x*rsqrt(x) returns NaN for x == 0, whereas 1/rsqrt(x) returns 0, as
desired.
Verified that the particular nvptx approximate instructions here do in
fact return 0 for x = 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293713
91177308-0d34-0410-b5e6-
96231b3b80d8
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
: Intrinsic::nvvm_sqrt_approx_f);
else {
- // There's no sqrt.approx.f64 instruction, so we emit x * rsqrt(x).
- return DAG.getNode(ISD::FMUL, DL, VT, Operand,
- MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
+ // There's no sqrt.approx.f64 instruction, so we emit
+ // reciprocal(rsqrt(x)). This is faster than
+ // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
+ // x * rsqrt(x).)
+ return DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
+ MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
}
}
}
}
; There are no fast-math or ftz versions of sqrt and div for f64. We use
-; x * rsqrt(x) for sqrt(x), and emit a vanilla divide.
+; reciprocal(rsqrt(x)) for sqrt(x), and emit a vanilla divide.
; CHECK-LABEL: sqrt_div_fast_ftz_f64(
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
; CHECK: div.rn.f64
define double @sqrt_div_fast_ftz_f64(double %a, double %b) #0 #1 {
%t1 = tail call double @llvm.sqrt.f64(double %a)
; CHECK-LABEL test_sqrt64
define double @test_sqrt64(double %a) #0 {
-; There's no sqrt.approx.f64 instruction; we emit x * rsqrt.approx.f64(x).
+; There's no sqrt.approx.f64 instruction; we emit
+; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal,
+; so we just use the ftz version.
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
define double @test_sqrt64_ftz(double %a) #0 #1 {
; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}