// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
- (HighBits & ~DemandedMask) == HighBits) {
+ !DemandedMask.intersects(HighBits)) {
BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
I->getOperand(1));
LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
return InsertNewInstWith(LShr, *I);
- } else if ((KnownOne & SignMask) != 0) { // New bits are known one.
+ } else if (KnownOne.intersects(SignMask)) { // New bits are known one.
KnownOne |= HighBits;
}
}
// If LHS is non-negative or has all low bits zero, then the upper bits
// are all zero.
- if (LHSKnownZero.isSignBitSet() || ((LHSKnownZero & LowBits) == LowBits))
+ if (LHSKnownZero.isSignBitSet() || LowBits.isSubsetOf(LHSKnownZero))
KnownZero |= ~LowBits;
// If LHS is negative and not all low bits are zero, then the upper bits
// are all one.
- if (LHSKnownOne.isSignBitSet() && ((LHSKnownOne & LowBits) != 0))
+ if (LHSKnownOne.isSignBitSet() && LowBits.intersects(LHSKnownOne))
KnownOne |= ~LowBits;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");