m128i tr0_1 = _mm_unpacklo_epi16(res02, res03);
- const __m128i tr0_2 = _mm_unpackhi_epi16(res00, res01);
- const __m128i tr0_3 = _mm_unpackhi_epi16(res02, res03);
- const __m128i tr0_4 = _mm_unpacklo_epi16(res04, res05);
- const __m128i tr0_5 = _mm_unpacklo_epi16(res06, res07);
- const __m128i tr0_6 = _mm_unpackhi_epi16(res04, res05);
- const __m128i tr0_7 = _mm_unpackhi_epi16(res06, res07);
- // 00 10 01 11 02 12 03 13
- // 20 30 21 31 22 32 23 33
- // 04 14 05 15 06 16 07 17
- // 24 34 25 35 26 36 27 37
- // 40 50 41 51 42 52 43 53
- // 60 70 61 71 62 72 63 73
- // 54 54 55 55 56 56 57 57
- // 64 74 65 75 66 76 67 77
- const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
- const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
- const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
- const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
- const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
- const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
- const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
- const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
- // 00 10 20 30 01 11 21 31
- // 40 50 60 70 41 51 61 71
- // 02 12 22 32 03 13 23 33
- // 42 52 62 72 43 53 63 73
- // 04 14 24 34 05 15 21 36
- // 44 54 64 74 45 55 61 76
- // 06 16 26 36 07 17 27 37
- // 46 56 66 76 47 57 67 77
- const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
- const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
- const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
- const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
- const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
- const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
- const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
- const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
- // 00 10 20 30 40 50 60 70
- // 01 11 21 31 41 51 61 71
- // 02 12 22 32 42 52 62 72
- // 03 13 23 33 43 53 63 73
- // 04 14 24 34 44 54 64 74
- // 05 15 25 35 45 55 65 75
- // 06 16 26 36 46 56 66 76
- // 07 17 27 37 47 57 67 77
- _mm_storeu_si128((__m128i *)(out + 0 * 16), tr2_0);
- _mm_storeu_si128((__m128i *)(out + 1 * 16), tr2_1);
- _mm_storeu_si128((__m128i *)(out + 2 * 16), tr2_2);
- _mm_storeu_si128((__m128i *)(out + 3 * 16), tr2_3);
- _mm_storeu_si128((__m128i *)(out + 4 * 16), tr2_4);
- _mm_storeu_si128((__m128i *)(out + 5 * 16), tr2_5);
- _mm_storeu_si128((__m128i *)(out + 6 * 16), tr2_6);
- _mm_storeu_si128((__m128i *)(out + 7 * 16), tr2_7);
- }
- {
- // 00 01 02 03 04 05 06 07
- // 10 11 12 13 14 15 16 17
- // 20 21 22 23 24 25 26 27
- // 30 31 32 33 34 35 36 37
- // 40 41 42 43 44 45 46 47
- // 50 51 52 53 54 55 56 57
- // 60 61 62 63 64 65 66 67
- // 70 71 72 73 74 75 76 77
- const __m128i tr0_0 = _mm_unpacklo_epi16(res08, res09);
- const __m128i tr0_1 = _mm_unpacklo_epi16(res10, res11);
- const __m128i tr0_2 = _mm_unpackhi_epi16(res08, res09);
- const __m128i tr0_3 = _mm_unpackhi_epi16(res10, res11);
- const __m128i tr0_4 = _mm_unpacklo_epi16(res12, res13);
- const __m128i tr0_5 = _mm_unpacklo_epi16(res14, res15);
- const __m128i tr0_6 = _mm_unpackhi_epi16(res12, res13);
- const __m128i tr0_7 = _mm_unpackhi_epi16(res14, res15);
- // 00 10 01 11 02 12 03 13
- // 20 30 21 31 22 32 23 33
- // 04 14 05 15 06 16 07 17
- // 24 34 25 35 26 36 27 37
- // 40 50 41 51 42 52 43 53
- // 60 70 61 71 62 72 63 73
- // 54 54 55 55 56 56 57 57
- // 64 74 65 75 66 76 67 77
- const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
- const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
- const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
- const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
- const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
- const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
- const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
- const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
- // 00 10 20 30 01 11 21 31
- // 40 50 60 70 41 51 61 71
- // 02 12 22 32 03 13 23 33
- // 42 52 62 72 43 53 63 73
- // 04 14 24 34 05 15 21 36
- // 44 54 64 74 45 55 61 76
- // 06 16 26 36 07 17 27 37
- // 46 56 66 76 47 57 67 77
- const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
- const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
- const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
- const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
- const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
- const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
- const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
- const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
- // 00 10 20 30 40 50 60 70
- // 01 11 21 31 41 51 61 71
- // 02 12 22 32 42 52 62 72
- // 03 13 23 33 43 53 63 73
- // 04 14 24 34 44 54 64 74
- // 05 15 25 35 45 55 65 75
- // 06 16 26 36 46 56 66 76
- // 07 17 27 37 47 57 67 77
- // Store results
- _mm_store_si128((__m128i *)(out + 8 + 0 * 16), tr2_0);
- _mm_store_si128((__m128i *)(out + 8 + 1 * 16), tr2_1);
- _mm_store_si128((__m128i *)(out + 8 + 2 * 16), tr2_2);
- _mm_store_si128((__m128i *)(out + 8 + 3 * 16), tr2_3);
- _mm_store_si128((__m128i *)(out + 8 + 4 * 16), tr2_4);
- _mm_store_si128((__m128i *)(out + 8 + 5 * 16), tr2_5);
- _mm_store_si128((__m128i *)(out + 8 + 6 * 16), tr2_6);
- _mm_store_si128((__m128i *)(out + 8 + 7 * 16), tr2_7);
- }
- out += 8*16;
- }
- // Setup in/out for next pass.
- in = intermediate;
- out = output;
- }
+ store_output(in1, output);
}
static INLINE void load_buffer_16x16(const int16_t* input, __m128i *in0,
load_buffer_8x8(input + 8 * stride, in1 + 8, stride);
}
-static INLINE void write_buffer_16x16(int16_t *output, __m128i *in0,
+static INLINE void write_buffer_16x16(tran_low_t *output, __m128i *in0,
__m128i *in1, int stride) {
// write first 8 columns
write_buffer_8x8(output, in0, stride);
write_buffer_8x8(output + 8 * stride, in1 + 8, stride);
}
+static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) {
+ __m128i tbuf[8];
+ array_transpose_8x8(res0, res0);
+ array_transpose_8x8(res1, tbuf);
+ array_transpose_8x8(res0 + 8, res1);
+ array_transpose_8x8(res1 + 8, res1 + 8);
+
+ res0[8] = tbuf[0];
+ res0[9] = tbuf[1];
+ res0[10] = tbuf[2];
+ res0[11] = tbuf[3];
+ res0[12] = tbuf[4];
+ res0[13] = tbuf[5];
+ res0[14] = tbuf[6];
+ res0[15] = tbuf[7];
+}
+
static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
// perform rounding operations
right_shift_8x8(res0, 2);
array_transpose_16x16(in0, in1);
}
-void vp9_fht16x16_sse2(const int16_t *input, int16_t *output,
+void vp9_fht16x16_sse2(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
__m128i in0[16], in1[16];
}
}
-void vp9_fdct32x32_1_sse2(const int16_t *input, int16_t *output, int stride) {
+void vp9_fdct32x32_1_sse2(const int16_t *input, tran_low_t *output,
+ int stride) {
__m128i in0, in1, in2, in3;
__m128i u0, u1;
__m128i sum = _mm_setzero_si128();
in1 = _mm_add_epi32(sum, in0);
in1 = _mm_srai_epi32(in1, 3);
- _mm_store_si128((__m128i *)(output), in1);
+ store_output(in1, output);
}
+#if CONFIG_VP9_HIGHBITDEPTH
+/* These SSE2 versions of the FHT functions only actually use SSE2 in the
+ * DCT_DCT case in all other cases, they revert to C code which is identical
+ * to that used by the C versions of them.
+ */
+
+void vp9_highbd_fht4x4_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct4x4_sse2(input, output, stride);
+ } else {
+ tran_low_t out[4 * 4];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[4], temp_out[4];
+ const transform_2d ht = FHT_4[tx_type];
+
+ // Columns
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = input[j * stride + i] * 16;
+ if (i == 0 && temp_in[0])
+ temp_in[0] += 1;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ outptr[j * 4 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = out[j + i * 4];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (temp_out[j] + 1) >> 2;
+ }
+ }
+}
+
+void vp9_highbd_fht8x8_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct8x8_sse2(input, output, stride);
+ } else {
+ tran_low_t out[64];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[8], temp_out[8];
+ const transform_2d ht = FHT_8[tx_type];
+
+ // Columns
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ outptr[j * 8 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j + i * 8];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+ }
+ }
+}
+
+void vp9_highbd_fht16x16_sse2(int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct16x16_sse2(input, output, stride);
+ } else {
+ tran_low_t out[256];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[16], temp_out[16];
+ const transform_2d ht = FHT_16[tx_type];
+
+ // Columns
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
+
+ // Rows
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j + i * 16];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ output[j + i * 16] = temp_out[j];
+ }
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+/*
+ * The DCTnxn functions are defined using the macros below. The main code for
+ * them is in separate files (vp9/encoder/x86/vp9_dct_impl_sse2.c &
+ * vp9/encoder/x86/vp9_dct32x32_sse2.c) which are used by both the 8 bit code
+ * and the high bit depth code.
+ */
+
+#define DCT_HIGH_BIT_DEPTH 0
+
+#define FDCT4x4_2D vp9_fdct4x4_sse2
+#define FDCT8x8_2D vp9_fdct8x8_sse2
+#define FDCT16x16_2D vp9_fdct16x16_sse2
+#include "vp9/encoder/x86/vp9_dct_impl_sse2.c"
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+
#define FDCT32x32_2D vp9_fdct32x32_rd_sse2
#define FDCT32x32_HIGH_PRECISION 0
#include "vp9/encoder/x86/vp9_dct32x32_sse2.c"
-#undef FDCT32x32_HIGH_PRECISION
#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
#define FDCT32x32_2D vp9_fdct32x32_sse2
#define FDCT32x32_HIGH_PRECISION 1
#include "vp9/encoder/x86/vp9_dct32x32_sse2.c" // NOLINT
+#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#undef DCT_HIGH_BIT_DEPTH
+
+
+#if CONFIG_VP9_HIGHBITDEPTH
+
+#define DCT_HIGH_BIT_DEPTH 1
+
+#define FDCT4x4_2D vp9_highbd_fdct4x4_sse2
+#define FDCT8x8_2D vp9_highbd_fdct8x8_sse2
+#define FDCT16x16_2D vp9_highbd_fdct16x16_sse2
+#include "vp9/encoder/x86/vp9_dct_impl_sse2.c" // NOLINT
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+
+#define FDCT32x32_2D vp9_highbd_fdct32x32_rd_sse2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp9/encoder/x86/vp9_dct32x32_sse2.c" // NOLINT
+#undef FDCT32x32_2D
#undef FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D vp9_highbd_fdct32x32_sse2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp9/encoder/x86/vp9_dct32x32_sse2.c" // NOLINT
#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#undef DCT_HIGH_BIT_DEPTH
+
+#endif // CONFIG_VP9_HIGHBITDEPTH
--- /dev/null
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_X86_VP9_DCT_SSE2_H_
+#define VP9_ENCODER_X86_VP9_DCT_SSE2_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define pair_set_epi32(a, b) \
+ _mm_set_epi32((int)(b), (int)(a), (int)(b), (int)(a))
+
+void vp9_fdct4x4_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_fdct8x8_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_fdct16x16_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct4x4_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct8x8_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct16x16_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+
+static INLINE __m128i k_madd_epi32(__m128i a, __m128i b) {
+ __m128i buf0, buf1;
+ buf0 = _mm_mul_epu32(a, b);
+ a = _mm_srli_epi64(a, 32);
+ b = _mm_srli_epi64(b, 32);
+ buf1 = _mm_mul_epu32(a, b);
+ return _mm_add_epi64(buf0, buf1);
+}
+
+static INLINE __m128i k_packs_epi64(__m128i a, __m128i b) {
+ __m128i buf0 = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0));
+ __m128i buf1 = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0));
+ return _mm_unpacklo_epi64(buf0, buf1);
+}
+
+static INLINE int check_epi16_overflow_x2(__m128i reg0, __m128i reg1) {
+ const __m128i max_overflow = _mm_set1_epi16(0x7fff);
+ const __m128i min_overflow = _mm_set1_epi16(0x8000);
+ __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(reg0, max_overflow),
+ _mm_cmpeq_epi16(reg0, min_overflow));
+ __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(reg1, max_overflow),
+ _mm_cmpeq_epi16(reg1, min_overflow));
+ cmp0 = _mm_or_si128(cmp0, cmp1);
+ return _mm_movemask_epi8(cmp0);
+}
+
+static INLINE int check_epi16_overflow_x4(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3) {
+ const __m128i max_overflow = _mm_set1_epi16(0x7fff);
+ const __m128i min_overflow = _mm_set1_epi16(0x8000);
+ __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(reg0, max_overflow),
+ _mm_cmpeq_epi16(reg0, min_overflow));
+ __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(reg1, max_overflow),
+ _mm_cmpeq_epi16(reg1, min_overflow));
+ __m128i cmp2 = _mm_or_si128(_mm_cmpeq_epi16(reg2, max_overflow),
+ _mm_cmpeq_epi16(reg2, min_overflow));
+ __m128i cmp3 = _mm_or_si128(_mm_cmpeq_epi16(reg3, max_overflow),
+ _mm_cmpeq_epi16(reg3, min_overflow));
+ cmp0 = _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3));
+ return _mm_movemask_epi8(cmp0);
+}
+
+static INLINE int check_epi16_overflow_x8(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3,
+ __m128i reg4, __m128i reg5,
+ __m128i reg6, __m128i reg7) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(reg0, reg1, reg2, reg3);
+ res1 = check_epi16_overflow_x4(reg4, reg5, reg6, reg7);
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x12(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3, __m128i reg4,
+ __m128i reg5, __m128i reg6, __m128i reg7,
+ __m128i reg8, __m128i reg9, __m128i reg10,
+ __m128i reg11) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(reg0, reg1, reg2, reg3);
+ res1 = check_epi16_overflow_x4(reg4, reg5, reg6, reg7);
+ if (!res0)
+ res0 = check_epi16_overflow_x4(reg8, reg9, reg10, reg11);
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x16(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3, __m128i reg4,
+ __m128i reg5, __m128i reg6, __m128i reg7,
+ __m128i reg8, __m128i reg9, __m128i reg10,
+ __m128i reg11, __m128i reg12, __m128i reg13,
+ __m128i reg14, __m128i reg15) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(reg0, reg1, reg2, reg3);
+ res1 = check_epi16_overflow_x4(reg4, reg5, reg6, reg7);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(reg8, reg9, reg10, reg11);
+ if (!res1)
+ res1 = check_epi16_overflow_x4(reg12, reg13, reg14, reg15);
+ }
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x32(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3, __m128i reg4,
+ __m128i reg5, __m128i reg6, __m128i reg7,
+ __m128i reg8, __m128i reg9, __m128i reg10,
+ __m128i reg11, __m128i reg12, __m128i reg13,
+ __m128i reg14, __m128i reg15, __m128i reg16,
+ __m128i reg17, __m128i reg18, __m128i reg19,
+ __m128i reg20, __m128i reg21, __m128i reg22,
+ __m128i reg23, __m128i reg24, __m128i reg25,
+ __m128i reg26, __m128i reg27, __m128i reg28,
+ __m128i reg29, __m128i reg30, __m128i reg31) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(reg0, reg1, reg2, reg3);
+ res1 = check_epi16_overflow_x4(reg4, reg5, reg6, reg7);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(reg8, reg9, reg10, reg11);
+ if (!res1) {
+ res1 = check_epi16_overflow_x4(reg12, reg13, reg14, reg15);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(reg16, reg17, reg18, reg19);
+ if (!res1) {
+ res1 = check_epi16_overflow_x4(reg20, reg21, reg22, reg23);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(reg24, reg25, reg26, reg27);
+ if (!res1)
+ res1 = check_epi16_overflow_x4(reg28, reg29, reg30, reg31);
+ }
+ }
+ }
+ }
+ }
+ return res0 + res1;
+}
+
+static INLINE int k_check_epi32_overflow_4(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3, const __m128i* zero) {
+ __m128i minus_one = _mm_set1_epi32(-1);
+ // Check for overflows
+ __m128i reg0_shifted = _mm_slli_epi64(reg0, 1);
+ __m128i reg1_shifted = _mm_slli_epi64(reg1, 1);
+ __m128i reg2_shifted = _mm_slli_epi64(reg2, 1);
+ __m128i reg3_shifted = _mm_slli_epi64(reg3, 1);
+ __m128i reg0_top_dwords = _mm_shuffle_epi32(
+ reg0_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg1_top_dwords = _mm_shuffle_epi32(
+ reg1_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg2_top_dwords = _mm_shuffle_epi32(
+ reg2_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg3_top_dwords = _mm_shuffle_epi32(
+ reg3_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i top_dwords_01 = _mm_unpacklo_epi64(reg0_top_dwords, reg1_top_dwords);
+ __m128i top_dwords_23 = _mm_unpacklo_epi64(reg2_top_dwords, reg3_top_dwords);
+ __m128i valid_positve_01 = _mm_cmpeq_epi32(top_dwords_01, *zero);
+ __m128i valid_positve_23 = _mm_cmpeq_epi32(top_dwords_23, *zero);
+ __m128i valid_negative_01 = _mm_cmpeq_epi32(top_dwords_01, minus_one);
+ __m128i valid_negative_23 = _mm_cmpeq_epi32(top_dwords_23, minus_one);
+ int overflow_01 = _mm_movemask_epi8(
+ _mm_cmpeq_epi32(valid_positve_01, valid_negative_01));
+ int overflow_23 = _mm_movemask_epi8(
+ _mm_cmpeq_epi32(valid_positve_23, valid_negative_23));
+ return (overflow_01 + overflow_23);
+}
+
+static INLINE int k_check_epi32_overflow_8(__m128i reg0, __m128i reg1,
+ __m128i reg2, __m128i reg3,
+ __m128i reg4, __m128i reg5,
+ __m128i reg6, __m128i reg7,
+ const __m128i* zero) {
+ int overflow = k_check_epi32_overflow_4(reg0, reg1, reg2, reg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg4, reg5, reg6, reg7, zero);
+ }
+ return overflow;
+}
+
+static INLINE int k_check_epi32_overflow_16(
+ __m128i reg0, __m128i reg1, __m128i reg2, __m128i reg3,
+ __m128i reg4, __m128i reg5, __m128i reg6, __m128i reg7,
+ __m128i reg8, __m128i reg9, __m128i reg10, __m128i reg11,
+ __m128i reg12, __m128i reg13, __m128i reg14, __m128i reg15,
+ const __m128i* zero) {
+ int overflow = k_check_epi32_overflow_4(reg0, reg1, reg2, reg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg4, reg5, reg6, reg7, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg8, reg9, reg10, reg11, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg12, reg13, reg14, reg15, zero);
+ }
+ }
+ }
+ return overflow;
+}
+
+static INLINE int k_check_epi32_overflow_32(
+ __m128i reg0, __m128i reg1, __m128i reg2, __m128i reg3,
+ __m128i reg4, __m128i reg5, __m128i reg6, __m128i reg7,
+ __m128i reg8, __m128i reg9, __m128i reg10, __m128i reg11,
+ __m128i reg12, __m128i reg13, __m128i reg14, __m128i reg15,
+ __m128i reg16, __m128i reg17, __m128i reg18, __m128i reg19,
+ __m128i reg20, __m128i reg21, __m128i reg22, __m128i reg23,
+ __m128i reg24, __m128i reg25, __m128i reg26, __m128i reg27,
+ __m128i reg28, __m128i reg29, __m128i reg30, __m128i reg31,
+ const __m128i* zero) {
+ int overflow = k_check_epi32_overflow_4(reg0, reg1, reg2, reg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg4, reg5, reg6, reg7, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg8, reg9, reg10, reg11, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg12, reg13, reg14, reg15, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg16, reg17, reg18, reg19, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg20, reg21,
+ reg22, reg23, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg24, reg25,
+ reg26, reg27, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(reg28, reg29,
+ reg30, reg31, zero);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return overflow;
+}
+
+static INLINE void store_output(const __m128i output, tran_low_t* dst_ptr) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i sign_bits = _mm_cmplt_epi16(output, zero);
+ __m128i out0 = _mm_unpacklo_epi16(output, sign_bits);
+ __m128i out1 = _mm_unpackhi_epi16(output, sign_bits);
+ _mm_store_si128((__m128i *)(dst_ptr), out0);
+ _mm_store_si128((__m128i *)(dst_ptr + 4), out1);
+#else
+ _mm_store_si128((__m128i *)(dst_ptr), output);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+static INLINE void storeu_output(const __m128i output, tran_low_t* dst_ptr) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i sign_bits = _mm_cmplt_epi16(output, zero);
+ __m128i out0 = _mm_unpacklo_epi16(output, sign_bits);
+ __m128i out1 = _mm_unpackhi_epi16(output, sign_bits);
+ _mm_storeu_si128((__m128i *)(dst_ptr), out0);
+ _mm_storeu_si128((__m128i *)(dst_ptr + 4), out1);
+#else
+ _mm_storeu_si128((__m128i *)(dst_ptr), output);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+
+static INLINE __m128i mult_round_shift(const __m128i in0, const __m128i in1,
+ const __m128i multiplier,
+ const __m128i rounding,
+ const int shift) {
+ const __m128i u0 = _mm_madd_epi16(in0, multiplier);
+ const __m128i u1 = _mm_madd_epi16(in1, multiplier);
+ const __m128i v0 = _mm_add_epi32(u0, rounding);
+ const __m128i v1 = _mm_add_epi32(u1, rounding);
+ const __m128i w0 = _mm_srai_epi32(v0, shift);
+ const __m128i w1 = _mm_srai_epi32(v1, shift);
+ return _mm_packs_epi32(w0, w1);
+}
+
+static INLINE void transpose_and_output8x8(
+ const __m128i in00, const __m128i in01,
+ const __m128i in02, const __m128i in03,
+ const __m128i in04, const __m128i in05,
+ const __m128i in06, const __m128i in07,
+ const int pass, int16_t* out0_ptr,
+ tran_low_t* out1_ptr) {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(in00, in01);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(in02, in03);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(in00, in01);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(in02, in03);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(in04, in05);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(in06, in07);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(in04, in05);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(in06, in07);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ if (pass == 0) {
+ _mm_storeu_si128((__m128i*)(out0_ptr + 0 * 16), tr2_0);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 1 * 16), tr2_1);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 2 * 16), tr2_2);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 3 * 16), tr2_3);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 4 * 16), tr2_4);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 5 * 16), tr2_5);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 6 * 16), tr2_6);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 7 * 16), tr2_7);
+ } else {
+ storeu_output(tr2_0, (out1_ptr + 0 * 16));
+ storeu_output(tr2_1, (out1_ptr + 1 * 16));
+ storeu_output(tr2_2, (out1_ptr + 2 * 16));
+ storeu_output(tr2_3, (out1_ptr + 3 * 16));
+ storeu_output(tr2_4, (out1_ptr + 4 * 16));
+ storeu_output(tr2_5, (out1_ptr + 5 * 16));
+ storeu_output(tr2_6, (out1_ptr + 6 * 16));
+ storeu_output(tr2_7, (out1_ptr + 7 * 16));
+ }
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_X86_VP9_DCT_SSE2_H_
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.c
VP9_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp9_dct_ssse3.c
+VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.h
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct32x32_sse2.c
+VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_impl_sse2.c
ifeq ($(CONFIG_VP9_TEMPORAL_DENOISING),yes)
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_denoiser_sse2.c