* ``0 <= seconds < 3600*24`` (the number of seconds in one day)
* ``-999999999 <= days <= 999999999``
- If any argument is a float and there are fractional microseconds, the fractional
- microseconds left over from all arguments are combined and their sum is rounded
- to the nearest microsecond. If no argument is a float, the conversion and
- normalization processes are exact (no information is lost).
+ If any argument is a float and there are fractional microseconds,
+ the fractional microseconds left over from all arguments are
+ combined and their sum is rounded to the nearest microsecond using
+ round-half-to-even tiebreaker. If no argument is a float, the
+ conversion and normalization processes are exact (no information is
+ lost).
If the normalized value of days lies outside the indicated range,
:exc:`OverflowError` is raised.
eq(td(hours=-.2/us_per_hour), td(0))
eq(td(days=-.4/us_per_day, hours=-.2/us_per_hour), td(microseconds=-1))
+ # Test for a patch in Issue 8860
+ eq(td(microseconds=0.5), 0.5*td(microseconds=1.0))
+ eq(td(microseconds=0.5)//td.resolution, 0.5*td.resolution//td.resolution)
+
def test_massive_normalization(self):
td = timedelta(microseconds=-1)
self.assertEqual((td.days, td.seconds, td.microseconds),
return quo;
}
-/* Round a double to the nearest long. |x| must be small enough to fit
- * in a C long; this is not checked.
- */
-static long
-round_to_long(double x)
-{
- if (x >= 0.0)
- x = floor(x + 0.5);
- else
- x = ceil(x - 0.5);
- return (long)x;
-}
-
/* Nearest integer to m / n for integers m and n. Half-integer results
* are rounded to even.
*/
*/
/* Conversion factors. */
-static PyObject *us_per_us = NULL; /* 1 */
+static PyObject *one = NULL; /* 1 */
static PyObject *us_per_ms = NULL; /* 1000 */
static PyObject *us_per_second = NULL; /* 1000000 */
static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
goto Done
if (us) {
- y = accum("microseconds", x, us, us_per_us, &leftover_us);
+ y = accum("microseconds", x, us, one, &leftover_us);
CLEANUP;
}
if (ms) {
}
if (leftover_us) {
/* Round to nearest whole # of us, and add into x. */
- PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
+ double whole_us = round(leftover_us);
+ int x_is_odd;
+ PyObject *temp;
+
+ whole_us = round(leftover_us);
+ if (fabs(whole_us - leftover_us) == 0.5) {
+ /* We're exactly halfway between two integers. In order
+ * to do round-half-to-even, we must determine whether x
+ * is odd. Note that x is odd when it's last bit is 1. The
+ * code below uses bitwise and operation to check the last
+ * bit. */
+ temp = PyNumber_And(x, one); /* temp <- x & 1 */
+ if (temp == NULL) {
+ Py_DECREF(x);
+ goto Done;
+ }
+ x_is_odd = PyObject_IsTrue(temp);
+ Py_DECREF(temp);
+ if (x_is_odd == -1) {
+ Py_DECREF(x);
+ goto Done;
+ }
+ whole_us = 2.0 * round((leftover_us + x_is_odd) * 0.5) - x_is_odd;
+ }
+
+ temp = PyLong_FromLong(whole_us);
+
if (temp == NULL) {
Py_DECREF(x);
goto Done;
assert(DI100Y == 25 * DI4Y - 1);
assert(DI100Y == days_before_year(100+1));
- us_per_us = PyLong_FromLong(1);
+ one = PyLong_FromLong(1);
us_per_ms = PyLong_FromLong(1000);
us_per_second = PyLong_FromLong(1000000);
us_per_minute = PyLong_FromLong(60000000);
seconds_per_day = PyLong_FromLong(24 * 3600);
- if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
+ if (one == NULL || us_per_ms == NULL || us_per_second == NULL ||
us_per_minute == NULL || seconds_per_day == NULL)
return NULL;