// Index-wide flags
FS_FLAGS = 20,
// Maps type identifier to summary information for that type identifier.
+ // Produced by the thin link (only lives in combined index).
// TYPE_ID: [typeid, kind, bitwidth, align, size, bitmask, inlinebits,
// n x (typeid, kind, name, numrba,
// numrba x (numarg, numarg x arg, kind, info, byte, bit))]
FS_TYPE_ID = 21,
+ // For background see overview at https://llvm.org/docs/TypeMetadata.html.
+ // The type metadata includes both the type identifier and the offset of
+ // the address point of the type (the address held by objects of that type
+ // which may not be the beginning of the virtual table). Vtable definitions
+ // are decorated with type metadata for the types they are compatible with.
+ //
+ // Maps type identifier to summary information for that type identifier
+ // computed from type metadata: the valueid of each vtable definition
+ // decorated with a type metadata for that identifier, and the offset from
+ // the corresponding type metadata.
+ // Exists in the per-module summary to provide information to thin link
+ // for index-based whole program devirtualization.
+ // TYPE_ID_METADATA: [typeid, n x (valueid, offset)]
+ FS_TYPE_ID_METADATA = 22,
+ // Summarizes vtable definition for use in index-based whole program
+ // devirtualization during the thin link.
+ // PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
+ // numrefs, numrefs x valueid,
+ // n x (valueid, offset)]
+ FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS = 23,
};
enum MetadataCodes {
}
};
+/// The ValueInfo and offset for a function within a vtable definition
+/// initializer array.
+struct VirtFuncOffset {
+ VirtFuncOffset(ValueInfo VI, uint64_t Offset)
+ : FuncVI(VI), VTableOffset(Offset) {}
+
+ ValueInfo FuncVI;
+ uint64_t VTableOffset;
+};
+/// List of functions referenced by a particular vtable definition.
+using VTableFuncList = std::vector<VirtFuncOffset>;
+
/// Global variable summary information to aid decisions and
/// implementation of importing.
///
/// modified during the program run or not. This affects ThinLTO
/// internalization
class GlobalVarSummary : public GlobalValueSummary {
+private:
+ /// For vtable definitions this holds the list of functions and
+ /// their corresponding offsets within the initializer array.
+ std::unique_ptr<VTableFuncList> VTableFuncs;
+
public:
struct GVarFlags {
GVarFlags(bool ReadOnly = false) : ReadOnly(ReadOnly) {}
GVarFlags varflags() const { return VarFlags; }
void setReadOnly(bool RO) { VarFlags.ReadOnly = RO; }
bool isReadOnly() const { return VarFlags.ReadOnly; }
+
+ void setVTableFuncs(VTableFuncList Funcs) {
+ assert(!VTableFuncs);
+ VTableFuncs = llvm::make_unique<VTableFuncList>(std::move(Funcs));
+ }
+
+ ArrayRef<VirtFuncOffset> vTableFuncs() const {
+ if (VTableFuncs)
+ return *VTableFuncs;
+ return {};
+ }
};
struct TypeTestResolution {
using TypeIdSummaryMapTy =
std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
+/// The following data structures summarize type metadata information.
+/// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
+/// Each type metadata includes both the type identifier and the offset of
+/// the address point of the type (the address held by objects of that type
+/// which may not be the beginning of the virtual table). Vtable definitions
+/// are decorated with type metadata for the types they are compatible with.
+///
+/// Holds information about vtable definitions decorated with type metadata:
+/// the vtable definition value and its address point offset in a type
+/// identifier metadata it is decorated (compatible) with.
+struct TypeIdOffsetVtableInfo {
+ TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
+ : AddressPointOffset(Offset), VTableVI(VI) {}
+
+ uint64_t AddressPointOffset;
+ ValueInfo VTableVI;
+};
+/// List of vtable definitions decorated by a particular type identifier,
+/// and their corresponding offsets in that type identifier's metadata.
+/// Note that each type identifier may be compatible with multiple vtables, due
+/// to inheritance, which is why this is a vector.
+using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
+
/// Class to hold module path string table and global value map,
/// and encapsulate methods for operating on them.
class ModuleSummaryIndex {
ModulePathStringTableTy ModulePathStringTable;
/// Mapping from type identifier GUIDs to type identifier and its summary
- /// information.
+ /// information. Produced by thin link.
TypeIdSummaryMapTy TypeIdMap;
+ /// Mapping from type identifier to information about vtables decorated
+ /// with that type identifier's metadata. Produced by per module summary
+ /// analysis and consumed by thin link. For more information, see description
+ /// above where TypeIdCompatibleVtableInfo is defined.
+ std::map<std::string, TypeIdCompatibleVtableInfo> TypeIdCompatibleVtableMap;
+
/// Mapping from original ID to GUID. If original ID can map to multiple
/// GUIDs, it will be mapped to 0.
std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
return nullptr;
}
+ const std::map<std::string, TypeIdCompatibleVtableInfo> &
+ typeIdCompatibleVtableMap() const {
+ return TypeIdCompatibleVtableMap;
+ }
+
+ /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
+ /// This accessor can mutate the map and therefore should not be used in
+ /// the ThinLTO backends.
+ TypeIdCompatibleVtableInfo &
+ getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
+ return TypeIdCompatibleVtableMap[TypeId];
+ }
+
+ /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
+ /// entry if present in the summary map. This may be used when importing.
+ Optional<const TypeIdCompatibleVtableInfo>
+ getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
+ auto I = TypeIdCompatibleVtableMap.find(TypeId);
+ if (I == TypeIdCompatibleVtableMap.end())
+ return None;
+ return I->second;
+ }
+
/// Collect for the given module the list of functions it defines
/// (GUID -> Summary).
void collectDefinedFunctionsForModule(StringRef ModulePath,
Index.addGlobalValueSummary(F, std::move(FuncSummary));
}
+/// Find function pointers referenced within the given vtable initializer
+/// (or subset of an initializer) \p I. The starting offset of \p I within
+/// the vtable initializer is \p StartingOffset. Any discovered function
+/// pointers are added to \p VTableFuncs along with their cumulative offset
+/// within the initializer.
+static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
+ const Module &M, ModuleSummaryIndex &Index,
+ VTableFuncList &VTableFuncs) {
+ // First check if this is a function pointer.
+ if (I->getType()->isPointerTy()) {
+ auto Fn = dyn_cast<Function>(I->stripPointerCasts());
+ // We can disregard __cxa_pure_virtual as a possible call target, as
+ // calls to pure virtuals are UB.
+ if (Fn && Fn->getName() != "__cxa_pure_virtual")
+ VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
+ return;
+ }
+
+ // Walk through the elements in the constant struct or array and recursively
+ // look for virtual function pointers.
+ const DataLayout &DL = M.getDataLayout();
+ if (auto *C = dyn_cast<ConstantStruct>(I)) {
+ StructType *STy = dyn_cast<StructType>(C->getType());
+ assert(STy);
+ const StructLayout *SL = DL.getStructLayout(C->getType());
+
+ for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI) {
+ auto Offset = SL->getElementOffset(EI - EB);
+ unsigned Op = SL->getElementContainingOffset(Offset);
+ findFuncPointers(cast<Constant>(I->getOperand(Op)),
+ StartingOffset + Offset, M, Index, VTableFuncs);
+ }
+ } else if (auto *C = dyn_cast<ConstantArray>(I)) {
+ ArrayType *ATy = C->getType();
+ Type *EltTy = ATy->getElementType();
+ uint64_t EltSize = DL.getTypeAllocSize(EltTy);
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
+ findFuncPointers(cast<Constant>(I->getOperand(i)),
+ StartingOffset + i * EltSize, M, Index, VTableFuncs);
+ }
+ }
+}
+
+// Identify the function pointers referenced by vtable definition \p V.
+static void computeVTableFuncs(ModuleSummaryIndex &Index,
+ const GlobalVariable &V, const Module &M,
+ VTableFuncList &VTableFuncs) {
+ if (!V.isConstant())
+ return;
+
+ findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
+ VTableFuncs);
+
+#ifndef NDEBUG
+ // Validate that the VTableFuncs list is ordered by offset.
+ uint64_t PrevOffset = 0;
+ for (auto &P : VTableFuncs) {
+ // The findVFuncPointers traversal should have encountered the
+ // functions in offset order. We need to use ">=" since PrevOffset
+ // starts at 0.
+ assert(P.VTableOffset >= PrevOffset);
+ PrevOffset = P.VTableOffset;
+ }
+#endif
+}
+
+/// Record vtable definition \p V for each type metadata it references.
static void
-computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V,
- DenseSet<GlobalValue::GUID> &CantBePromoted) {
+recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
+ const GlobalVariable &V,
+ SmallVectorImpl<MDNode *> &Types) {
+ for (MDNode *Type : Types) {
+ auto TypeID = Type->getOperand(1).get();
+
+ uint64_t Offset =
+ cast<ConstantInt>(
+ cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
+ ->getZExtValue();
+
+ if (auto *TypeId = dyn_cast<MDString>(TypeID))
+ Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
+ .push_back({Offset, Index.getOrInsertValueInfo(&V)});
+ }
+}
+
+static void computeVariableSummary(ModuleSummaryIndex &Index,
+ const GlobalVariable &V,
+ DenseSet<GlobalValue::GUID> &CantBePromoted,
+ const Module &M,
+ SmallVectorImpl<MDNode *> &Types) {
SetVector<ValueInfo> RefEdges;
SmallPtrSet<const User *, 8> Visited;
bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
/* Live = */ false, V.isDSOLocal(),
V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
+ VTableFuncList VTableFuncs;
+ // If splitting is not enabled, then we compute the summary information
+ // necessary for index-based whole program devirtualization.
+ if (!Index.enableSplitLTOUnit()) {
+ Types.clear();
+ V.getMetadata(LLVMContext::MD_type, Types);
+ if (!Types.empty()) {
+ // Identify the function pointers referenced by this vtable definition.
+ computeVTableFuncs(Index, V, M, VTableFuncs);
+
+ // Record this vtable definition for each type metadata it references.
+ recordTypeIdCompatibleVtableReferences(Index, V, Types);
+ }
+ }
+
// Don't mark variables we won't be able to internalize as read-only.
GlobalVarSummary::GVarFlags VarFlags(
!V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
CantBePromoted.insert(V.getGUID());
if (HasBlockAddress)
GVarSummary->setNotEligibleToImport();
+ if (!VTableFuncs.empty())
+ GVarSummary->setVTableFuncs(VTableFuncs);
Index.addGlobalValueSummary(V, std::move(GVarSummary));
}
// Compute summaries for all variables defined in module, and save in the
// index.
+ SmallVector<MDNode *, 2> Types;
for (const GlobalVariable &G : M.globals()) {
if (G.isDeclaration())
continue;
- computeVariableSummary(Index, G, CantBePromoted);
+ computeVariableSummary(Index, G, CantBePromoted, M, Types);
}
// Compute summaries for all aliases defined in module, and save in the
KEYWORD(critical);
KEYWORD(relbf);
KEYWORD(variable);
+ KEYWORD(vTableFuncs);
+ KEYWORD(virtFunc);
KEYWORD(aliasee);
KEYWORD(refs);
KEYWORD(typeIdInfo);
KEYWORD(offset);
KEYWORD(args);
KEYWORD(typeid);
+ KEYWORD(typeidCompatibleVTable);
KEYWORD(summary);
KEYWORD(typeTestRes);
KEYWORD(kind);
case lltok::kw_typeid:
result = ParseTypeIdEntry(SummaryID);
break;
+ case lltok::kw_typeidCompatibleVTable:
+ result = ParseTypeIdCompatibleVtableEntry(SummaryID);
+ break;
default:
result = Error(Lex.getLoc(), "unexpected summary kind");
break;
return false;
}
+static ValueInfo EmptyVI =
+ ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
+
+/// TypeIdCompatibleVtableEntry
+/// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
+/// TypeIdCompatibleVtableInfo
+/// ')'
+bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
+ Lex.Lex();
+
+ std::string Name;
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_name, "expected 'name' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(Name))
+ return true;
+
+ TypeIdCompatibleVtableInfo &TI =
+ Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
+ if (ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_summary, "expected 'summary' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ // Parse each call edge
+ do {
+ uint64_t Offset;
+ if (ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_offset, "expected 'offset' here") ||
+ ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
+ ParseToken(lltok::comma, "expected ',' here"))
+ return true;
+
+ LocTy Loc = Lex.getLoc();
+ unsigned GVId;
+ ValueInfo VI;
+ if (ParseGVReference(VI, GVId))
+ return true;
+
+ // Keep track of the TypeIdCompatibleVtableInfo array index needing a
+ // forward reference. We will save the location of the ValueInfo needing an
+ // update, but can only do so once the std::vector is finalized.
+ if (VI == EmptyVI)
+ IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
+ TI.push_back({Offset, VI});
+
+ if (ParseToken(lltok::rparen, "expected ')' in call"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the TI vector is finalized, it is safe to save the locations
+ // of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(TI[P.first].VTableVI == EmptyVI &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&TI[P.first].VTableVI, P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here") ||
+ ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ // Check if this ID was forward referenced, and if so, update the
+ // corresponding GUIDs.
+ auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
+ if (FwdRefTIDs != ForwardRefTypeIds.end()) {
+ for (auto TIDRef : FwdRefTIDs->second) {
+ assert(!*TIDRef.first &&
+ "Forward referenced type id GUID expected to be 0");
+ *TIDRef.first = GlobalValue::getGUID(Name);
+ }
+ ForwardRefTypeIds.erase(FwdRefTIDs);
+ }
+
+ return false;
+}
+
/// TypeTestResolution
/// ::= 'typeTestRes' ':' '(' 'kind' ':'
/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
std::vector<ValueInfo> Refs;
+ VTableFuncList VTableFuncs;
if (ParseToken(lltok::colon, "expected ':' here") ||
ParseToken(lltok::lparen, "expected '(' here") ||
ParseModuleReference(ModulePath) ||
ParseGVarFlags(GVarFlags))
return true;
- // Parse optional refs field
- if (EatIfPresent(lltok::comma)) {
- if (ParseOptionalRefs(Refs))
- return true;
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_vTableFuncs:
+ if (ParseOptionalVTableFuncs(VTableFuncs))
+ return true;
+ break;
+ case lltok::kw_refs:
+ if (ParseOptionalRefs(Refs))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected optional variable summary field");
+ }
}
if (ParseToken(lltok::rparen, "expected ')' here"))
llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
GS->setModulePath(ModulePath);
+ GS->setVTableFuncs(std::move(VTableFuncs));
AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
ID, std::move(GS));
return false;
}
+/// OptionalVTableFuncs
+/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
+/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
+bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
+ assert(Lex.getKind() == lltok::kw_vTableFuncs);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
+ ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ // Parse each virtual function pair
+ do {
+ ValueInfo VI;
+ if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
+ ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
+ ParseToken(lltok::colon, "expected ':'"))
+ return true;
+
+ LocTy Loc = Lex.getLoc();
+ unsigned GVId;
+ if (ParseGVReference(VI, GVId))
+ return true;
+
+ uint64_t Offset;
+ if (ParseToken(lltok::comma, "expected comma") ||
+ ParseToken(lltok::kw_offset, "expected offset") ||
+ ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
+ return true;
+
+ // Keep track of the VTableFuncs array index needing a forward reference.
+ // We will save the location of the ValueInfo needing an update, but
+ // can only do so once the std::vector is finalized.
+ if (VI == EmptyVI)
+ IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
+ VTableFuncs.push_back({VI, Offset});
+
+ if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the VTableFuncs vector is finalized, it is safe to save the
+ // locations of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
+ return true;
+
+ return false;
+}
+
/// OptionalRefs
/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
IdToIndexMapType &IdToIndexMap, unsigned Index);
bool ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
IdToIndexMapType &IdToIndexMap, unsigned Index);
+ bool ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs);
bool ParseOptionalRefs(std::vector<ValueInfo> &Refs);
bool ParseTypeIdEntry(unsigned ID);
bool ParseTypeIdSummary(TypeIdSummary &TIS);
+ bool ParseTypeIdCompatibleVtableEntry(unsigned ID);
bool ParseTypeTestResolution(TypeTestResolution &TTRes);
bool ParseOptionalWpdResolutions(
std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap);
kw_critical,
kw_relbf,
kw_variable,
+ kw_vTableFuncs,
+ kw_virtFunc,
kw_aliasee,
kw_refs,
kw_typeIdInfo,
kw_offset,
kw_args,
kw_typeid,
+ kw_typeidCompatibleVTable,
kw_summary,
kw_typeTestRes,
kw_kind,
bool HasRelBF);
Error parseEntireSummary(unsigned ID);
Error parseModuleStringTable();
+ void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
+ void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
+ TypeIdCompatibleVtableInfo &TypeId);
std::pair<ValueInfo, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId);
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
}
+void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
+ ArrayRef<uint64_t> Record, size_t &Slot,
+ TypeIdCompatibleVtableInfo &TypeId) {
+ uint64_t Offset = Record[Slot++];
+ ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
+ TypeId.push_back({Offset, Callee});
+}
+
+void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
+ ArrayRef<uint64_t> Record) {
+ size_t Slot = 0;
+ TypeIdCompatibleVtableInfo &TypeId =
+ TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
+ {Strtab.data() + Record[Slot],
+ static_cast<size_t>(Record[Slot + 1])});
+ Slot += 2;
+
+ while (Slot < Record.size())
+ parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
+}
+
static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
// Read-only refs are in the end of the refs list.
for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
break;
}
+ // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
+ // numrefs, numrefs x valueid,
+ // n x (valueid, offset)]
+ case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
+ unsigned ValueID = Record[0];
+ uint64_t RawFlags = Record[1];
+ GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
+ unsigned NumRefs = Record[3];
+ unsigned RefListStartIndex = 4;
+ unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ std::vector<ValueInfo> Refs = makeRefList(
+ ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
+ VTableFuncList VTableFuncs;
+ for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
+ ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
+ uint64_t Offset = Record[++I];
+ VTableFuncs.push_back({Callee, Offset});
+ }
+ auto VS =
+ llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ VS->setModulePath(getThisModule()->first());
+ VS->setVTableFuncs(VTableFuncs);
+ auto GUID = getValueInfoFromValueId(ValueID);
+ VS->setOriginalName(GUID.second);
+ TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
+ break;
+ }
// FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
case bitc::FS_TYPE_ID:
parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
break;
+
+ case bitc::FS_TYPE_ID_METADATA:
+ parseTypeIdCompatibleVtableSummaryRecord(Record);
+ break;
}
}
llvm_unreachable("Exit infinite loop");
const Function &F);
void writeModuleLevelReferences(const GlobalVariable &V,
SmallVector<uint64_t, 64> &NameVals,
- unsigned FSModRefsAbbrev);
+ unsigned FSModRefsAbbrev,
+ unsigned FSModVTableRefsAbbrev);
void assignValueId(GlobalValue::GUID ValGUID) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
W.second);
}
+static void writeTypeIdCompatibleVtableSummaryRecord(
+ SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
+ const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
+ ValueEnumerator &VE) {
+ NameVals.push_back(StrtabBuilder.add(Id));
+ NameVals.push_back(Id.size());
+
+ for (auto &P : Summary) {
+ NameVals.push_back(P.AddressPointOffset);
+ NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
+ }
+}
+
// Helper to emit a single function summary record.
void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
// and emit them in a summary record.
void ModuleBitcodeWriterBase::writeModuleLevelReferences(
const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
- unsigned FSModRefsAbbrev) {
+ unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
auto VI = Index->getValueInfo(V.getGUID());
if (!VI || VI.getSummaryList().empty()) {
// Only declarations should not have a summary (a declaration might however
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
+ auto VTableFuncs = VS->vTableFuncs();
+ if (!VTableFuncs.empty())
+ NameVals.push_back(VS->refs().size());
+
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : VS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
// been initialized from a DenseSet.
llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
- Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
- FSModRefsAbbrev);
+ if (!VTableFuncs.empty()) {
+ // VTableFuncs pairs should already be sorted by offset.
+ for (auto &P : VTableFuncs) {
+ NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
+ NameVals.push_back(P.VTableOffset);
+ }
+ }
+
+ if (VTableFuncs.empty())
+ Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
+ FSModRefsAbbrev);
+ else
+ Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
+ FSModVTableRefsAbbrev);
NameVals.clear();
}
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
+ // numrefs x valueid, n x (valueid , offset)
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
// Abbrev for FS_ALIAS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for FS_TYPE_ID_METADATA
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
+ // n x (valueid , offset)
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
SmallVector<uint64_t, 64> NameVals;
// Iterate over the list of functions instead of the Index to
// ensure the ordering is stable.
// Capture references from GlobalVariable initializers, which are outside
// of a function scope.
for (const GlobalVariable &G : M.globals())
- writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
+ writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
+ FSModVTableRefsAbbrev);
for (const GlobalAlias &A : M.aliases()) {
auto *Aliasee = A.getBaseObject();
NameVals.clear();
}
+ if (!Index->typeIdCompatibleVtableMap().empty()) {
+ for (auto &S : Index->typeIdCompatibleVtableMap()) {
+ writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
+ S.second, VE);
+ Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
+ TypeIdCompatibleVtableAbbrev);
+ NameVals.clear();
+ }
+ }
+
Stream.ExitBlock();
}
TidIter != TheIndex->typeIds().end(); TidIter++)
CreateTypeIdSlot(TidIter->second.first);
+ for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
+ CreateGUIDSlot(GlobalValue::getGUID(TId.first));
+
ST_DEBUG("end processIndex!\n");
}
void printGlobalVarSummary(const GlobalVarSummary *GS);
void printFunctionSummary(const FunctionSummary *FS);
void printTypeIdSummary(const TypeIdSummary &TIS);
+ void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
void printTypeTestResolution(const TypeTestResolution &TTRes);
void printArgs(const std::vector<uint64_t> &Args);
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
printTypeIdSummary(TidIter->second.second);
Out << ") ; guid = " << TidIter->first << "\n";
}
+
+ // Print the TypeIdCompatibleVtableMap entries.
+ for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
+ auto GUID = GlobalValue::getGUID(TId.first);
+ Out << "^" << Machine.getGUIDSlot(GUID)
+ << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
+ printTypeIdCompatibleVtableSummary(TId.second);
+ Out << ") ; guid = " << GUID << "\n";
+ }
}
static const char *
Out << ")";
}
+void AssemblyWriter::printTypeIdCompatibleVtableSummary(
+ const TypeIdCompatibleVtableInfo &TI) {
+ Out << ", summary: (";
+ FieldSeparator FS;
+ for (auto &P : TI) {
+ Out << FS;
+ Out << "(offset: " << P.AddressPointOffset << ", ";
+ Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
+ Out << ")";
+ }
+ Out << ")";
+}
+
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
Out << "args: (";
FieldSeparator FS;
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
Out << ", varFlags: (readonly: " << GS->VarFlags.ReadOnly << ")";
+
+ auto VTableFuncs = GS->vTableFuncs();
+ if (!VTableFuncs.empty()) {
+ Out << ", vTableFuncs: (";
+ FieldSeparator FS;
+ for (auto &P : VTableFuncs) {
+ Out << FS;
+ Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
+ << ", offset: " << P.VTableOffset;
+ Out << ")";
+ }
+ Out << ")";
+ }
}
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
}
}
-// Returns whether this module needs to be split because splitting is
-// enabled and it uses type metadata.
-bool requiresSplit(Module &M) {
- // First check if the LTO Unit splitting has been enabled.
+// Check if the LTO Unit splitting has been enabled.
+bool enableSplitLTOUnit(Module &M) {
bool EnableSplitLTOUnit = false;
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("EnableSplitLTOUnit")))
EnableSplitLTOUnit = MD->getZExtValue();
- if (!EnableSplitLTOUnit)
- return false;
+ return EnableSplitLTOUnit;
+}
- // Module only needs to be split if it contains type metadata.
+// Returns whether this module needs to be split because it uses type metadata.
+bool hasTypeMetadata(Module &M) {
for (auto &GO : M.global_objects()) {
if (GO.hasMetadata(LLVMContext::MD_type))
return true;
}
-
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
- // Split module if splitting is enabled and it contains any type metadata.
- if (requiresSplit(M))
- return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
+ std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
+ // See if this module has any type metadata. If so, we try to split it
+ // or at least promote type ids to enable WPD.
+ if (hasTypeMetadata(M)) {
+ if (enableSplitLTOUnit(M))
+ return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
+ // Promote type ids as needed for index-based WPD.
+ std::string ModuleId = getUniqueModuleId(&M);
+ if (!ModuleId.empty()) {
+ promoteTypeIds(M, ModuleId);
+ // Need to rebuild the index so that it contains type metadata
+ // for the newly promoted type ids.
+ // FIXME: Probably should not bother building the index at all
+ // in the caller of writeThinLTOBitcode (which does so via the
+ // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
+ // anyway whenever there is type metadata (here or in
+ // splitAndWriteThinLTOBitcode). Just always build it once via the
+ // buildModuleSummaryIndex when Module(s) are ready.
+ ProfileSummaryInfo PSI(M);
+ NewIndex = llvm::make_unique<ModuleSummaryIndex>(
+ buildModuleSummaryIndex(M, nullptr, &PSI));
+ Index = NewIndex.get();
+ }
+ }
- // Otherwise we can just write it out as a regular module.
+ // Write it out as an unsplit ThinLTO module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
--- /dev/null
+; Test summary parsing of index-based WPD related summary fields
+; RUN: llvm-as %s -o - | llvm-dis -o %t.ll
+; RUN: grep "^\^" %s >%t2
+; RUN: grep "^\^" %t.ll >%t3
+; Expect that the summary information is the same after round-trip through
+; llvm-as and llvm-dis.
+; RUN: diff %t2 %t3
+
+source_filename = "thinlto-vtable-summary.ll"
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-grtev4-linux-gnu"
+
+%struct.A = type { i32 (...)** }
+%struct.B = type { %struct.A }
+%struct.C = type { %struct.A }
+
+@_ZTV1B = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.B*, i32)* @_ZN1B1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !1
+@_ZTV1C = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.C*, i32)* @_ZN1C1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !2
+
+declare i32 @_ZN1B1fEi(%struct.B*, i32)
+
+declare i32 @_ZN1A1nEi(%struct.A*, i32)
+
+declare i32 @_ZN1C1fEi(%struct.C*, i32)
+
+!0 = !{i64 16, !"_ZTS1A"}
+!1 = !{i64 16, !"_ZTS1B"}
+!2 = !{i64 16, !"_ZTS1C"}
+
+^0 = module: (path: "<stdin>", hash: (0, 0, 0, 0, 0))
+^1 = gv: (name: "_ZN1A1nEi") ; guid = 1621563287929432257
+^2 = gv: (name: "_ZTV1B", summaries: (variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0, canAutoHide: 0), varFlags: (readonly: 0), vTableFuncs: ((virtFunc: ^3, offset: 16), (virtFunc: ^1, offset: 24)), refs: (^3, ^1)))) ; guid = 5283576821522790367
+^3 = gv: (name: "_ZN1B1fEi") ; guid = 7162046368816414394
+^4 = gv: (name: "_ZTV1C", summaries: (variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0, canAutoHide: 0), varFlags: (readonly: 0), vTableFuncs: ((virtFunc: ^5, offset: 16), (virtFunc: ^1, offset: 24)), refs: (^1, ^5)))) ; guid = 13624023785555846296
+^5 = gv: (name: "_ZN1C1fEi") ; guid = 14876272565662207556
+^6 = typeidCompatibleVTable: (name: "_ZTS1A", summary: ((offset: 16, ^2), (offset: 16, ^4))) ; guid = 7004155349499253778
+^7 = typeidCompatibleVTable: (name: "_ZTS1B", summary: ((offset: 16, ^2))) ; guid = 6203814149063363976
+^8 = typeidCompatibleVTable: (name: "_ZTS1C", summary: ((offset: 16, ^4))) ; guid = 1884921850105019584
--- /dev/null
+; REQUIRES: x86-registered-target
+
+; Test devirtualization through the thin link and backend.
+
+; Generate split module with summary for hybrid Thin/Regular LTO WPD.
+; RUN: opt -thinlto-bc -thinlto-split-lto-unit -o %t.o %s
+
+; Check that we have module flag showing splitting enabled, and that we don't
+; generate summary information needed for index-based WPD.
+; RUN: llvm-modextract -b -n=0 %t.o -o %t.o.0
+; RUN: llvm-dis -o - %t.o.0 | FileCheck %s --check-prefix=ENABLESPLITFLAG --implicit-check-not=vTableFuncs --implicit-check-not=typeidCompatibleVTable
+; RUN: llvm-modextract -b -n=1 %t.o -o %t.o.1
+; RUN: llvm-dis -o - %t.o.1 | FileCheck %s --check-prefix=ENABLESPLITFLAG --implicit-check-not=vTableFuncs --implicit-check-not=typeidCompatibleVTable
+; ENABLESPLITFLAG: !{i32 1, !"EnableSplitLTOUnit", i32 1}
+
+; Generate unsplit module with summary for ThinLTO index-based WPD.
+; RUN: opt -thinlto-bc -o %t2.o %s
+
+; Check that we don't have module flag when splitting not enabled for ThinLTO,
+; and that we generate summary information needed for index-based WPD.
+; RUN: llvm-dis -o - %t2.o | FileCheck %s --check-prefix=NOENABLESPLITFLAG
+; NOENABLESPLITFLAG-DAG: !{i32 1, !"EnableSplitLTOUnit", i32 0}
+; NOENABLESPLITFLAG-DAG: [[An:\^[0-9]+]] = gv: (name: "_ZN1A1nEi")
+; NOENABLESPLITFLAG-DAG: [[Bf:\^[0-9]+]] = gv: (name: "_ZN1B1fEi")
+; NOENABLESPLITFLAG-DAG: [[Cf:\^[0-9]+]] = gv: (name: "_ZN1C1fEi")
+; NOENABLESPLITFLAG-DAG: [[Dm:\^[0-9]+]] = gv: (name: "_ZN1D1mEi")
+; NOENABLESPLITFLAG-DAG: [[B:\^[0-9]+]] = gv: (name: "_ZTV1B", {{.*}} vTableFuncs: ((virtFunc: [[Bf]], offset: 16), (virtFunc: [[An]], offset: 24)), refs: ([[Bf]], [[An]])
+; NOENABLESPLITFLAG-DAG: [[C:\^[0-9]+]] = gv: (name: "_ZTV1C", {{.*}} vTableFuncs: ((virtFunc: [[Cf]], offset: 16), (virtFunc: [[An]], offset: 24)), refs: ([[An]], [[Cf]])
+; NOENABLESPLITFLAG-DAG: [[D:\^[0-9]+]] = gv: (name: "_ZTV1D", {{.*}} vTableFuncs: ((virtFunc: [[Dm]], offset: 16)), refs: ([[Dm]])
+; NOENABLESPLITFLAG-DAG: typeidCompatibleVTable: (name: "_ZTS1A", summary: ((offset: 16, [[B]]), (offset: 16, [[C]])))
+; NOENABLESPLITFLAG-DAG: typeidCompatibleVTable: (name: "_ZTS1B", summary: ((offset: 16, [[B]])))
+; NOENABLESPLITFLAG-DAG: typeidCompatibleVTable: (name: "_ZTS1C", summary: ((offset: 16, [[C]])))
+; Type Id on _ZTV1D should have been promoted
+; NOENABLESPLITFLAG-DAG: typeidCompatibleVTable: (name: "1${{.*}}", summary: ((offset: 16, [[D]])))
+
+; TODO: Test index-based WPD one %t2.o once implemented.
+
+; Legacy PM
+; RUN: llvm-lto2 run %t.o -save-temps -pass-remarks=. \
+; RUN: -o %t3 \
+; RUN: -r=%t.o,test,px \
+; RUN: -r=%t.o,_ZN1A1nEi,p \
+; RUN: -r=%t.o,_ZN1B1fEi,p \
+; RUN: -r=%t.o,_ZN1C1fEi,p \
+; RUN: -r=%t.o,_ZN1D1mEi,p \
+; RUN: -r=%t.o,_ZTV1B, \
+; RUN: -r=%t.o,_ZTV1C, \
+; RUN: -r=%t.o,_ZTV1D, \
+; RUN: -r=%t.o,_ZN1A1nEi, \
+; RUN: -r=%t.o,_ZN1B1fEi, \
+; RUN: -r=%t.o,_ZN1C1fEi, \
+; RUN: -r=%t.o,_ZN1D1mEi, \
+; RUN: -r=%t.o,_ZTV1B,px \
+; RUN: -r=%t.o,_ZTV1C,px \
+; RUN: -r=%t.o,_ZTV1D,px 2>&1 | FileCheck %s --check-prefix=REMARK
+; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
+
+; New PM
+; RUN: llvm-lto2 run %t.o -save-temps -use-new-pm -pass-remarks=. \
+; RUN: -o %t3 \
+; RUN: -r=%t.o,test,px \
+; RUN: -r=%t.o,_ZN1A1nEi,p \
+; RUN: -r=%t.o,_ZN1B1fEi,p \
+; RUN: -r=%t.o,_ZN1C1fEi,p \
+; RUN: -r=%t.o,_ZN1D1mEi,p \
+; RUN: -r=%t.o,_ZTV1B, \
+; RUN: -r=%t.o,_ZTV1C, \
+; RUN: -r=%t.o,_ZTV1D, \
+; RUN: -r=%t.o,_ZN1A1nEi, \
+; RUN: -r=%t.o,_ZN1B1fEi, \
+; RUN: -r=%t.o,_ZN1C1fEi, \
+; RUN: -r=%t.o,_ZN1D1mEi, \
+; RUN: -r=%t.o,_ZTV1B,px \
+; RUN: -r=%t.o,_ZTV1C,px \
+; RUN: -r=%t.o,_ZTV1D,px 2>&1 | FileCheck %s --check-prefix=REMARK
+; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
+
+; REMARK-DAG: single-impl: devirtualized a call to _ZN1A1nEi
+; REMARK-DAG: single-impl: devirtualized a call to _ZN1D1mEi
+
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-grtev4-linux-gnu"
+
+%struct.A = type { i32 (...)** }
+%struct.B = type { %struct.A }
+%struct.C = type { %struct.A }
+%struct.D = type { i32 (...)** }
+
+@_ZTV1B = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.B*, i32)* @_ZN1B1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !1
+@_ZTV1C = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.C*, i32)* @_ZN1C1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !2
+@_ZTV1D = constant { [3 x i8*] } { [3 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.D*, i32)* @_ZN1D1mEi to i8*)] }, !type !3
+
+
+; CHECK-IR-LABEL: define i32 @test
+define i32 @test(%struct.A* %obj, %struct.D* %obj2, i32 %a) {
+entry:
+ %0 = bitcast %struct.A* %obj to i8***
+ %vtable = load i8**, i8*** %0
+ %1 = bitcast i8** %vtable to i8*
+ %p = call i1 @llvm.type.test(i8* %1, metadata !"_ZTS1A")
+ call void @llvm.assume(i1 %p)
+ %fptrptr = getelementptr i8*, i8** %vtable, i32 1
+ %2 = bitcast i8** %fptrptr to i32 (%struct.A*, i32)**
+ %fptr1 = load i32 (%struct.A*, i32)*, i32 (%struct.A*, i32)** %2, align 8
+
+ ; Check that the call was devirtualized.
+ ; CHECK-IR: %call = tail call i32 @_ZN1A1nEi
+ %call = tail call i32 %fptr1(%struct.A* nonnull %obj, i32 %a)
+
+ %3 = bitcast i8** %vtable to i32 (%struct.A*, i32)**
+ %fptr22 = load i32 (%struct.A*, i32)*, i32 (%struct.A*, i32)** %3, align 8
+
+ ; We still have to call it as virtual.
+ ; CHECK-IR: %call3 = tail call i32 %fptr22
+ %call3 = tail call i32 %fptr22(%struct.A* nonnull %obj, i32 %call)
+
+ %4 = bitcast %struct.D* %obj2 to i8***
+ %vtable2 = load i8**, i8*** %4
+ %5 = bitcast i8** %vtable2 to i8*
+ %p2 = call i1 @llvm.type.test(i8* %5, metadata !4)
+ call void @llvm.assume(i1 %p2)
+
+ %6 = bitcast i8** %vtable2 to i32 (%struct.D*, i32)**
+ %fptr33 = load i32 (%struct.D*, i32)*, i32 (%struct.D*, i32)** %6, align 8
+
+ ; Check that the call was devirtualized.
+ ; CHECK-IR: %call4 = tail call i32 @_ZN1D1mEi
+ %call4 = tail call i32 %fptr33(%struct.D* nonnull %obj2, i32 %call3)
+ ret i32 %call4
+}
+; CHECK-IR-LABEL: ret i32
+; CHECK-IR-LABEL: }
+
+declare i1 @llvm.type.test(i8*, metadata)
+declare void @llvm.assume(i1)
+
+declare i32 @_ZN1B1fEi(%struct.B* %this, i32 %a)
+declare i32 @_ZN1A1nEi(%struct.A* %this, i32 %a)
+declare i32 @_ZN1C1fEi(%struct.C* %this, i32 %a)
+declare i32 @_ZN1D1mEi(%struct.D* %this, i32 %a)
+
+!0 = !{i64 16, !"_ZTS1A"}
+!1 = !{i64 16, !"_ZTS1B"}
+!2 = !{i64 16, !"_ZTS1C"}
+!3 = !{i64 16, !4}
+!4 = distinct !{}
STRINGIFY_CODE(FS, PERMODULE_PROFILE)
STRINGIFY_CODE(FS, PERMODULE_RELBF)
STRINGIFY_CODE(FS, PERMODULE_GLOBALVAR_INIT_REFS)
+ STRINGIFY_CODE(FS, PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)
STRINGIFY_CODE(FS, COMBINED)
STRINGIFY_CODE(FS, COMBINED_PROFILE)
STRINGIFY_CODE(FS, COMBINED_GLOBALVAR_INIT_REFS)
STRINGIFY_CODE(FS, CFI_FUNCTION_DEFS)
STRINGIFY_CODE(FS, CFI_FUNCTION_DECLS)
STRINGIFY_CODE(FS, TYPE_ID)
+ STRINGIFY_CODE(FS, TYPE_ID_METADATA)
}
case bitc::METADATA_ATTACHMENT_ID:
switch(CodeID) {