#include "TreeTransform.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/LangOptions.h"
assert(Function->getPrimaryTemplate() && "No function template?");
if (Function->getPrimaryTemplate()->isMemberSpecialization())
break;
+
+ // If this function is a generic lambda specialization, we are done.
+ if (isGenericLambdaCallOperatorSpecialization(Function))
+ break;
+
} else if (FunctionTemplateDecl *FunTmpl
= Function->getDescribedFunctionTemplate()) {
// Add the "injected" template arguments.
}
ExprResult TransformLambdaScope(LambdaExpr *E,
- CXXMethodDecl *CallOperator) {
- CallOperator->setInstantiationOfMemberFunction(E->getCallOperator(),
- TSK_ImplicitInstantiation);
- return TreeTransform<TemplateInstantiator>::
- TransformLambdaScope(E, CallOperator);
+ CXXMethodDecl *NewCallOperator) {
+ // If a lambda is undergoing transformation for instance in the
+ // call to foo('a') below:
+ // template<class T> void foo(T t) {
+ // auto L1 = [](T a) { return a; };\r
+ // auto L2 = [](char b) { return b; };
+ // auto L3 = [](auto c) { return c; };
+ // }
+ // The AST nodes of the OldCallOperators within the primary template foo
+ // are connected to the NewCallOperators within the specialization of foo.
+ // - In the case of L1 and L2 we set the NewCallOperator to be considered
+ // an instantiation of the OldCallOperator.
+ // - In the generic lambda case, we set the NewTemplate to be considered
+ // an "instantiation" of the OldTemplate.
+ // See the documentation and use of get/setInstantiationOfMemberFunction
+ // and get/setInstantiatedFromMemberTemplate to appreciate the relevance
+ // of creating these links.
+ // And so it goes on and on with nested generic lambdas.
+ CXXMethodDecl *const OldCallOperator = E->getCallOperator();
+ FunctionTemplateDecl *const NewCallOperatorTemplate =
+ NewCallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *const OldCallOperatorTemplate =
+ OldCallOperator->getDescribedFunctionTemplate();
+
+ if (!NewCallOperatorTemplate)
+ NewCallOperator->setInstantiationOfMemberFunction(OldCallOperator,
+ TSK_ImplicitInstantiation);
+ else {
+ NewCallOperatorTemplate->setInstantiatedFromMemberTemplate(
+ OldCallOperatorTemplate);
+ // Set this as a specialization so we don't go digging into the
+ // OldCallOperatorTemplate when retrieving the
+ // 'FunctionDecl::getTemplateInstantiationPattern()'
+ NewCallOperatorTemplate->setMemberSpecialization();
+ }
+ return inherited::TransformLambdaScope(E, NewCallOperator);
+ }
+ TemplateParameterList *TransformTemplateParameterList(\r
+ TemplateParameterList *OrigTPL) {
+ TemplateParameterList *NewTPL = 0;
+ if (OrigTPL) {
+ if (!OrigTPL->size()) return OrigTPL; // size 0, do nothing
+
+ DeclContext *Owner = OrigTPL->getParam(0)->getDeclContext();
+ TemplateDeclInstantiator DeclInstantiator(getSema(),
+ /* DeclContext *Owner */ Owner, TemplateArgs);
+ NewTPL = DeclInstantiator.SubstTemplateParams(OrigTPL);
+ }
+ return NewTPL;
}
-
private:
ExprResult transformNonTypeTemplateParmRef(NonTypeTemplateParmDecl *parm,
SourceLocation loc,
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
/// \brief Transform the captures and body of a lambda expression.
ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator);
+ TemplateParameterList *TransformTemplateParameterList(
+ TemplateParameterList *TPL) {
+ return TPL;
+ }
+
ExprResult TransformAddressOfOperand(Expr *E);
ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
bool IsAddressOfOperand);
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
DecltypeTypeLoc TL) {
const DecltypeType *T = TL.getTypePtr();
+ // Don't transform a decltype construct that has already been transformed
+ // into a non-dependent type.
+ // Allows the following to compile:
+ // auto L = [](auto a) {
+ // return [](auto b) ->decltype(a) {
+ // return b;
+ // };
+ //};
+ if (!T->isInstantiationDependentType()) {
+ DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(TL.getType());
+ NewTL.setNameLoc(TL.getNameLoc());
+ return NewTL.getType();
+ }
// decltype expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0,
ExprResult
TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
- // FIXME: Implement nested generic lambda transformations.
- if (E->isGenericLambda()) {
- getSema().Diag(E->getIntroducerRange().getBegin(),
- diag::err_glambda_not_fully_implemented)
- << " template transformation of generic lambdas not implemented yet";
- return ExprError();
- }
- // Transform the type of the lambda parameters and start the definition of
- // the lambda itself.
- TypeSourceInfo *MethodTy
- = TransformType(E->getCallOperator()->getTypeSourceInfo());
- if (!MethodTy)
+ getSema().PushLambdaScope();
+ LambdaScopeInfo *LSI = getSema().getCurLambda();
+ TemplateParameterList *const OrigTPL = E->getTemplateParameterList();
+ TemplateParameterList *NewTPL = 0;
+ // Transform the template parameters, and add them to the
+ // current instantiation scope.
+ if (OrigTPL) {
+ NewTPL = getDerived().TransformTemplateParameterList(OrigTPL);
+ }
+ LSI->GLTemplateParameterList = NewTPL;
+ // Transform the type of the lambda parameters and start the definition of
+ // the lambda itself.
+ TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
+ TypeSourceInfo *NewCallOpTSI = TransformType(OldCallOpTSI);
+ if (!NewCallOpTSI)
return ExprError();
// Create the local class that will describe the lambda.
CXXRecordDecl *Class
= getSema().createLambdaClosureType(E->getIntroducerRange(),
- MethodTy,
+ NewCallOpTSI,
/*KnownDependent=*/false);
getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
E->getCallOperator()->param_size(),
0, ParamTypes, &Params))
return ExprError();
- getSema().PushLambdaScope();
- LambdaScopeInfo *LSI = getSema().getCurLambda();
- // TODO: Fix for nested lambdas
- LSI->GLTemplateParameterList = 0;
+
// Build the call operator.
- CXXMethodDecl *CallOperator
+ CXXMethodDecl *NewCallOperator
= getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
- MethodTy,
+ NewCallOpTSI,
E->getCallOperator()->getLocEnd(),
Params);
- getDerived().transformAttrs(E->getCallOperator(), CallOperator);
-
- return getDerived().TransformLambdaScope(E, CallOperator);
+ LSI->CallOperator = NewCallOperator;
+ // Fix the Decl Contexts of the parameters within the call op function
+ // prototype.
+ getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
+
+ TypeLoc NewCallOpTL = NewCallOpTSI->getTypeLoc();
+ FunctionProtoTypeLoc NewFPTL = NewCallOpTL.castAs<FunctionProtoTypeLoc>();
+ ParmVarDecl **NewParamDeclArray = NewFPTL.getParmArray();
+ const unsigned NewNumArgs = NewFPTL.getNumArgs();
+ for (unsigned I = 0; I < NewNumArgs; ++I) {
+ NewParamDeclArray[I]->setOwningFunction(NewCallOperator);
+ }
+ // If this is a non-generic lambda, the parameters do not get added to the
+ // current instantiation scope, so add them. This feels kludgey.
+ // Anyway, it allows the following to compile when the enclosing template
+ // is specialized and the entire lambda expression has to be
+ // transformed. Without this FindInstantiatedDecl causes an assertion.
+ // template<class T> void foo(T t) {
+ // auto L = [](auto a) {
+ // auto M = [](char b) { <-- note: non-generic lambda
+ // auto N = [](auto c) {
+ // int x = sizeof(a);
+ // x = sizeof(b); <-- specifically this line
+ // x = sizeof(c);
+ // };
+ // };
+ // };
+ // }
+ // foo('a');
+ //
+ if (!E->isGenericLambda()) {
+ for (unsigned I = 0; I < NewNumArgs; ++I)
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ NewParamDeclArray[I], NewParamDeclArray[I]);
+ }
+ return getDerived().TransformLambdaScope(E, NewCallOperator);
}
template<typename Derived>
-// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks %s
+// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -emit-llvm -o - %s
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing %s -DDELAYED_TEMPLATE_PARSING
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fms-extensions %s -DMS_EXTENSIONS
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing -fms-extensions %s -DMS_EXTENSIONS -DDELAYED_TEMPLATE_PARSING
//expected-note{{candidate}}
}
}
-
}
-
namespace return_type_deduction_ok {
auto l = [](auto a) ->auto { return a; }(2);
auto l2 = [](auto a) ->decltype(auto) { return a; }(2);
void test(int i = [](auto a)->int { return a; }(3)) {
}
}
+
+namespace nested_non_capturing_lambda_tests {
+template<class ... Ts> void print(Ts ...) { }
+int test() {
+{
+ auto L = [](auto a) {
+ return [](auto b) {
+ return b;
+ };
+ };
+ auto M = L(3);
+ M(4.15);
+ }
+{
+ int i = 10; //expected-note{{declared here}}
+ auto L = [](auto a) {
+ return [](auto b) { //expected-note{{begins here}}
+ i = b; //expected-error{{cannot be implicitly captured}}
+ return b;
+ };
+ };
+ auto M = L(3);
+ M(4.15); //expected-note{{instantiation}}
+ }
+ {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ return [](auto b) ->decltype(a) {
+ print("b = ", b, "\n");
+ return b;
+ };
+ };
+ auto M = L(3);
+ M(4.15);
+ }
+
+{
+ auto L = [](auto a) ->decltype(a) {
+ print("a = ", a, "\n");
+ return [](auto b) ->decltype(a) { //expected-error{{no viable conversion}}\
+ //expected-note{{candidate template ignored}}
+ print("b = ", b, "\n");
+ return b;
+ };
+ };
+ auto M = L(3); //expected-note{{in instantiation of}}
+ }
+{
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ return [](auto ... b) ->decltype(a) {
+ print("b = ", b ..., "\n");
+ return 4;
+ };
+ };
+ auto M = L(3);
+ M(4.15, 3, "fv");
+}
+
+{
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ return [](auto ... b) ->decltype(a) {
+ print("b = ", b ..., "\n");
+ return 4;
+ };
+ };
+ auto M = L(3);
+ int (*fp)(double, int, const char*) = M;
+ fp(4.15, 3, "fv");
+}
+
+{
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ return [](char b) {
+ return [](auto ... c) ->decltype(b) {
+ print("c = ", c ..., "\n");
+ return 42;
+ };
+ };
+ };
+ L(4);
+ auto M = L(3);
+ M('a');
+ auto N = M('x');
+ N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ char (*np)(const char*, int, const char*, double, const char*, int) = N;
+ np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+}
+
+
+{
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ return [](decltype(a) b) {
+ return [](auto ... c) ->decltype(b) {
+ print("c = ", c ..., "\n");
+ return 42;
+ };
+ };
+ };
+ L('4');
+ auto M = L('3');
+ M('a');
+ auto N = M('x');
+ N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ char (*np)(const char*, int, const char*, double, const char*, int) = N;
+ np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+}
+
+
+{
+ struct X {
+ static void foo(double d) { }
+ void test() {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ foo(a);
+ return [](decltype(a) b) {
+ foo(b);
+ foo(sizeof(a) + sizeof(b));
+ return [](auto ... c) ->decltype(b) {
+ print("c = ", c ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return 42;
+ };
+ };
+ };
+ L('4');
+ auto M = L('3');
+ M('a');
+ auto N = M('x');
+ N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ char (*np)(const char*, int, const char*, double, const char*, int) = N;
+ np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ }
+};
+X x;
+x.test();
+}
+// Make sure we can escape the function
+{
+ struct X {
+ static void foo(double d) { }
+ auto test() {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ foo(a);
+ return [](decltype(a) b) {
+ foo(b);
+ foo(sizeof(a) + sizeof(b));
+ return [](auto ... c) ->decltype(b) {
+ print("c = ", c ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return 42;
+ };
+ };
+ };
+ return L;
+ }
+};
+ X x;
+ auto L = x.test();
+ L('4');
+ auto M = L('3');
+ M('a');
+ auto N = M('x');
+ N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ char (*np)(const char*, int, const char*, double, const char*, int) = N;
+ np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+}
+
+{
+ struct X {
+ static void foo(double d) { }
+ auto test() {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ foo(a);
+ return [](decltype(a) b) {
+ foo(b);
+ foo(sizeof(a) + sizeof(b));
+ return [](auto ... c) {
+ print("c = ", c ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return [](decltype(c) ... d) ->decltype(a) { //expected-note{{candidate}}
+ print("d = ", d ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return decltype(a){};
+ };
+ };
+ };
+ };
+ return L;
+ }
+};
+ X x;
+ auto L = x.test();
+ L('4');
+ auto M = L('3');
+ M('a');
+ auto N = M('x');
+ auto O = N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ char (*np)(const char*, int, const char*, double, const char*, int) = O;
+ np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+ int (*np2)(const char*, int, const char*, double, const char*, int) = O; // expected-error{{no viable conversion}}
+
+}
+} // end test()
+
+namespace wrapped_within_templates {
+
+namespace explicit_return {
+template<class T> int fooT(T t) {
+ auto L = [](auto a) -> void {
+ auto M = [](char b) -> void {
+ auto N = [](auto c) -> void {
+ int x = 0;
+ x = sizeof(a);
+ x = sizeof(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(decltype(a){});
+ };
+ };
+ L(t);
+ L(3.14);
+ return 0;
+}
+
+int run = fooT('a') + fooT(3.14);
+
+} // end explicit_return
+
+namespace implicit_return_deduction {
+template<class T> auto fooT(T t) {
+ auto L = [](auto a) {
+ auto M = [](char b) {
+ auto N = [](auto c) {
+ int x = 0;
+ x = sizeof(a);
+ x = sizeof(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(decltype(a){});
+ };
+ };
+ L(t);
+ L(3.14);
+ return 0;
+}
+
+int run = fooT('a') + fooT(3.14);
+
+template<class ... Ts> void print(Ts ... ts) { }
+
+template<class F, class ... Rest> using first = F;
+
+template<class ... Ts> auto fooV(Ts ... ts) {
+ auto L = [](auto ... a) {
+ auto M = [](decltype(a) ... b) {
+ auto N = [](auto c) {
+ int x = 0;
+ x = sizeof...(a);
+ x = sizeof...(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(N);
+ N(first<Ts...>{});
+ };
+ M(a...);
+ print("a = ", a..., "\n");
+ };
+ L(L, ts...);
+ print("ts = ", ts..., "\n");
+ return 0;
+}
+
+int run2 = fooV(3.14, " ", '4', 5) + fooV("BC", 3, 2.77, 'A', float{}, short{}, unsigned{});
+
+} //implicit_return_deduction
+
+
+} //wrapped_within_templates
+
+namespace at_ns_scope {
+ void foo(double d) { }
+ auto test() {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ foo(a);
+ return [](decltype(a) b) {
+ foo(b);
+ foo(sizeof(a) + sizeof(b));
+ return [](auto ... c) {
+ print("c = ", c ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return [](decltype(c) ... d) ->decltype(a) { //expected-note{{candidate}}
+ print("d = ", d ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return decltype(a){};
+ };
+ };
+ };
+ };
+ return L;
+ }
+auto L = test();
+auto L_test = L('4');
+auto M = L('3');
+auto M_test = M('a');
+auto N = M('x');
+auto O = N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+char (*np)(const char*, int, const char*, double, const char*, int) = O;
+auto NP_result = np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+int (*np2)(const char*, int, const char*, double, const char*, int) = O; // expected-error{{no viable conversion}}
+
+
+
+}
+
+namespace variadic_tests_1 {
+template<class ... Ts> void print(Ts ... ts) { }
+
+template<class F, class ... Rest> using FirstType = F;
+template<class F, class ... Rest> F& FirstArg(F& f, Rest...) { return f; }
+
+template<class ... Ts> int fooV(Ts ... ts) {
+ auto L = [](auto ... a) -> void {
+ auto M = [](decltype(a) ... b) -> void {
+ auto N = [](auto c) -> void {
+ int x = 0;
+ x = sizeof...(a);
+ x = sizeof...(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(N);
+ N(FirstType<Ts...>{});
+ };
+ M(a...);
+ print("a = ", a..., "\n");
+ };
+ L(L, ts...);
+ print("ts = ", ts..., "\n");
+ return 0;
+}
+
+int run2 = fooV(3.14, " ", '4', 5) + fooV("BC", 3, 2.77, 'A', float{}, short{}, unsigned{});
+
+namespace more_variadic_1 {
+
+template<class ... Ts> int fooV(Ts ... ts) {
+ auto L = [](auto ... a) {
+ auto M = [](decltype(a) ... b) -> void {
+ auto N = [](auto c) -> void {
+ int x = 0;
+ x = sizeof...(a);
+ x = sizeof...(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(N);
+ N(FirstType<Ts...>{});
+ };
+ M(a...);
+ return M;
+ };
+ auto M = L(L, ts...);
+ decltype(L(L, ts...)) (*fp)(decltype(L), decltype(ts) ...) = L;
+ void (*fp2)(decltype(L), decltype(ts) ...) = L(L, ts...);
+
+ {
+ auto L = [](auto ... a) {
+ auto M = [](decltype(a) ... b) {
+ auto N = [](auto c) -> void {
+ int x = 0;
+ x = sizeof...(a);
+ x = sizeof...(b);
+ x = sizeof(c);
+ };
+ N('a');
+ N(N);
+ N(FirstType<Ts...>{});
+ return N;
+ };
+ M(a...);
+ return M;
+ };
+ auto M = L(L, ts...);
+ decltype(L(L, ts...)) (*fp)(decltype(L), decltype(ts) ...) = L;
+ fp(L, ts...);
+ decltype(L(L, ts...)(L, ts...)) (*fp2)(decltype(L), decltype(ts) ...) = L(L, ts...);
+ fp2 = fp(L, ts...);
+ void (*fp3)(char) = fp2(L, ts...);
+ fp3('a');
+ }
+ return 0;
+}
+
+int run2 = fooV(3.14, " ", '4', 5) + fooV("BC", 3, 2.77, 'A', float{}, short{}, unsigned{});
+
+
+} //end ns more_variadic_1
+
+} // end ns variadic_tests_1
+
+namespace at_ns_scope_within_class_member {
+ struct X {
+ static void foo(double d) { }
+ auto test() {
+ auto L = [](auto a) {
+ print("a = ", a, "\n");
+ foo(a);
+ return [](decltype(a) b) {
+ foo(b);
+ foo(sizeof(a) + sizeof(b));
+ return [](auto ... c) {
+ print("c = ", c ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return [](decltype(c) ... d) ->decltype(a) { //expected-note{{candidate}}
+ print("d = ", d ..., "\n");
+ foo(decltype(b){});
+ foo(sizeof(decltype(a)*) + sizeof(decltype(b)*));
+ return decltype(a){};
+ };
+ };
+ };
+ };
+ return L;
+ }
+};
+X x;
+auto L = x.test();
+auto L_test = L('4');
+auto M = L('3');
+auto M_test = M('a');
+auto N = M('x');
+auto O = N("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+char (*np)(const char*, int, const char*, double, const char*, int) = O;
+auto NP_result = np("\n3 = ", 3, "\n6.14 = ", 6.14, "\n4'123'456 = ", 4'123'456);
+int (*np2)(const char*, int, const char*, double, const char*, int) = O; // expected-error{{no viable conversion}}
+
+} //end at_ns_scope_within_class_member
+
+
+namespace nested_generic_lambdas_123 {
+void test() {
+ auto L = [](auto a) -> int {
+ auto M = [](auto b, decltype(a) b2) -> int {
+ return 1;
+ };
+ M(a, a);
+ };
+ L(3);
+}
+template<class T> void foo(T) {
+ auto L = [](auto a) { return a; };
+}
+template void foo(int);
+} // end ns nested_generic_lambdas_123
+
+
+} // end ns nested_non_capturing_lambda_tests
+
\ No newline at end of file