--- /dev/null
+// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stdlib.h>
+#include <stdbool.h>
+#include <string.h>
+#include <sys/param.h>
+
+#include "esp_attr.h"
+#include "esp_err.h"
+#include "esp_pm.h"
+#include "esp_log.h"
+#include "esp_crosscore_int.h"
+
+#include "soc/rtc.h"
+
+#include "freertos/FreeRTOS.h"
+#include "freertos/xtensa_timer.h"
+#include "xtensa/core-macros.h"
+
+#include "pm_impl.h"
+#include "pm_trace.h"
+#include "esp_timer_impl.h"
+#include "esp32/pm.h"
+
+/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
+ * for the purpose of detecting a deadlock.
+ */
+#define CCOMPARE_UPDATE_TIMEOUT 1000000
+
+#ifdef CONFIG_PM_PROFILING
+#define WITH_PROFILING
+#endif
+
+
+static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
+/* The following state variables are protected using s_switch_lock: */
+/* Current sleep mode; When switching, contains old mode until switch is complete */
+static pm_mode_t s_mode = PM_MODE_CPU_MAX;
+/* True when switch is in progress */
+static volatile bool s_is_switching;
+/* When switch is in progress, this is the mode we are switching into */
+static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
+/* Number of times each mode was locked */
+static size_t s_mode_lock_counts[PM_MODE_COUNT];
+/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
+static uint32_t s_mode_mask;
+
+/* Divider and multiplier used to adjust (ccompare - ccount) duration.
+ * Only set to non-zero values when switch is in progress.
+ */
+static uint32_t s_ccount_div;
+static uint32_t s_ccount_mul;
+
+/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
+ * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
+ */
+static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
+
+/* When no RTOS tasks are active, these locks are released to allow going into
+ * a lower power mode. Used by ISR hook and idle hook.
+ */
+static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
+
+/* A flag indicating that Idle hook has run on a given CPU;
+ * Next interrupt on the same CPU will take s_rtos_lock_handle.
+ */
+static bool s_core_idle[portNUM_PROCESSORS];
+
+/* g_ticks_us defined in ROM for PRO CPU */
+extern uint32_t g_ticks_per_us_pro;
+
+/* Lookup table of CPU frequencies to be used in each mode.
+ * Modified by esp_pm_configure.
+ */
+rtc_cpu_freq_t s_cpu_freq_by_mode[PM_MODE_COUNT] = {
+ [PM_MODE_LIGHT_SLEEP] = (rtc_cpu_freq_t) -1, /* unused */
+ [PM_MODE_APB_MIN] = RTC_CPU_FREQ_XTAL,
+ [PM_MODE_APB_MAX] = RTC_CPU_FREQ_80M,
+ [PM_MODE_CPU_MAX] = RTC_CPU_FREQ_80M,
+};
+
+/* Lookup table of CPU ticks per microsecond for each RTC_CPU_FREQ_ value.
+ * Essentially the same as returned by rtc_clk_cpu_freq_value(), but without
+ * the function call. Not const because XTAL frequency is only known at run time.
+ */
+static uint32_t s_cpu_freq_to_ticks[] = {
+ [RTC_CPU_FREQ_XTAL] = 0, /* This is set by esp_pm_impl_init */
+ [RTC_CPU_FREQ_80M] = 80,
+ [RTC_CPU_FREQ_160M] = 160,
+ [RTC_CPU_FREQ_240M] = 240,
+ [RTC_CPU_FREQ_2M] = 2
+};
+
+/* Lookup table of names for each RTC_CPU_FREQ_ value. Used for logging only. */
+static const char* s_freq_names[] __attribute__((unused)) = {
+ [RTC_CPU_FREQ_XTAL] = "XTAL",
+ [RTC_CPU_FREQ_80M] = "80",
+ [RTC_CPU_FREQ_160M] = "160",
+ [RTC_CPU_FREQ_240M] = "240",
+ [RTC_CPU_FREQ_2M] = "2"
+};
+
+/* Whether automatic light sleep is enabled. Currently always false */
+static bool s_light_sleep_en = false;
+
+#ifdef WITH_PROFILING
+/* Time, in microseconds, spent so far in each mode */
+static pm_time_t s_time_in_mode[PM_MODE_COUNT];
+/* Timestamp, in microseconds, when the mode switch last happened */
+static pm_time_t s_last_mode_change_time;
+/* User-readable mode names, used by esp_pm_impl_dump_stats */
+static const char* s_mode_names[] = {
+ "SLEEP",
+ "APB_MIN",
+ "APB_MAX",
+ "CPU_MAX"
+};
+#endif // WITH_PROFILING
+
+
+static const char* TAG = "pm_esp32";
+
+static void update_ccompare();
+static void do_switch(pm_mode_t new_mode);
+static void leave_idle();
+static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
+
+
+pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
+{
+ (void) arg;
+ if (type == ESP_PM_CPU_FREQ_MAX) {
+ return PM_MODE_CPU_MAX;
+ } else if (type == ESP_PM_APB_FREQ_MAX) {
+ return PM_MODE_APB_MAX;
+ } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
+ return PM_MODE_APB_MIN;
+ } else {
+ // unsupported mode
+ abort();
+ }
+}
+
+esp_err_t esp_pm_configure(const void* vconfig)
+{
+#ifndef CONFIG_PM_ENABLE
+ return ESP_ERR_NOT_SUPPORTED;
+#endif
+
+ const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
+ if (config->light_sleep_enable) {
+ return ESP_ERR_NOT_SUPPORTED;
+ }
+ rtc_cpu_freq_t min_freq = config->min_cpu_freq;
+ rtc_cpu_freq_t max_freq = config->max_cpu_freq;
+
+ rtc_cpu_freq_t apb_max_freq; /* CPU frequency in APB_MAX mode */
+ if (max_freq == RTC_CPU_FREQ_240M) {
+ /* We can't switch between 240 and 80/160 without disabling PLL,
+ * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
+ */
+ apb_max_freq = RTC_CPU_FREQ_240M;
+ } else {
+ /* Otherwise (max CPU frequency is 80MHz or 160MHz), can use 80MHz
+ * CPU frequency when 80MHz APB frequency is requested.
+ */
+ apb_max_freq = RTC_CPU_FREQ_80M;
+ }
+
+ apb_max_freq = MAX(apb_max_freq, min_freq);
+
+ ESP_LOGI(TAG, "Frequency switching config: "
+ "CPU_MAX: %s, APB_MAX: %s, APB_MIN: %s, Light sleep: %s",
+ s_freq_names[max_freq],
+ s_freq_names[apb_max_freq],
+ s_freq_names[min_freq],
+ config->light_sleep_enable ? "ENABLED" : "DISABLED");
+
+ portENTER_CRITICAL(&s_switch_lock);
+ s_cpu_freq_by_mode[PM_MODE_CPU_MAX] = max_freq;
+ s_cpu_freq_by_mode[PM_MODE_APB_MAX] = apb_max_freq;
+ s_cpu_freq_by_mode[PM_MODE_APB_MIN] = min_freq;
+ s_light_sleep_en = config->light_sleep_enable;
+ portEXIT_CRITICAL(&s_switch_lock);
+
+ return ESP_OK;
+}
+
+static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
+{
+ /* TODO: optimize using ffs/clz */
+ if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
+ return PM_MODE_CPU_MAX;
+ } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
+ return PM_MODE_APB_MAX;
+ } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
+ return PM_MODE_APB_MIN;
+ } else {
+ return PM_MODE_LIGHT_SLEEP;
+ }
+}
+
+void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
+ pm_mode_switch_t lock_or_unlock, pm_time_t now)
+{
+ bool need_switch = false;
+ uint32_t mode_mask = BIT(mode);
+ portENTER_CRITICAL(&s_switch_lock);
+ uint32_t count;
+ if (lock_or_unlock == MODE_LOCK) {
+ count = ++s_mode_lock_counts[mode];
+ } else {
+ count = s_mode_lock_counts[mode]--;
+ }
+ if (count == 1) {
+ if (lock_or_unlock == MODE_LOCK) {
+ s_mode_mask |= mode_mask;
+ } else {
+ s_mode_mask &= ~mode_mask;
+ }
+ need_switch = true;
+ }
+
+ pm_mode_t new_mode = s_mode;
+ if (need_switch) {
+ new_mode = get_lowest_allowed_mode();
+#ifdef WITH_PROFILING
+ if (s_last_mode_change_time != 0) {
+ pm_time_t diff = now - s_last_mode_change_time;
+ s_time_in_mode[s_mode] += diff;
+ }
+ s_last_mode_change_time = now;
+#endif // WITH_PROFILING
+ }
+ portEXIT_CRITICAL(&s_switch_lock);
+ if (need_switch && new_mode != s_mode) {
+ do_switch(new_mode);
+ }
+}
+
+/**
+ * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
+ * values on both CPUs.
+ * @param old_ticks_per_us old CPU frequency
+ * @param ticks_per_us new CPU frequency
+ */
+static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
+{
+ uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
+ uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
+ /* Update APB frequency value used by the timer */
+ if (old_apb_ticks_per_us != apb_ticks_per_us) {
+ esp_timer_impl_update_apb_freq(apb_ticks_per_us);
+ }
+
+ /* Calculate new tick divisor */
+ _xt_tick_divisor = ticks_per_us * 1000000 / XT_TICK_PER_SEC;
+
+ int core_id = xPortGetCoreID();
+ if (s_rtos_lock_handle[core_id] != NULL) {
+ ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
+ /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
+ * to calculate new CCOMPARE value.
+ */
+ s_ccount_div = old_ticks_per_us;
+ s_ccount_mul = ticks_per_us;
+
+ /* Update CCOMPARE value on this CPU */
+ update_ccompare();
+
+#if portNUM_PROCESSORS == 2
+ /* Send interrupt to the other CPU to update CCOMPARE value */
+ int other_core_id = (core_id == 0) ? 1 : 0;
+
+ s_need_update_ccompare[other_core_id] = true;
+ esp_crosscore_int_send_freq_switch(other_core_id);
+
+ int timeout = 0;
+ while (s_need_update_ccompare[other_core_id]) {
+ if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
+ assert(false && "failed to update CCOMPARE, possible deadlock");
+ }
+ }
+#endif // portNUM_PROCESSORS == 2
+
+ s_ccount_mul = 0;
+ s_ccount_div = 0;
+ ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
+ }
+}
+
+/**
+ * Perform the switch to new power mode.
+ * Currently only changes the CPU frequency and adjusts clock dividers.
+ * No light sleep yet.
+ * @param new_mode mode to switch to
+ */
+static void IRAM_ATTR do_switch(pm_mode_t new_mode)
+{
+ const int core_id = xPortGetCoreID();
+
+ do {
+ portENTER_CRITICAL_ISR(&s_switch_lock);
+ if (!s_is_switching) {
+ break;
+ }
+ if (s_new_mode <= new_mode) {
+ portEXIT_CRITICAL_ISR(&s_switch_lock);
+ return;
+ }
+ if (s_need_update_ccompare[core_id]) {
+ s_need_update_ccompare[core_id] = false;
+ }
+ portEXIT_CRITICAL_ISR(&s_switch_lock);
+ } while (true);
+ s_new_mode = new_mode;
+ s_is_switching = true;
+ portEXIT_CRITICAL_ISR(&s_switch_lock);
+
+ rtc_cpu_freq_t old_freq = s_cpu_freq_by_mode[s_mode];
+ rtc_cpu_freq_t new_freq = s_cpu_freq_by_mode[new_mode];
+
+ if (new_freq != old_freq) {
+ uint32_t old_ticks_per_us = g_ticks_per_us_pro;
+ uint32_t new_ticks_per_us = s_cpu_freq_to_ticks[new_freq];
+
+ bool switch_down = new_ticks_per_us < old_ticks_per_us;
+
+ ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
+ if (switch_down) {
+ on_freq_update(old_ticks_per_us, new_ticks_per_us);
+ }
+ rtc_clk_cpu_freq_set_fast(new_freq);
+ if (!switch_down) {
+ on_freq_update(old_ticks_per_us, new_ticks_per_us);
+ }
+ ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
+ }
+
+ portENTER_CRITICAL_ISR(&s_switch_lock);
+ s_mode = new_mode;
+ s_is_switching = false;
+ portEXIT_CRITICAL_ISR(&s_switch_lock);
+}
+
+/**
+ * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
+ *
+ * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
+ * would happen without the frequency change.
+ * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
+ */
+static void IRAM_ATTR update_ccompare()
+{
+ const uint32_t ccompare_min_cycles_in_future = 1000;
+ uint32_t ccount = XTHAL_GET_CCOUNT();
+ uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
+ if ((ccompare - ccompare_min_cycles_in_future) - ccount < UINT32_MAX / 2) {
+ uint32_t diff = ccompare - ccount;
+ uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
+ if (diff_scaled < _xt_tick_divisor) {
+ uint32_t new_ccompare = ccount + diff_scaled;
+ XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
+ }
+ }
+}
+
+static void IRAM_ATTR leave_idle()
+{
+ int core_id = xPortGetCoreID();
+ if (s_core_idle[core_id]) {
+ // TODO: possible optimization: raise frequency here first
+ esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
+ s_core_idle[core_id] = false;
+ }
+}
+
+void esp_pm_impl_idle_hook()
+{
+ int core_id = xPortGetCoreID();
+ uint32_t state = portENTER_CRITICAL_NESTED();
+ if (!s_core_idle[core_id]) {
+ esp_pm_lock_release(s_rtos_lock_handle[core_id]);
+ s_core_idle[core_id] = true;
+ }
+ portEXIT_CRITICAL_NESTED(state);
+ ESP_PM_TRACE_ENTER(IDLE, core_id);
+}
+
+void IRAM_ATTR esp_pm_impl_isr_hook()
+{
+ int core_id = xPortGetCoreID();
+ ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
+#if portNUM_PROCESSORS == 2
+ if (s_need_update_ccompare[core_id]) {
+ update_ccompare();
+ s_need_update_ccompare[core_id] = false;
+ } else {
+ leave_idle();
+ }
+#else
+ leave_idle();
+#endif // portNUM_PROCESSORS == 2
+ ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
+}
+
+#ifdef WITH_PROFILING
+void esp_pm_impl_dump_stats(FILE* out)
+{
+ pm_time_t time_in_mode[PM_MODE_COUNT];
+
+ portENTER_CRITICAL_ISR(&s_switch_lock);
+ memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
+ pm_time_t last_mode_change_time = s_last_mode_change_time;
+ pm_mode_t cur_mode = s_mode;
+ pm_time_t now = pm_get_time();
+ portEXIT_CRITICAL_ISR(&s_switch_lock);
+
+ time_in_mode[cur_mode] += now - last_mode_change_time;
+
+ for (int i = 0; i < PM_MODE_COUNT; ++i) {
+ fprintf(out, "%8s %12lld %2d%%\n",
+ s_mode_names[i],
+ time_in_mode[i],
+ (int) (time_in_mode[i] * 100 / now));
+ }
+}
+#endif // WITH_PROFILING
+
+void esp_pm_impl_init()
+{
+ s_cpu_freq_to_ticks[RTC_CPU_FREQ_XTAL] = rtc_clk_xtal_freq_get();
+#ifdef CONFIG_PM_TRACE
+ esp_pm_trace_init();
+#endif
+ ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
+ &s_rtos_lock_handle[0]));
+ ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
+#if portNUM_PROCESSORS == 2
+ ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
+ &s_rtos_lock_handle[1]));
+ ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
+#endif // portNUM_PROCESSORS == 2
+}
--- /dev/null
+// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+/**
+ * @file pm_impl.h
+ *
+ * This header file defines interface between PM lock functions (pm_locks.c)
+ * and the chip-specific power management (DFS/light sleep) implementation.
+ */
+
+#include "soc/rtc.h"
+#include "esp_pm.h"
+#include "esp_timer.h"
+#include "sdkconfig.h"
+
+
+/**
+ * This is an enum of possible power modes supported by the implementation
+ */
+typedef enum {
+ PM_MODE_LIGHT_SLEEP,//!< Light sleep
+ PM_MODE_APB_MIN, //!< Idle (no CPU frequency or APB frequency locks)
+ PM_MODE_APB_MAX, //!< Maximum APB frequency mode
+ PM_MODE_CPU_MAX, //!< Maximum CPU frequency mode
+ PM_MODE_COUNT //!< Number of items
+} pm_mode_t;
+
+/**
+ * @brief Get the mode corresponding to a certain lock
+ * @param type lock type
+ * @param arg argument value for this lock (passed to esp_pm_lock_create)
+ * @return lowest power consumption mode which meets the constraints of the lock
+ */
+pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg);
+
+/**
+ * If profiling is enabled, this data type will be used to store microsecond
+ * timestamps.
+ */
+typedef int64_t pm_time_t;
+
+/**
+ * See \ref esp_pm_impl_switch_mode
+ */
+typedef enum {
+ MODE_LOCK,
+ MODE_UNLOCK
+} pm_mode_switch_t;
+
+/**
+ * @brief Switch between power modes when lock is taken or released
+ * @param mode pm_mode_t corresponding to the lock being taken or released,
+ * as returned by \ref esp_pm_impl_get_mode
+ * @param lock_or_unlock
+ * - MODE_LOCK: lock was taken. Implementation needs to make sure
+ * that the constraints of the lock are met by switching to the
+ * given 'mode' or any of the higher power ones.
+ * - MODE_UNLOCK: lock was released. If all the locks for given
+ * mode are released, and no locks for higher power modes are
+ * taken, implementation can switch to one of lower power modes.
+ * @param now timestamp when the lock was taken or released. Passed as
+ * a minor optimization, so that the implementation does not need to
+ * call pm_get_time again.
+ */
+void esp_pm_impl_switch_mode(pm_mode_t mode, pm_mode_switch_t lock_or_unlock, pm_time_t now);
+
+/**
+ * @brief Call once at startup to initialize pm implementation
+ */
+void esp_pm_impl_init();
+
+/**
+ * @brief Hook function for the idle task
+ * Must be called from the IDLE task on each CPU before entering waiti state.
+ */
+void esp_pm_impl_idle_hook();
+
+/**
+ * @brief Hook function for the interrupt dispatcher
+ * Must be called soon after entering the ISR
+ */
+void esp_pm_impl_isr_hook();
+
+/**
+ * @brief Dump the information about time spent in each of the pm modes.
+ *
+ * Prints three columns:
+ * mode name, total time in mode (in microseconds), percentage of time in mode
+ *
+ * @param out stream to dump the information to
+ */
+void esp_pm_impl_dump_stats(FILE* out);
+
+
+#ifdef CONFIG_PM_PROFILING
+#define WITH_PROFILING
+#endif
+
+#ifdef WITH_PROFILING
+static inline pm_time_t IRAM_ATTR pm_get_time()
+{
+ return esp_timer_get_time();
+}
+#endif // WITH_PROFILING