"cannot be used to initialize a member in a constant expression}3">;
def note_constexpr_array_index : Note<"cannot refer to element %0 of "
"%select{array of %2 elements|non-array object}1 in a constant expression">;
+def note_constexpr_float_arithmetic : Note<
+ "floating point arithmetic produces %select{an infinity|a NaN}0">;
def note_constexpr_pointer_arithmetic : Note<
"cannot refer to element %0 of non-array object in a constant "
"expression">;
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include <cstring>
+#include <functional>
using namespace clang;
using llvm::APSInt;
A.getLValueFrame() == B.getLValueFrame();
}
+/// Perform the given integer operation, which is known to need at most BitWidth
+/// bits, and check for overflow in the original type (if that type was not an
+/// unsigned type).
+template<typename Operation>
+static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
+ const APSInt &LHS, const APSInt &RHS,
+ unsigned BitWidth, Operation Op) {
+ if (LHS.isUnsigned())
+ return Op(LHS, RHS);
+
+ APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
+ APSInt Result = Value.trunc(LHS.getBitWidth());
+ if (Result.extend(BitWidth) != Value)
+ HandleOverflow(Info, E, Value, E->getType());
+ return Result;
+}
+
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->isAssignmentOp())
return Error(E);
switch (E->getOpcode()) {
default:
return Error(E);
- case BO_Mul: return Success(LHS * RHS, E);
- case BO_Add: return Success(LHS + RHS, E);
- case BO_Sub: return Success(LHS - RHS, E);
+ case BO_Mul:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() * 2,
+ std::multiplies<APSInt>()), E);
+ case BO_Add:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() + 1,
+ std::plus<APSInt>()), E);
+ case BO_Sub:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() + 1,
+ std::minus<APSInt>()), E);
case BO_And: return Success(LHS & RHS, E);
case BO_Xor: return Success(LHS ^ RHS, E);
case BO_Or: return Success(LHS | RHS, E);
default: return Error(E);
case BO_Mul:
Result.multiply(RHS, APFloat::rmNearestTiesToEven);
- return true;
+ break;
case BO_Add:
Result.add(RHS, APFloat::rmNearestTiesToEven);
- return true;
+ break;
case BO_Sub:
Result.subtract(RHS, APFloat::rmNearestTiesToEven);
- return true;
+ break;
case BO_Div:
Result.divide(RHS, APFloat::rmNearestTiesToEven);
- return true;
+ break;
}
+
+ if (Result.isInfinity() || Result.isNaN())
+ CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
+ return true;
}
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
C c2;
constexpr int k4 = c2.f(); // ok!
}
+
+ namespace Overflow {
+ // Signed int overflow.
+ constexpr int n1 = 2 * 3 * 3 * 7 * 11 * 31 * 151 * 331; // ok
+ constexpr int n2 = 65536 * 32768; // expected-error {{constant expression}} expected-note {{value 2147483648 is outside the range of }}
+ constexpr int n3 = n1 + 1; // ok
+ constexpr int n4 = n3 + 1; // expected-error {{constant expression}} expected-note {{value 2147483648 is outside the range of }}
+ constexpr int n5 = -65536 * 32768; // ok
+ constexpr int n6 = 3 * -715827883; // expected-error {{constant expression}} expected-note {{value -2147483649 is outside the range of }}
+ constexpr int n7 = -n3 + -1; // ok
+ constexpr int n8 = -1 + n7; // expected-error {{constant expression}} expected-note {{value -2147483649 is outside the range of }}
+ constexpr int n9 = n3 - 0; // ok
+ constexpr int n10 = n3 - -1; // expected-error {{constant expression}} expected-note {{value 2147483648 is outside the range of }}
+ constexpr int n11 = -1 - n3; // ok
+ constexpr int n12 = -2 - n3; // expected-error {{constant expression}} expected-note {{value -2147483649 is outside the range of }}
+ constexpr int n13 = n5 + n5; // expected-error {{constant expression}} expected-note {{value -4294967296 is outside the range of }}
+ constexpr int n14 = n3 - n5; // expected-error {{constant expression}} expected-note {{value 4294967295 is outside the range of }}
+ constexpr int n15 = n5 * n5; // expected-error {{constant expression}} expected-note {{value 4611686018427387904 is outside the range of }}
+ constexpr signed char c1 = 100 * 2; // ok
+ constexpr signed char c2 = '\x64' * '\2'; // also ok
+ constexpr long long ll1 = 0x7fffffffffffffff; // ok
+ constexpr long long ll2 = ll1 + 1; // expected-error {{constant}} expected-note {{ 9223372036854775808 }}
+ constexpr long long ll3 = -ll1 - 1; // ok
+ constexpr long long ll4 = ll3 - 1; // expected-error {{constant}} expected-note {{ -9223372036854775809 }}
+ constexpr long long ll5 = ll3 * ll3; // expected-error {{constant}} expected-note {{ 85070591730234615865843651857942052864 }}
+
+ // Unsigned int overflow.
+ static_assert(65536u * 65536u == 0u, ""); // ok
+ static_assert(4294967295u + 1u == 0u, ""); // ok
+ static_assert(0u - 1u == 4294967295u, ""); // ok
+ static_assert(~0u * ~0u == 1u, ""); // ok
+
+ // Floating-point overflow and NaN.
+ constexpr float f1 = 1e38f * 3.4028f; // ok
+ constexpr float f2 = 1e38f * 3.4029f; // expected-error {{constant expression}} expected-note {{floating point arithmetic produces an infinity}}
+ constexpr float f3 = 1e38f / -.2939f; // ok
+ constexpr float f4 = 1e38f / -.2938f; // expected-error {{constant expression}} expected-note {{floating point arithmetic produces an infinity}}
+ constexpr float f5 = 2e38f + 2e38f; // expected-error {{constant expression}} expected-note {{floating point arithmetic produces an infinity}}
+ constexpr float f6 = -2e38f - 2e38f; // expected-error {{constant expression}} expected-note {{floating point arithmetic produces an infinity}}
+ constexpr float f7 = 0.f / 0.f; // expected-error {{constant expression}} expected-note {{floating point arithmetic produces a NaN}}
+ }
}
// - a lambda-expression (5.1.2);