--- /dev/null
+/* ====================================================================
+ * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * openssl-core@openssl.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay@cryptsoft.com). This product includes software written by Tim
+ * Hudson (tjh@cryptsoft.com). */
+
+#ifndef OPENSSL_HEADER_BASE_H
+#define OPENSSL_HEADER_BASE_H
+
+/* Needed for BORINGSSL_MAKE_DELETER */
+# include <openssl/bio.h>
+# include <openssl/evp.h>
+# include <openssl/dh.h>
+# include <openssl/x509.h>
+# include <openssl/ssl.h>
+
+# define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
+
+/* Temporary TLS1.3 defines until OpenSSL supports these */
+# define TLS1_3_VERSION 0x0304
+# define SSL_OP_NO_TLSv1_3 0
+
+extern "C++" {
+
+#include <memory>
+
+namespace bssl {
+
+namespace internal {
+
+template <typename T>
+struct DeleterImpl {};
+
+template <typename T>
+struct Deleter {
+ void operator()(T *ptr) {
+ // Rather than specialize Deleter for each type, we specialize
+ // DeleterImpl. This allows bssl::UniquePtr<T> to be used while only
+ // including base.h as long as the destructor is not emitted. This matches
+ // std::unique_ptr's behavior on forward-declared types.
+ //
+ // DeleterImpl itself is specialized in the corresponding module's header
+ // and must be included to release an object. If not included, the compiler
+ // will error that DeleterImpl<T> does not have a method Free.
+ DeleterImpl<T>::Free(ptr);
+ }
+};
+
+template <typename T, typename CleanupRet, void (*init)(T *),
+ CleanupRet (*cleanup)(T *)>
+class StackAllocated {
+ public:
+ StackAllocated() { init(&ctx_); }
+ ~StackAllocated() { cleanup(&ctx_); }
+
+ StackAllocated(const StackAllocated<T, CleanupRet, init, cleanup> &) = delete;
+ T& operator=(const StackAllocated<T, CleanupRet, init, cleanup> &) = delete;
+
+ T *get() { return &ctx_; }
+ const T *get() const { return &ctx_; }
+
+ void Reset() {
+ cleanup(&ctx_);
+ init(&ctx_);
+ }
+
+ private:
+ T ctx_;
+};
+
+} // namespace internal
+
+#define BORINGSSL_MAKE_DELETER(type, deleter) \
+ namespace internal { \
+ template <> \
+ struct DeleterImpl<type> { \
+ static void Free(type *ptr) { deleter(ptr); } \
+ }; \
+ }
+
+// This makes a unique_ptr to STACK_OF(type) that owns all elements on the
+// stack, i.e. it uses sk_pop_free() to clean up.
+#define BORINGSSL_MAKE_STACK_DELETER(type, deleter) \
+ namespace internal { \
+ template <> \
+ struct DeleterImpl<STACK_OF(type)> { \
+ static void Free(STACK_OF(type) *ptr) { \
+ sk_##type##_pop_free(ptr, deleter); \
+ } \
+ }; \
+ }
+
+// Holds ownership of heap-allocated BoringSSL structures. Sample usage:
+// bssl::UniquePtr<BIO> rsa(RSA_new());
+// bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
+template <typename T>
+using UniquePtr = std::unique_ptr<T, internal::Deleter<T>>;
+
+BORINGSSL_MAKE_DELETER(BIO, BIO_free)
+BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free)
+BORINGSSL_MAKE_DELETER(DH, DH_free)
+BORINGSSL_MAKE_DELETER(X509, X509_free)
+BORINGSSL_MAKE_DELETER(SSL, SSL_free)
+BORINGSSL_MAKE_DELETER(SSL_CTX, SSL_CTX_free)
+BORINGSSL_MAKE_DELETER(SSL_SESSION, SSL_SESSION_free)
+
+} // namespace bssl
+
+} /* extern C++ */
+
+
+#endif /* OPENSSL_HEADER_BASE_H */
#include <unistd.h>
#else
#include <io.h>
-#pragma warning(push, 3)
+OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
-#pragma warning(pop)
+OPENSSL_MSVC_PRAGMA(warning(pop))
-#pragma comment(lib, "Ws2_32.lib")
+OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif
+#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
+#include <openssl/x509.h>
#include <memory>
#include <string>
#include <vector>
-#include "crypto/scoped_types.h"
#include "async_bio.h"
#include "packeted_bio.h"
-#include "scoped_types.h"
#include "test_config.h"
+namespace bssl {
#if !defined(OPENSSL_SYS_WINDOWS)
static int closesocket(int sock) {
}
struct TestState {
- TestState() {
- // MSVC cannot initialize these inline.
- memset(&clock, 0, sizeof(clock));
- memset(&clock_delta, 0, sizeof(clock_delta));
- }
-
// async_bio is async BIO which pauses reads and writes.
BIO *async_bio = nullptr;
- // clock is the current time for the SSL connection.
- timeval clock;
- // clock_delta is how far the clock advanced in the most recent failed
- // |BIO_read|.
- timeval clock_delta;
+ // packeted_bio is the packeted BIO which simulates read timeouts.
+ BIO *packeted_bio = nullptr;
+ bssl::UniquePtr<EVP_PKEY> channel_id;
bool cert_ready = false;
- ScopedSSL_SESSION session;
- ScopedSSL_SESSION pending_session;
+ bssl::UniquePtr<SSL_SESSION> session;
+ bssl::UniquePtr<SSL_SESSION> pending_session;
bool early_callback_called = false;
bool handshake_done = false;
// private_key is the underlying private key used when testing custom keys.
- ScopedEVP_PKEY private_key;
+ bssl::UniquePtr<EVP_PKEY> private_key;
std::vector<uint8_t> private_key_result;
// private_key_retries is the number of times an asynchronous private key
// operation has been retried.
unsigned private_key_retries = 0;
bool got_new_session = false;
+ bssl::UniquePtr<SSL_SESSION> new_session;
+ bool ticket_decrypt_done = false;
+ bool alpn_select_done = false;
};
static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
static int g_config_index = 0;
static int g_state_index = 0;
-static bool SetConfigPtr(SSL *ssl, const TestConfig *config) {
+static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
-static const TestConfig *GetConfigPtr(const SSL *ssl) {
+static const TestConfig *GetTestConfig(const SSL *ssl) {
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}
-static ScopedX509 LoadCertificate(const std::string &file) {
- ScopedBIO bio(BIO_new(BIO_s_file()));
+static bssl::UniquePtr<X509> LoadCertificate(const std::string &file) {
+ bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
- return ScopedX509(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
+ return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
}
-static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) {
- ScopedBIO bio(BIO_new(BIO_s_file()));
+static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
+ bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
- return ScopedEVP_PKEY(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
+ return bssl::UniquePtr<EVP_PKEY>(
+ PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}
template<typename T>
}
};
-static bool GetCertificate(SSL *ssl, ScopedX509 *out_x509,
- ScopedEVP_PKEY *out_pkey) {
- const TestConfig *config = GetConfigPtr(ssl);
+static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
+ bssl::UniquePtr<EVP_PKEY> *out_pkey) {
+ const TestConfig *config = GetTestConfig(ssl);
if (!config->digest_prefs.empty()) {
fprintf(stderr, "Digest prefs not supported.\n");
return false;
}
+ if (!config->signing_prefs.empty()) {
+ fprintf(stderr, "Set signing algorithm prefs not supported\n");
+ return false;
+ }
+
if (!config->key_file.empty()) {
*out_pkey = LoadPrivateKey(config->key_file.c_str());
if (!*out_pkey) {
}
static bool InstallCertificate(SSL *ssl) {
- ScopedX509 x509;
- ScopedEVP_PKEY pkey;
+ bssl::UniquePtr<X509> x509;
+ bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &pkey)) {
return false;
}
if (pkey) {
TestState *test_state = GetTestState(ssl);
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
if (!SSL_use_PrivateKey(ssl, pkey.get())) {
return false;
}
}
static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
- if (GetConfigPtr(ssl)->async && !GetTestState(ssl)->cert_ready) {
+ if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
return -1;
}
- ScopedX509 x509;
- ScopedEVP_PKEY pkey;
+ bssl::UniquePtr<X509> x509;
+ bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &pkey)) {
return -1;
}
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
- const TestConfig *config = GetConfigPtr(ssl);
- if (config->select_alpn.empty()) {
+ if (GetTestState(ssl)->alpn_select_done) {
+ fprintf(stderr, "AlpnSelectCallback called after completion.\n");
+ exit(1);
+ }
+
+ GetTestState(ssl)->alpn_select_done = true;
+
+ const TestConfig *config = GetTestConfig(ssl);
+ if (config->decline_alpn) {
return SSL_TLSEXT_ERR_NOACK;
}
char *out_identity,
unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
- if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) {
+ if (config->psk_identity.empty()) {
+ if (hint != nullptr) {
+ fprintf(stderr, "Server PSK hint was non-null.\n");
+ return 0;
+ }
+ } else if (hint == nullptr ||
+ strcmp(hint, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
}
static int CertCallback(SSL *ssl, void *arg) {
+ const TestConfig *config = GetTestConfig(ssl);
+
+ // Check the CertificateRequest metadata is as expected.
+ //
+ // TODO(davidben): Test |SSL_get_client_CA_list|.
+ if (!SSL_is_server(ssl) &&
+ !config->expected_certificate_types.empty()) {
+ const uint8_t *certificate_types;
+ size_t certificate_types_len =
+ SSL_get0_certificate_types(ssl, &certificate_types);
+ if (certificate_types_len != config->expected_certificate_types.size() ||
+ memcmp(certificate_types,
+ config->expected_certificate_types.data(),
+ certificate_types_len) != 0) {
+ fprintf(stderr, "certificate types mismatch\n");
+ return 0;
+ }
+ }
+
+ // The certificate will be installed via other means.
+ if (!config->async || config->use_early_callback ||
+ config->use_old_client_cert_callback) {
+ return 1;
+ }
+
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
static void InfoCallback(const SSL *ssl, int type, int val) {
if (type == SSL_CB_HANDSHAKE_DONE) {
- if (GetConfigPtr(ssl)->handshake_never_done) {
- fprintf(stderr, "handshake completed\n");
+ if (GetTestConfig(ssl)->handshake_never_done) {
+ fprintf(stderr, "Handshake unexpectedly completed.\n");
// Abort before any expected error code is printed, to ensure the overall
// test fails.
abort();
}
GetTestState(ssl)->handshake_done = true;
+
+ // Callbacks may be called again on a new handshake.
+ GetTestState(ssl)->ticket_decrypt_done = false;
+ GetTestState(ssl)->alpn_select_done = false;
}
}
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
GetTestState(ssl)->got_new_session = true;
- // BoringSSL passes a reference to |session|.
- SSL_SESSION_free(session);
+ GetTestState(ssl)->new_session.reset(session);
return 1;
}
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
+ if (!encrypt) {
+ if (GetTestState(ssl)->ticket_decrypt_done) {
+ fprintf(stderr, "TicketKeyCallback called after completion.\n");
+ return -1;
+ }
+
+ GetTestState(ssl)->ticket_decrypt_done = true;
+ }
+
// This is just test code, so use the all-zeros key.
static const uint8_t kZeros[16] = {0};
}
if (!encrypt) {
- return GetConfigPtr(ssl)->renew_ticket ? 2 : 1;
+ return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
}
return 1;
}
abort();
}
- if (GetConfigPtr(ssl)->custom_extension_skip) {
+ if (GetTestConfig(ssl)->custom_extension_skip) {
return 0;
}
- if (GetConfigPtr(ssl)->custom_extension_fail_add) {
+ if (GetTestConfig(ssl)->custom_extension_fail_add) {
return -1;
}
const int sock_;
};
-static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
- ScopedSSL_CTX ssl_ctx(SSL_CTX_new(
+static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
+ bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
config->is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
SSL_CTX_set_security_level(ssl_ctx.get(), 0);
+#if 0
+ /* Disabled for now until we have some TLS1.3 support */
+ // Enable TLS 1.3 for tests.
+ if (!config->is_dtls &&
+ !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
+ return nullptr;
+ }
+#endif
std::string cipher_list = "ALL";
if (!config->cipher.empty()) {
tmpdh = DH_get_2048_256();
}
- ScopedDH dh(tmpdh);
+ bssl::UniquePtr<DH> dh(tmpdh);
if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
return nullptr;
NULL);
}
- if (!config->select_alpn.empty()) {
+ if (!config->select_alpn.empty() || config->decline_alpn) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
return nullptr;
}
+ if (config->use_null_client_ca_list) {
+ SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
+ }
+
return ssl_ctx;
}
return false;
}
- const TestConfig *config = GetConfigPtr(ssl);
TestState *test_state = GetTestState(ssl);
- if (test_state->clock_delta.tv_usec != 0 ||
- test_state->clock_delta.tv_sec != 0) {
- // Process the timeout and retry.
- test_state->clock.tv_usec += test_state->clock_delta.tv_usec;
- test_state->clock.tv_sec += test_state->clock.tv_usec / 1000000;
- test_state->clock.tv_usec %= 1000000;
- test_state->clock.tv_sec += test_state->clock_delta.tv_sec;
- memset(&test_state->clock_delta, 0, sizeof(test_state->clock_delta));
+ assert(GetTestConfig(ssl)->async);
+ if (test_state->packeted_bio != nullptr &&
+ PacketedBioAdvanceClock(test_state->packeted_bio)) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously.
- if (config->async) {
- AsyncBioEnforceWriteQuota(test_state->async_bio, false);
- }
+ AsyncBioEnforceWriteQuota(test_state->async_bio, false);
int timeout_ret = DTLSv1_handle_timeout(ssl);
- if (config->async) {
- AsyncBioEnforceWriteQuota(test_state->async_bio, true);
- }
+ AsyncBioEnforceWriteQuota(test_state->async_bio, true);
if (timeout_ret < 0) {
fprintf(stderr, "Error retransmitting.\n");
// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
TestState *test_state = GetTestState(ssl);
int ret;
do {
// trigger a retransmit, so disconnect the write quota.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
- ret = SSL_read(ssl, out, max_out);
+ ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
+ : SSL_read(ssl, out, max_out);
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
} while (config->async && RetryAsync(ssl, ret));
+
+ if (config->peek_then_read && ret > 0) {
+ std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);
+
+ // SSL_peek should synchronously return the same data.
+ int ret2 = SSL_peek(ssl, buf.get(), ret);
+ if (ret2 != ret ||
+ memcmp(buf.get(), out, ret) != 0) {
+ fprintf(stderr, "First and second SSL_peek did not match.\n");
+ return -1;
+ }
+
+ // SSL_read should synchronously return the same data and consume it.
+ ret2 = SSL_read(ssl, buf.get(), ret);
+ if (ret2 != ret ||
+ memcmp(buf.get(), out, ret) != 0) {
+ fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
+ return -1;
+ }
+ }
+
return ret;
}
// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
int ret;
do {
ret = SSL_write(ssl, in, in_len);
// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
int ret;
do {
ret = SSL_shutdown(ssl);
return ret;
}
+static uint16_t GetProtocolVersion(const SSL *ssl) {
+ uint16_t version = SSL_version(ssl);
+ if (!SSL_is_dtls(ssl)) {
+ return version;
+ }
+ return 0x0201 + ~version;
+}
+
// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
- const TestConfig *config = GetConfigPtr(ssl);
+ const TestConfig *config = GetTestConfig(ssl);
if (SSL_get_current_cipher(ssl) == nullptr) {
fprintf(stderr, "null cipher after handshake\n");
if (expect_handshake_done && !config->is_server) {
bool expect_new_session =
!config->expect_no_session &&
- (!SSL_session_reused(ssl) || config->expect_ticket_renewal);
+ (!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
+ // Session tickets are sent post-handshake in TLS 1.3.
+ GetProtocolVersion(ssl) < TLS1_3_VERSION;
if (expect_new_session != GetTestState(ssl)->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
}
}
- if (!config->expected_certificate_types.empty()) {
- const uint8_t *certificate_types;
- size_t certificate_types_len =
- SSL_get0_certificate_types(ssl, &certificate_types);
- if (certificate_types_len != config->expected_certificate_types.size() ||
- memcmp(certificate_types,
- config->expected_certificate_types.data(),
- certificate_types_len) != 0) {
- fprintf(stderr, "certificate types mismatch\n");
- return false;
- }
- }
-
if (!config->expected_next_proto.empty()) {
const uint8_t *next_proto;
unsigned next_proto_len;
}
}
+ if (config->expect_extended_master_secret) {
+ if (!SSL_get_extms_support(ssl)) {
+ fprintf(stderr, "No EMS for connection when expected");
+ return false;
+ }
+ }
+
if (config->expect_verify_result) {
int expected_verify_result = config->verify_fail ?
X509_V_ERR_APPLICATION_VERIFICATION :
}
}
- if (!config->is_server) {
- /* Clients should expect a peer certificate chain iff this was not a PSK
- * cipher suite. */
- if (config->psk.empty()) {
- if (SSL_get_peer_cert_chain(ssl) == nullptr) {
- fprintf(stderr, "Missing peer certificate chain!\n");
- return false;
- }
- } else if (SSL_get_peer_cert_chain(ssl) != nullptr) {
- fprintf(stderr, "Unexpected peer certificate chain!\n");
+ if (!config->psk.empty()) {
+ if (SSL_get_peer_cert_chain(ssl) != nullptr) {
+ fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
+ return false;
+ }
+ } else if (!config->is_server || config->require_any_client_certificate) {
+ if (SSL_get_peer_cert_chain(ssl) == nullptr) {
+ fprintf(stderr, "Received no peer certificate but expected one.\n");
return false;
}
}
+
return true;
}
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
-static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
- const TestConfig *config, bool is_resume,
- SSL_SESSION *session) {
- ScopedSSL ssl(SSL_new(ssl_ctx));
+static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
+ SSL_CTX *ssl_ctx, const TestConfig *config,
+ bool is_resume, SSL_SESSION *session) {
+ bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
if (!ssl) {
return false;
}
- if (!SetConfigPtr(ssl.get(), config) ||
+ if (!SetTestConfig(ssl.get(), config) ||
!SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
return false;
}
!SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
return false;
}
- if (!config->use_early_callback && !config->use_old_client_cert_callback) {
- if (config->async) {
- SSL_set_cert_cb(ssl.get(), CertCallback, NULL);
- } else if (!InstallCertificate(ssl.get())) {
- return false;
- }
- } else {
- fprintf(stderr, "Early callback not supported.\n");
+ // Install the certificate synchronously if nothing else will handle it.
+ if (!config->use_early_callback &&
+ !config->use_old_client_cert_callback &&
+ !config->async &&
+ !InstallCertificate(ssl.get())) {
return false;
}
+ SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
if (config->require_any_client_certificate) {
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
NULL);
if (config->partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
+ if (config->no_tls13) {
+ SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
+ }
if (config->no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
fprintf(stderr, "SCTs not supported (with the same API).\n");
return false;
}
- if (config->min_version != 0) {
- SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version);
+ if (config->min_version != 0 &&
+ !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
+ return false;
}
- if (config->max_version != 0) {
- SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version);
+ if (config->max_version != 0 &&
+ !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
+ return false;
}
if (config->mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
}
if (config->enable_all_curves) {
static const int kAllCurves[] = {
- NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519,
+ NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519,
};
if (!SSL_set1_curves(ssl.get(), kAllCurves,
- sizeof(kAllCurves) / sizeof(kAllCurves[0]))) {
+ OPENSSL_ARRAY_SIZE(kAllCurves))) {
return false;
}
}
+ if (config->initial_timeout_duration_ms > 0) {
+ fprintf(stderr, "Setting DTLS initial timeout duration not supported.\n");
+ return false;
+ }
+ if (config->max_cert_list > 0) {
+ SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
+ }
int sock = Connect(config->port);
if (sock == -1) {
}
SocketCloser closer(sock);
- ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE));
+ bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
if (!bio) {
return false;
}
if (config->is_dtls) {
- ScopedBIO packeted =
- PacketedBioCreate(&GetTestState(ssl.get())->clock_delta);
+ bssl::UniquePtr<BIO> packeted = PacketedBioCreate(!config->async);
+ if (!packeted) {
+ return false;
+ }
+ GetTestState(ssl.get())->packeted_bio = packeted.get();
BIO_push(packeted.get(), bio.release());
bio = std::move(packeted);
}
if (config->async) {
- ScopedBIO async_scoped =
+ bssl::UniquePtr<BIO> async_scoped =
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
+ if (!async_scoped) {
+ return false;
+ }
BIO_push(async_scoped.get(), bio.release());
GetTestState(ssl.get())->async_bio = async_scoped.get();
bio = std::move(async_scoped);
return false;
}
+ if (config->send_alert) {
+ fprintf(stderr, "Sending an alert not supported\n");
+ return false;
+ }
+
if (config->write_different_record_sizes) {
if (config->is_dtls) {
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
memset(buf.get(), 0x42, kBufLen);
static const size_t kRecordSizes[] = {
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
- for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]);
- i++) {
+ for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
const size_t len = kRecordSizes[i];
if (len > kBufLen) {
fprintf(stderr, "Bad kRecordSizes value.\n");
if (!config->is_server && !config->false_start &&
!config->implicit_handshake &&
+ // Session tickets are sent post-handshake in TLS 1.3.
+ GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
GetTestState(ssl.get())->got_new_session) {
fprintf(stderr, "new session was established after the handshake\n");
return false;
}
+ if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
+ bool expect_new_session =
+ !config->expect_no_session && !config->shim_shuts_down;
+ if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
+ fprintf(stderr,
+ "new session was%s cached, but we expected the opposite\n",
+ GetTestState(ssl.get())->got_new_session ? "" : " not");
+ return false;
+ }
+ }
+
if (out_session) {
- out_session->reset(SSL_get1_session(ssl.get()));
+ *out_session = std::move(GetTestState(ssl.get())->new_session);
}
ret = DoShutdown(ssl.get());
~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};
-int main(int argc, char **argv) {
+static int Main(int argc, char **argv) {
// To distinguish ASan's output from ours, add a trailing message to stderr.
// Anything following this line will be considered an error.
StderrDelimiter delimiter;
return Usage(argv[0]);
}
- ScopedSSL_CTX ssl_ctx = SetupCtx(&config);
+ bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
if (!ssl_ctx) {
ERR_print_errors_fp(stderr);
return 1;
}
- ScopedSSL_SESSION session;
- if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */,
- NULL /* session */)) {
- ERR_print_errors_fp(stderr);
- return 1;
- }
+ bssl::UniquePtr<SSL_SESSION> session;
+ for (int i = 0; i < config.resume_count + 1; i++) {
+ bool is_resume = i > 0;
+ if (is_resume && !config.is_server && !session) {
+ fprintf(stderr, "No session to offer.\n");
+ return 1;
+ }
- if (config.resume &&
- !DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */,
- session.get())) {
- ERR_print_errors_fp(stderr);
- return 1;
+ bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
+ if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
+ offer_session.get())) {
+ fprintf(stderr, "Connection %d failed.\n", i + 1);
+ ERR_print_errors_fp(stderr);
+ return 1;
+ }
}
return 0;
}
+
+} // namespace bssl
+
+int main(int argc, char **argv) {
+ return bssl::Main(argc, argv);
+}
const uint8_t kOpcodePacket = 'P';
const uint8_t kOpcodeTimeout = 'T';
+const uint8_t kOpcodeTimeoutAck = 't';
+
+struct PacketedBio {
+ explicit PacketedBio(bool advance_clock_arg)
+ : advance_clock(advance_clock_arg) {
+ memset(&timeout, 0, sizeof(timeout));
+ memset(&clock, 0, sizeof(clock));
+ memset(&read_deadline, 0, sizeof(read_deadline));
+ }
+
+ bool HasTimeout() const {
+ return timeout.tv_sec != 0 || timeout.tv_usec != 0;
+ }
+
+ bool CanRead() const {
+ if (read_deadline.tv_sec == 0 && read_deadline.tv_usec == 0) {
+ return true;
+ }
+
+ if (clock.tv_sec == read_deadline.tv_sec) {
+ return clock.tv_usec < read_deadline.tv_usec;
+ }
+ return clock.tv_sec < read_deadline.tv_sec;
+ }
+
+ timeval timeout;
+ timeval clock;
+ timeval read_deadline;
+ bool advance_clock;
+};
+
+PacketedBio *GetData(BIO *bio) {
+#if 0
+ /* Missing accessor BIO_get_method()?? Disabled for now */
+ if (bio->method != &g_packeted_bio_method) {
+ return NULL;
+ }
+#endif
+ return (PacketedBio *)BIO_get_data(bio);
+}
+
+const PacketedBio *GetData(const BIO *bio) {
+ return GetData(const_cast<BIO*>(bio));
+}
// ReadAll reads |len| bytes from |bio| into |out|. It returns 1 on success and
// 0 or -1 on error.
}
static int PacketedRead(BIO *bio, char *out, int outl) {
+ PacketedBio *data = GetData(bio);
if (BIO_next(bio) == NULL) {
return 0;
}
BIO_clear_retry_flags(bio);
- // Read the opcode.
- uint8_t opcode;
- int ret = ReadAll(BIO_next(bio), &opcode, sizeof(opcode));
- if (ret <= 0) {
- BIO_copy_next_retry(bio);
- return ret;
- }
+ for (;;) {
+ // Check if the read deadline has passed.
+ if (!data->CanRead()) {
+ BIO_set_retry_read(bio);
+ return -1;
+ }
- if (opcode == kOpcodeTimeout) {
- fprintf(stderr, "Timeout simulation not supported.\n");
- return -1;
- }
+ // Read the opcode.
+ uint8_t opcode;
+ int ret = ReadAll(BIO_next(bio), &opcode, sizeof(opcode));
+ if (ret <= 0) {
+ BIO_copy_next_retry(bio);
+ return ret;
+ }
- if (opcode != kOpcodePacket) {
- fprintf(stderr, "Unknown opcode, %u\n", opcode);
- return -1;
- }
+ if (opcode == kOpcodeTimeout) {
+ // The caller is required to advance any pending timeouts before
+ // continuing.
+ if (data->HasTimeout()) {
+ fprintf(stderr, "Unprocessed timeout!\n");
+ return -1;
+ }
- // Read the length prefix.
- uint8_t len_bytes[4];
- ret = ReadAll(BIO_next(bio), len_bytes, sizeof(len_bytes));
- if (ret <= 0) {
- BIO_copy_next_retry(bio);
- return ret;
- }
+ // Process the timeout.
+ uint8_t buf[8];
+ ret = ReadAll(BIO_next(bio), buf, sizeof(buf));
+ if (ret <= 0) {
+ BIO_copy_next_retry(bio);
+ return ret;
+ }
+ uint64_t timeout = (static_cast<uint64_t>(buf[0]) << 56) |
+ (static_cast<uint64_t>(buf[1]) << 48) |
+ (static_cast<uint64_t>(buf[2]) << 40) |
+ (static_cast<uint64_t>(buf[3]) << 32) |
+ (static_cast<uint64_t>(buf[4]) << 24) |
+ (static_cast<uint64_t>(buf[5]) << 16) |
+ (static_cast<uint64_t>(buf[6]) << 8) |
+ static_cast<uint64_t>(buf[7]);
+ timeout /= 1000; // Convert nanoseconds to microseconds.
- uint32_t len = (len_bytes[0] << 24) | (len_bytes[1] << 16) |
- (len_bytes[2] << 8) | len_bytes[3];
- uint8_t *buf = (uint8_t *)OPENSSL_malloc(len);
- if (buf == NULL) {
- return -1;
- }
- ret = ReadAll(BIO_next(bio), buf, len);
- if (ret <= 0) {
- fprintf(stderr, "Packeted BIO was truncated\n");
- return -1;
- }
+ data->timeout.tv_usec = timeout % 1000000;
+ data->timeout.tv_sec = timeout / 1000000;
+
+ // Send an ACK to the peer.
+ ret = BIO_write(BIO_next(bio), &kOpcodeTimeoutAck, 1);
+ if (ret <= 0) {
+ return ret;
+ }
+ assert(ret == 1);
+
+ if (!data->advance_clock) {
+ // Signal to the caller to retry the read, after advancing the clock.
+ BIO_set_retry_read(bio);
+ return -1;
+ }
+
+ PacketedBioAdvanceClock(bio);
+ continue;
+ }
- if (outl > (int)len) {
- outl = len;
+ if (opcode != kOpcodePacket) {
+ fprintf(stderr, "Unknown opcode, %u\n", opcode);
+ return -1;
+ }
+
+ // Read the length prefix.
+ uint8_t len_bytes[4];
+ ret = ReadAll(BIO_next(bio), len_bytes, sizeof(len_bytes));
+ if (ret <= 0) {
+ BIO_copy_next_retry(bio);
+ return ret;
+ }
+
+ uint32_t len = (len_bytes[0] << 24) | (len_bytes[1] << 16) |
+ (len_bytes[2] << 8) | len_bytes[3];
+ uint8_t *buf = (uint8_t *)OPENSSL_malloc(len);
+ if (buf == NULL) {
+ return -1;
+ }
+ ret = ReadAll(BIO_next(bio), buf, len);
+ if (ret <= 0) {
+ fprintf(stderr, "Packeted BIO was truncated\n");
+ return -1;
+ }
+
+ if (outl > (int)len) {
+ outl = len;
+ }
+ memcpy(out, buf, outl);
+ OPENSSL_free(buf);
+ return outl;
}
- memcpy(out, buf, outl);
- OPENSSL_free(buf);
- return outl;
}
static long PacketedCtrl(BIO *bio, int cmd, long num, void *ptr) {
+ if (cmd == BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT) {
+ memcpy(&GetData(bio)->read_deadline, ptr, sizeof(timeval));
+ return 1;
+ }
+
if (BIO_next(bio) == NULL) {
return 0;
}
return 0;
}
+ delete GetData(bio);
BIO_set_init(bio, 0);
return 1;
}
}
} // namespace
-ScopedBIO PacketedBioCreate(timeval *out_timeout) {
- ScopedBIO bio(BIO_new(PacketedMethod()));
+bssl::UniquePtr<BIO> PacketedBioCreate(bool advance_clock) {
+ bssl::UniquePtr<BIO> bio(BIO_new(PacketedMethod()));
if (!bio) {
return nullptr;
}
- BIO_set_data(bio.get(), out_timeout);
+ BIO_set_data(bio.get(), new PacketedBio(advance_clock));
return bio;
}
+
+timeval PacketedBioGetClock(const BIO *bio) {
+ return GetData(bio)->clock;
+}
+
+bool PacketedBioAdvanceClock(BIO *bio) {
+ PacketedBio *data = GetData(bio);
+ if (data == nullptr) {
+ return false;
+ }
+
+ if (!data->HasTimeout()) {
+ return false;
+ }
+
+ data->clock.tv_usec += data->timeout.tv_usec;
+ data->clock.tv_sec += data->clock.tv_usec / 1000000;
+ data->clock.tv_usec %= 1000000;
+ data->clock.tv_sec += data->timeout.tv_sec;
+ memset(&data->timeout, 0, sizeof(data->timeout));
+ return true;
+}